Matrix Metalloproteinases in Inflammatory Dermatoses
Abstract
1. Introduction
Physiological Role of Matrix Metalloproteinases in the Skin
2. Disorders in the Activity of Metalloproteinases in the Skin
- Scleroderma
- b.
- Psoriasis
- c.
- Lupus erythematosus (LE)
- d.
- Blistering diseases (pemphigoid and pemphigus)
- e.
- Alopecia
- f.
- Atopic dermatitis and prurigo nodularis
3. Inhibition of Metalloproteinases—Therapeutic Perspectives and Research Gaps
- Characteristics of Natural MMP Inhibitors
- b.
- Therapies Using Natural MMP Inhibitors and Monoclonal Antibodies
- c.
- Research Gaps in MMP Inhibition Strategies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, D.R.; Handsley, M.M.; Pennington, C.J. The ADAM metalloproteinases. Mol. Asp. Med. 2008, 29, 258–289. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wan, J.; Zhang, G.; Li, X.; Qiu, X.; Ouyang, J.; Dai, J.; Min, S. Matrix metalloproteinase 3: A promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front. Physiol. 2021, 12, 663978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moro, N.; Mauch, C.; Zigrino, P. Metalloproteinases in melanoma. Eur. J. Cell Biol. 2014, 93, 23–29. [Google Scholar] [CrossRef]
- de Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 2022, 74, 712–768. [Google Scholar] [CrossRef] [PubMed]
- Śliwowska, I.; Kopczyński, Z. Matrix metalloproteinases—Biochemical characteristics and clinical value determination in breast cancer patients. Contemp. Oncol. 2005, 9, 327–333. [Google Scholar]
- Kümper, M.; Steinkamp, J.; Zigrino, P. Metalloproteinases in dermal homeostasis. Am. J. Physiol. Cell Physiol. 2022, 323, C1290–C1303. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef]
- Gargiulo, S.; Gamba, P.; Poli, G.; Leonarduzzi, G. Metalloproteinases and metalloproteinase inhibitors in age-related diseases. Curr. Pharm. Des. 2014, 20, 2993–3008. [Google Scholar] [CrossRef] [PubMed]
- Fields, G.B. New strategies for targeting matrix metalloproteinases. Matrix Biol. 2015, 44–46, 239–246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tokito, M.; Jougasaki, M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci. 2016, 17, 1178. [Google Scholar] [CrossRef]
- Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat. Rev. Cancer 2002, 2, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef]
- Iyer, R.P.; Patterson, N.L.; Fields, G.B.; Lindsey, M.L. The history of matrix metalloproteinases: Milestones, myths, and misperceptions. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H919–H930. [Google Scholar] [CrossRef]
- Kähäri, V.M.; Saarialho-Kere, U. Matrix metalloproteinases in skin. Exp. Dermatol. 1997, 6, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, R.; Talvensaari-Mattila, A.; Pääkkö, P.; Turpeenniemi-Hujanen, T. Matrix metalloproteinase-2 (MMP-2) in T(1-2)N0 breast carcinoma. Breast Cancer Res. Treat. 2003, 77, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Noël, A.; Gutiérrez-Fernández, A.; Sounni, N.E.; Behrendt, N.; Maquoi, E.; Lund, I.K.; Cal, S.; Hoyer-Hansen, G.; López-Otín, C. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front. Pharmacol. 2012, 3, 140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldini, E.; Toller, M.; Graziano, F.M.; Russo, F.P.; Pepe, M.; Biordi, L.; Marchioni, E.; Curcio, F.; Ulisse, S.; Ambesi-Impiombato, F.S.; et al. Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines. Thyroid 2004, 14, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.; Sherer, Y.; Shoenfeld, Y. Matrix metalloproteinase-9 and autoimmune diseases. J. Clin. Immunol. 2006, 26, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Jinnin, M.; Ihn, H.; Mimura, Y.; Asano, Y.; Yamane, K.; Tamaki, K. Effects of hepatocyte growth factor on the expression of type I collagen and matrix metalloproteinase-1 in normal and scleroderma dermal fibroblasts. J. Investig. Dermatol. 2005, 124, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhu, H.; Luo, H.; Gao, S.; Dai, X.; Li, Y.; Zuo, X. MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase-1. Biomed. Pharmacother. 2017, 87, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Z.; Asano, Y.; Kubo, M.; Ihn, H.; Tada, Y.; Sugaya, M.; Kadono, T.; Sato, S. Effects of the immunosuppressant rapamycin on the expression of human α2(I) collagen and matrix metalloproteinase 1 genes in scleroderma dermal fibroblasts. J. Dermatol. Sci. 2014, 74, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Malewska-Woźniak, A.; Lodyga, M.; Adamski, Z. Concentrations of metalloproteinase-1 in patients with morphea treated with phototherapy: A preliminary study. Postep. Dermatol. Alergol. 2022, 39, 972–975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asano, Y.; Ihn, H.; Kubo, M.; Jinnin, M.; Mimura, Y.; Ashida, R.; Tamaki, K. Clinical significance of serum matrix metalloproteinase-13 levels in patients with localized scleroderma. Clin. Exp. Rheumatol. 2006, 24, 394–399. [Google Scholar] [PubMed]
- Niwa, H.; Kanno, Y.; Shju, E.; Seishima, M. Decrease in matrix metalloproteinase 3 activity in systemic sclerosis fibroblasts causes α2-antiplasmin and extracellular matrix deposition, and contributes to fibrosis development. Mol. Med. Rep. 2020, 22, 3001–3007. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.U.; Min, S.Y.; Cho, M.L.; Hong, K.H.; Shin, Y.J.; Park, S.H.; Cho, C.S. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res. Ther. 2005, 7, R71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muraoka, S.; Brodie, W.D.; Mattichak, M.N.; Gurrea-Rubio, M.; Ikari, Y.; Foster, C.; Amin, M.A.; Khanna, N.; Amin, H.; Campbell, P.L.; et al. Targeting CD13/aminopeptidase N as a novel therapeutic approach for scleroderma fibrosis. Arthritis Rheumatol. 2025, 77, 80–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomimura, S.; Ogawa, F.; Iwata, Y.; Komura, K.; Hara, T.; Muroi, E.; Takenaka, M.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; et al. Autoantibodies against matrix metalloproteinase-1 in patients with localized scleroderma. J. Dermatol. Sci. 2008, 52, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Jinnin, M.; Ihn, H.; Asano, Y.; Yamane, K.; Yazawa, N.; Tamaki, K. Serum matrix metalloproteinase-3 in systemic sclerosis. Arch. Dermatol. Res. 2004, 296, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Rech, T.F.; Moraes, S.B.; Bredemeier, M.; de Paoli, J.; Brenol, J.C.; Xavier, R.M.; Chies, J.A.; Simon, D. Matrix metalloproteinase gene polymorphisms and susceptibility to systemic sclerosis. Genet. Mol. Res. 2016, 15, 15049077. [Google Scholar] [CrossRef] [PubMed]
- Skarmoutsou, E.; D’Amico, F.; Marchini, M.; Stivala, F.; Malaponte, G.; Scorza, R.; Mazzarino, M.C. Analysis of matrix metalloproteinase-9 gene polymorphism -1562 C/T in patients suffering from systemic sclerosis with and without ulcers. Int. J. Mol. Med. 2011, 27, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, W.; Chen, C. Matrix metalloproteinase 7 is a candidate biomarker. Acta Reum. Port. 2020, 45, 191–200. (In English) [Google Scholar] [PubMed]
- Matson, S.M.; Lee, S.J.; Peterson, R.A.; Achtar-Zadeh, N.A.; Boin, F.; Wolters, P.J.; Lee, J.S. The prognostic role of matrix metalloproteinase-7 in scleroderma-associated interstitial lung disease. Eur. Respir. J. 2021, 58, 2101560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pulito-Cueto, V.; Atienza-Mateo, B.; Batista-Liz, J.C.; Sebastián Mora-Gil, M.; Mora-Cuesta, V.M.; Iturbe-Fernández, D.; Izquierdo Cuervo, S.; Aguirre Portilla, C.; Blanco, R.; López-Mejías, R. Matrix metalloproteinases and their tissue inhibitors as upcoming biomarker signatures of connective tissue diseases-related interstitial lung disease: Towards an earlier and accurate diagnosis. Mol. Med. 2025, 31, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, M.; Fadl, A.; Leask, A. Orofacial Complications of the Connective Tissue Disease Systemic Sclerosis. J. Dent. Res. 2024, 103, 689–696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Starodubtseva, N.L.; Sobolev, V.V.; Soboleva, A.G.; Nikolaev, A.A.; Bruskin, S.A. Expression of genes for metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-12) associated with psoriasis. Genetika 2011, 47, 1254–1261. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Michalak-Stoma, A.; Bartosińska, J.; Raczkiewicz, D.; Kowal, M.; Krasowska, D.; Chodorowska, G. Assessment of Selected Matrix Metalloproteinases (MMPs) and Correlation with Cytokines in Psoriatic Patients. Mediat. Inflamm. 2021, 2021, 9913798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.E.; Lew, W. The Increased Expression of Matrix Metalloproteinase-9 Messenger RNA in the Non-lesional Skin of Patients with Large Plaque Psoriasis Vulgaris. Ann. Dermatol. 2009, 21, 27–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stjernholm, T.; Ommen, P.; Langkilde, A.; Johansen, C.; Iversen, L.; Rosada, C.; Stenderup, K. Leptin deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes. Exp. Dermatol. 2017, 26, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, I.; Porebski, P.; Chodynicka, B. Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales. Acta Derm. Venereol. 2006, 86, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; De Filippis, A.; Gaudiello, F.; Balato, A.; Balato, N.; Tufano, M.A.; Ayala, F. Modification of osteopontin and MMP-9 levels in patients with psoriasis on anti-TNF-α therapy. Arch. Dermatol. Res. 2012, 304, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Alves-Filho, J.C.; Marcel Silva Melo, B.; Ryffel, B. MMP-9 Mediates Cross-Talk between Neutrophils and Endothelial Cells in Psoriasis. J. Investig. Dermatol. 2021, 141, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Sautin, M.E.; Soboleva, A.G.; Zolotarenko, A.D.; Piruzyan, E.S.; Korsunskaya, I.M.; Orekhov, P.Y.; Chupin, A.V.; Bruskin, S.A.; Sobolev, V.V. Expression of matrix metalloproteases in psoriasis and atherosclerosis. Russ. J. Ski. Venereol. 2013, 16, 27–30. [Google Scholar] [CrossRef]
- Su, W.; Zhao, Y.; Wei, Y.; Zhang, X.; Ji, J.; Yang, S. Exploring the Pathogenesis of Psoriasis Complicated With Atherosclerosis via Microarray Data Analysis. Front. Immunol. 2021, 12, 667690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vira, H.; Pradhan, V.; Umare, V.; Chaudhary, A.; Rajadhyksha, A.; Nadkar, M.; Ghosh, K.; Nadkarni, A. Role of polymorphisms in MMP-9 and TIMP-1 as biomarkers for susceptibility to systemic lupus erythematosus patients. Biomark. Med. 2019, 13, 33–43. [Google Scholar] [CrossRef]
- Vira, H.; Pradhan, V.; Umare, V.; Chaudhary, A.; Rajadhyksha, A.; Nadkar, M.; Ghosh, K.; Nadkarni, A. Expression of the matrix metalloproteinases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 in systemic lupus erythematosus patients. Neth. J. Med. 2020, 78, 261–268. [Google Scholar]
- Bahrehmand, F.; Vaisi-Raygani, A.; Kiani, A.; Rahimi, Z.; Tavilani, H.; Navabi, S.J.; Shakiba, E.; Hassanzadeh, N.; Pourmotabbed, T. Matrix metalloproteinase-2 functional promoter polymorphism G1575A is associated with elevated circulatory MMP-2 levels and increased risk of cardiovascular disease in systemic lupus erythematosus patients. Lupus 2012, 21, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Bahrehmand, F.; Vaisi-Raygani, A.; Kiani, A.; Rahimi, Z.; Tavilani, H.; Ardalan, M.; Vaisi-Raygani, H.; Shakiba, E.; Pourmotabbed, T. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: Correlation with systemic inflammatory markers and oxidative stress. Lupus 2015, 24, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Kronbichler, A.; Park, S.J.; Kim, S.H.; Han, K.H.; Kang, H.G.; Ha, I.S.; Cheong, H.I.; Kim, K.H.; Kim, G.; et al. Association between Serum Matrix Metalloproteinase- (MMP-) 3 Levels and Systemic Lupus Erythematosus: A Meta-analysis. Dis. Markers 2019, 2019, 9796735, Erratum in Dis. Markers 2020, 2020, 5943216. https://doi:10.1155/2020/5943216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.Y.; Bai, Y.Q.; Liu, Y. Matrix metalloproteinase-3 in patients with systemic lupus erythematosus and its significance in differentiating disease activity from pulmonary infections. Zhonghua Nei Ke Za Zhi 2020, 59, 58–61. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, L.; Su, H.; Feng, X.; Shi, M.; Jin, L.; Yang, M.; Zhou, Z.; Su, C.; Yang, B.; et al. Association of Urinary Matrix Metalloproteinase 7 Levels with Incident Renal Flare in Lupus Nephritis. Arthritis Rheumatol. 2021, 73, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Faber-Elmann, A.; Sthoeger, Z.; Tcherniack, A.; Dayan, M.; Mozes, E. Activity of matrix metalloproteinase-9 is elevated in sera of patients with systemic lupus erythematosus. Clin. Exp. Immunol. 2002, 127, 393–398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mao, Y.M.; Wang, S.; Zhao, C.N.; Wu, Q.; Dan, Y.L.; Guan, S.Y.; Lv, T.T.; Liu, L.N.; Wang, P.; Pan, H.F. Circulating Matrix Metalloproteinase-9 Levels in Patients with Systemic Lupus Erythematosus: A Meta-analysis. Curr. Pharm. Des. 2018, 24, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Ertugrul, G.; Keles, D.; Oktay, G.; Aktan, S. Matrix metalloproteinase-2 and -9 activity levels increase in cutaneous lupus erythematosus lesions and correlate with disease severity. Arch. Dermatol. Res. 2018, 310, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Lesiak, A.; Narbutt, J.; Sysa-Jedrzejowska, A.; Lukamowicz, J.; McCauliffe, D.P.; Wózniacka, A. Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 2010, 19, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Olkarinen, A.I.; Zone, J.J.; Ahmed, A.R.; Kiistala, U.; Uitto, J.; Olkarinen, J.J.Z. Demonstration of Collagenase and Elastase Activities in the Blister Fluids from Bullous Skin Diseases. Comparison Between Dermatitis Herpetiformis and Bullous Pemphigoid. J. Investig. Dermatol. 1983, 81, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shipley, J.M.; Vu, T.H.; Zhou, X.; Diaz, L.A.; Werb, Z.; Senior, R.M. Gelatinase B–deficient Mice Are Resistant to Experimental Bullous Pemphigoid. J. Exp. Med. 1998, 188, 475–482. [Google Scholar] [CrossRef]
- Oikarinen, A.; Kylmäniemi, M.; Autio-Harmainen, H.; Autio, P.; Salo, T. Demonstration of 72-kDa and 92-kDa Forms of Type IV Collagenase in Human Skin: Variable Expression in Various Blistering Diseases, Induction During Re-Epithelialization, and Decrease by Topical Glucocorticoids. J. Investig. Dermatol. 1993, 101, 205–210. [Google Scholar] [CrossRef]
- Verraes, S.; Hornebeck, W.; Bernard, P.; Polette, M.; Borradori, L. Respective contribution of neutrophil elastase and matrix met-alloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid. J. Investig. Dermatol. 2001, 117, 1091–1096. [Google Scholar] [CrossRef]
- Cancemi, P.; Aiello, A.; Accardi, G.; Caldarella, R.; Candore, G.; Caruso, C.; Ciaccio, M.; Cristaldi, L.; Di Gaudio, F.; Siino, V.; et al. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediat. Inflamm. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef]
- Riani, M.; Muller, C.; Bour, C.; Bernard, P.; Antonicelli, F.; Le Jan, S. Blister Fluid Induces MMP-9-Associated M2-Type Macrophages in Bullous Pemphigoid. Front. Immunol. 2019, 10, 1858. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, X.; Shapiro, S.D.; Shipley, J.; Twining, S.S.; Diaz, L.A.; Senior, R.M.; Werb, Z. The Serpin α1-Proteinase Inhibitor Is a Critical Substrate for Gelatinase B/MMP-9 In Vivo. Cell 2000, 102, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, N.; Diaz, L.A.; Shipley, M.; Senior, R.M.; Werb, Z. Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J. Clin. Investig. 2005, 115, 879–887. [Google Scholar] [CrossRef]
- Tåhle-Bäckdahl, M.; Inoue, M.; Guidice, G.J.; Parks, W.C. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J. Clin. Investig. 1994, 93, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Le Jan, S.; Plée, J.; Vallerand, D.; Dupont, A.; Delanez, E.; Durlach, A.; Jackson, P.L.; Edwin Blalock, J.; Bernard, P.; Antonicelli, F. Innate immune cell-produced IL-17 sustains inflammation in bullous pemphigoid. J. Investig. Dermatol. 2014, 134, 2908–2917. [Google Scholar] [CrossRef]
- Lin, L.; Betsuyaku, T.; Heimbach, L.; Li, N.; Rubenstein, D.; Shapiro, S.D.; An, L.; Giudice, G.J.; Diaz, L.A.; Senior, R.M.; et al. Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid. Matrix Biol. 2012, 31, 38–44. [Google Scholar] [CrossRef]
- Pal-Ghosh, S.; Blanco, T.; Tadvalkar, G.; Pajoohesh-Ganji, A.; Parthasarathy, A.; Zieske, J.D.; Stepp, M.A. MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. J. Cell Sci. 2011, 124, 2666–2675. [Google Scholar] [CrossRef]
- Jordan, T.J.M.; Chen, J.; Li, N.; Burette, S.; Wan, L.; Chen, L.; Culton, D.A.; Geng, S.; Googe, P.; Thomas, N.E.; et al. The Eotaxin-1/CCR3 Axis and Matrix Metalloproteinase-9 Are Critical in Anti-NC16A IgE-Induced Bullous Pemphigoid. J. Immunol. 2023, 211, 1216–1223. [Google Scholar] [CrossRef]
- Sato, T.; Chiba, T.; Nakahara, T.; Watanabe, K.; Sakai, S.; Noguchi, N.; Noto, M.; Ueki, S.; Kono, M. Eosinophil-derived galectin-10 upregulates matrix metalloproteinase expression in bullous pemphigoid blisters. J. Dermatol. Sci. 2023, 112, 6–14. [Google Scholar] [CrossRef]
- Cirillo, N.; Lanza, M.; Rossiello, L.; Gombos, F.; Lanza, A. Defining the involvement of proteinases in pemphigus vulgaris: Evidence of matrix metalloproteinase-9 overexpression in experimental models of disease. J. Cell Physiol. 2007, 212, 36–41. [Google Scholar] [CrossRef]
- Fujimura, T.; Kakizaki, A.; Furudate, S.; Aiba, S. A possible interaction between periostin and CD163(+) skin-resident macrophages in pemphigus vulgaris and bullous pemphigoid. Exp. Dermatol. 2017, 26, 1193–1198. [Google Scholar] [CrossRef]
- Cirillo, N.; Prime, S.S. A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021, 11, 1506. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, N.; Femiano, F.; Gombos, F.; Lanza, A. Metalloproteinase 9 is the outer executioner of desmoglein 3 in apoptotic keratinocytes. Oral Dis. 2006, 13, 341–345. [Google Scholar] [CrossRef]
- Jarrousse, F.; Boisnic, S.; Branchet, M.C.; Beranger, J.Y.; Godeau, G.; Breton, L.; Bernard, B.A.; Mahé, Y.F. Identification of clustered cells in human hair follicle responsible for MMP-9 gelatinolytic activity: Consequences for the regulation of hair growth. Int. J. Dermatol. 2001, 40, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Blossom, S.J.; Doss, J.C.; Gilbert, K.M. Chronic exposure to a trichloroethylene metabolite in autoimmune-prone MRL+/+ mice promotes immune modulation and alopecia. Toxicol. Sci. 2007, 95, 401–411. [Google Scholar] [CrossRef]
- Heffler, L.C.; Kastman, A.L.; Jacobsson Ekman, G.; Scheynius, A.; Fransson, J. Langerhans cells that express matrix metalloproteinase 9 increase in human dermis during sensitization to diphenylcyclopropenone in patients with alopecia areata. Br. J. Dermatol. 2002, 147, 222–229. [Google Scholar] [CrossRef]
- Hou, C.; Miao, Y.; Wang, X.; Chen, C.; Lin, B.; Hu, Z. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle. Exp. Ther. Med. 2016, 12, 231–237. [Google Scholar] [CrossRef]
- Yu, L.; Li, L. Potential biomarkers of atopic dermatitis. Front. Med. 2022, 9, 1028694. [Google Scholar] [CrossRef]
- Valenzuela, F.; Fernández, J.; Aroca, M.; Jiménez, C.; Albers, D.; Hernández, M.; Fernández, A. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. [Google Scholar] [CrossRef]
- Tominaga, M.; Tengara, S.; Kamo, A.; Ogawa, H.; Takamori, K. Matrix metalloproteinase-8 is involved in dermal nerve growth: Implications for possible application to pruritus from in vitro models. J. Investig. Dermatol. 2011, 131, 2105–2112. [Google Scholar] [CrossRef]
- Harper, J.I.; Godwin, H.; Green, A.; Wilkes, L.E.; Holden, N.J.; Moffatt, M.; Cookson, W.O.; Layton, G.; Chandler, S. A study of matrix metalloproteinase expression and activity in atopic dermatitis using a novel skin wash sampling assay for functional biomarker analysis. Br. J. Dermatol. 2010, 162, 397–403. [Google Scholar] [CrossRef]
- Devillers, A.C.A.; van Toorenenbergen, A.W.; Klein Heerenbrink, G.J.; Muldert, P.G.; Oranje, A.P. Elevated levels of plasma matrix metalloproteinase--9 in patients with atopic dermatitis: A pilot study. Clin. Exp. Dermatol. 2007, 32, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Dai, X.; Chen, W.; Wang, J.; Wang, H.; Yan, X.; Zhang, W.; Fan, Q.; Li, L.; Wang, J.; et al. Matrix Metalloproteinase 9 Plays a Crucial Role in Inflammation and Itch in Allergic Contact Dermatitis by Regulating Toll-Like Receptor 2/1 Signaling. J. Investig. Dermatol. 2024, 144, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Basałygo, M.; Śliwiñska, J.; Żbikowska-Gotz, M.; Lis, K.; Socha, E.; Bartuzi, Z.; Zegarska, B. Assessment of serum concentrations of matrix metalloproteinase 1,matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases 1 in atopic dermatitis in correlation with disease severity and epidermal barrier parameters. Postep. Dermatol. Alergol. 2021, 38, 773–779. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Titz, T.; Orfali, R.L.; de Lollo, C.; Dos Santos, V.G.; da Silva Duarte, A.J.; Sato, M.N.; Aoki, V. Impaired CD23 and CD62L expression and tissue inhibitors of metalloproteinases secretion by eosinophils in adults with atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2072–2076. [Google Scholar] [CrossRef]
- Pereira da Fonseca, A.; Traidl, S.; Gutzmer, R.; Schaper-Gerhardt, K.; Werfel, T.; Mommert, S. Histamine and Th2 cytokines independently and synergistically upregulate MMP12 expression in human M2 macrophages. Front. Immunol. 2024, 15, 1429009. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Wu, X.; Li, D. MicroRNA-939 amplifies Staphylococcus aureus-induced matrix metalloproteinase expression in atopic dermatitis. Front. Immunol. 2024, 15, 1354154. [Google Scholar] [CrossRef]
- Deng, J.; Parthasarathy, V.; Marani, M.; Bordeaux, Z.; Lee, K.; Trinh, C.; Cornman, H.L.; Kambala, A.; Pritchard, T.; Chen, S.; et al. Extracellular matrix and dermal nerve growth factor dysregulation in prurigo nodularis compared to atopic dermatitis. Front. Med. 2022, 9, 1022889. [Google Scholar] [CrossRef]
- O’Kane, C.; Elkington, P.; Friedland, J. Monocyte-dependent oncostatin M and TNF-alpha synergize to stimulate unopposed matrix metalloproteinase-1/3 secretion from human lung fibroblasts in tuberculosis. Eur. J. Immunol. 2008, 38, 1321–1330. [Google Scholar] [CrossRef]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, D.; Zhu, Y.; Xiao, Z.; Jin, T.; Peng, L.; Shen, Y.; Tang, H. Molecular mechanisms of pruritus in prurigo nodularis. Front. Immunol. 2023, 14, 1301817. [Google Scholar] [CrossRef]
- Kalantar, M.; Hilpert, G.A.; Mosca, E.R.; Raeeszadeh-Sarmazdeh, M. Engineering metalloproteinase inhibitors: Tissue inhibitors of metalloproteinases or antibodies, that is the question. Curr. Opin. Biotechnol. 2024, 86, 103094. [Google Scholar] [CrossRef] [PubMed]
- Amour, A.; Knight, C.G.; Webster, A.; Slocombe, P.M.; Stephens, P.E.; Knäuper, V.; Docherty, A.J.; Murphy, G. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 2000, 473, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Pietruszewska, W.; Bojanowska-Poźniak, K.; Kobos, J. Metaloproteinazy macierzy zewnątrzkomórkowej MMP1, MMP2, MMP9 oraz ich inhibitory tkankowe TIMP1, TIMP2, TIMP3 w rakach głowy i szyi: Badanie immunohistochemiczne. Otolaryngol. Pol. 2016, 70, 32–43. [Google Scholar]
- Leighl, N.B.; Paz-Ares, L.; Douillard, J.; Peschel, C.; Arnold, A.; Depierre, A.; Santoro, A.; Betticher, D.C.; Gatzemeier, U.; Jassem, J.; et al. Randomized Phase III Study of Matrix Metalloproteinase Inhibitor BMS-275291 in Combination With Paclitaxel and Carboplatin in Advanced Non-Small-Cell Lung Cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR.18. J. Clin. Oncol. 2005, 23, 2831–2839. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Overall, C.M. Domain interactions in the Gelatinase A·TIMP-2·MT1-MMP activation complex. J. Biol. Chem. 2000, 275, 39497–39506. [Google Scholar] [CrossRef]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serifova, X.; Ugarte-Berzal, E.; Opdenakker, G.; Vandooren, J. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sci. 2020, 77, 3013–3026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mendes, S.R.; Amo-Maestro, L.D.; Marino-Puertas, L.; Diego, I.; Goulas, T.; Gomis-Rüth, F.X. Analysis of the inhibiting activity of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) on matrix metalloproteinases. Sci. Rep. 2020, 10, 6317. [Google Scholar] [CrossRef]
- Palladini, G.; Di Pasqua, L.G.; Croce, A.C.; Ferrigno, A.; Vairetti, M. Recent updates on the therapeutic prospects of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in liver injuries. Int. J. Mol. Sci. 2023, 24, 17407. [Google Scholar] [CrossRef]
- Chodorowska, G.; Wojnowska, D.; Juszkiewicz-Borowiec, M. C-reactive protein and alpha2-macroglobulin plasma activity in medium-severe and severe psoriasis. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Sikder, M.S.; Bhuiyan, M.S.A.; Haque, S.M.; Islam, K.A.; Alam, S.M.K. Plasma alpha-2-macroglobulin level in moderate to severe psoriasis. Bangladesh J. Med. Sci. 2011, 10, 35–39. [Google Scholar] [CrossRef]
- Schön, M.P. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front. Immunol. 2019, 10, 1764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freire, M.; Sopeña, B.; Bravo, S.; Spuch, C.; Argibay, A.; Estévez, M.; Pena, C.; Naya, M.; Lama, A.; González-Quintela, A. Serum proteomic markers in patients with systemic sclerosis in relation to silica exposure. J. Clin. Med. 2025, 14, 2019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutiérrez, J.; Droppelmann, C.A.; Contreras, O.; Takahashi, C.; Brandan, E. RECK-mediated β1-integrin regulation by TGF-β1 is critical for wound contraction in mice. PLoS ONE 2015, 10, e0135005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matache, C.; Stefanescu, M.; Dragomir, C.; Tanaseanu, S.; Onu, A.; Ofiteru, A.; Szegli, G. Matrix metalloproteinase-9 and its natural inhibitor TIMP-1 expressed or secreted by peripheral blood mononuclear cells from patients with systemic lupus erythematosus. J. Autoimmun. 2003, 20, 323–331. [Google Scholar] [CrossRef]
- Robak, E.; Wierzbowska, A.; Chmiela, M.; Kulczycka, L.; Sysa-Jedrejowska, A.; Robak, T. Circulating total and active metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in patients with systemic lupus erythematosus. Mediat. Inflamm. 2006, 2006, 17898. [Google Scholar] [CrossRef]
- Asano, T.; Ito, H.; Kariya, Y.; Hoshi, K.; Yoshihara, A.; Ugawa, Y.; Sekine, H.; Hirohata, S.; Yamaguchi, Y.; Sato, S.; et al. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PLoS ONE 2017, 12, e0186414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomita, H.; Hayakawa, K.; Ikeda, K.; Tsushima, H.; Shinoura, M.; Fujishiro, M.; Kataoka, Y.; Yamaji, K.; Takamori, K.; Tamura, N.; et al. miR-6516-3p-mediated downregulation of the endogenous MMP-9 inhibitor RECK in mesangial cells might exacerbate lupus nephritis. Mol. Med. 2025, 31, 84. [Google Scholar] [CrossRef]
- Katoh, N.; Hirano, S.; Suehiro, M.; Ikenaga, K.; Yasuno, H. Increased levels of serum tissue inhibitor of metalloproteinase-1 but not metalloproteinase-3 in atopic dermatitis. Clin. Exp. Immunol. 2002, 127, 283–288. [Google Scholar] [CrossRef]
- Miyoshi, H.; Kanekura, T.; Aoki, T.; Kanzaki, T. Beneficial effects of tissue inhibitor of metalloproteinases-2 (TIMP-2) on chronic dermatitis. J. Dermatol. 2005, 32, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Burdina, A.V.; Zorina, V.N.; Korotkiy, N.G.; Shkolnikova, T.V.; Zorin, N.A. Acute inflammation phase proteins in cases of IgE-mediated and IgE-independent atopic dermatitis. Vestn. Dermatol. Venerol. 2017, 90, 35–39. [Google Scholar] [CrossRef]
- Hamada, T.; Arima, N.; Shindo, M.; Sugama, K.; Sasaguri, Y. Suppression of adjuvant arthritis of rats by a novel matrix metalloproteinase-inhibitor. Br. J. Pharmacol. 2000, 131, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, J.L.; George, S.J.; Newby, A.C.; Jackson, C.L. RXP470.1, a selective MMP-12 inhibitor, reduces atherosclerotic plaque area and promotes plaque stability in ApoE-deficient mice. J. Clin. Investig. 2011, 121, 1110–1122. [Google Scholar] [CrossRef]
- Sousa, J.E.; Serruys, P.W.; Costa, M.A. New frontiers in cardiology: Drug-eluting stents: Part II. Circulation 2003, 107, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Norga, K.; Paemen, L.; Masure, S.; Dillen, C.; Heremans, H.; Billiau, A.; Carton, H.; Cuzner, L.; Olsson, T.; Van Damme, J.; et al. Prevention of acute autoimmune encephalomyelitis and abrogation of relapses in murine models of multiple sclerosis by the protease inhibitor D-penicillamine. Inflamm. Res. 1995, 44, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; D’Hooghe, M.B.; De Lepeleire, K.; Ketelaer, P.; Opdenakker, G.; Carton, H. Toxicity in a double-blind, placebo-controlled pilot trial with D-penicillamine and metacycline in secondary progressive multiple sclerosis. Mult. Scler. 1998, 4, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Popovic, N.; Schubart, A.; Goetz, B.D.; Zhang, S.C.; Linington, C.; Duncan, I.D. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 2002, 51, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Metz, D.C.; Cadiot, G.; Poitras, P.; Ito, T.; Jensen, R.T. Diagnosis of Zollinger-Ellison syndrome in the era of PPIs, faulty gastrin assays, sensitive imaging and limited access to acid secretory testing. Int. J. Endocr. Oncol. 2017, 4, 167–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caton, J.; Ryan, M.E. Clinical studies on the management of periodontal diseases utilizing subantimicrobial dose doxycycline (SDD). Pharmacol. Res. 2011, 63, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Remacle, A.G.; Golubkov, V.S.; Shiryaev, S.A.; Dahl, R.; Stebbins, J.L.; Chernov, A.V.; Cheltsov, A.V.; Pellecchia, M.; Strongin, A.Y. Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res. 2012, 72, 2339–2349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toumaian, M.R.; Raeeszadeh-Sarmazdeh, M. Engineering tissue inhibitors of metalloproteinases using yeast surface display. Methods Mol. Biol. 2022, 2491, 361–385. [Google Scholar]

| DISEASE/MODEL | INHIBITOR | STUDY | KEY FINDINGS |
|---|---|---|---|
| Psoriasis | α2M | Chodorowska et al., 2004 [103] | elevated α2M levels during active disease; returned to normal after successful treatment |
| Psoriasis | α2M | Sikder et al., 2017 [104] | serum α2M levels did not differ significantly between controls and patients, either before or after methotrexate treatment |
| Psoriasis | α2M | Schön et al., 2019 [105] | severe psoriasis associated with increased α2M |
| Sclerosis | α2M | Freire M et al., 2025 [106] | significant decrease in serum α2M in patients exposed to silica |
| Sclerosis/mouse fibroblasts | RECK | Gutiérrez J et al., 2015 [107] | TGF-β1 reduces RECK expression, promoting β1-integrin activation, fibroblast adhesion, and skin remodeling |
| Psoriasis | TIMP-1 | Michalak-Stoma A et al., 2021 [37] | no differences in TIMP-1 mRNA levels between lesional and non-lesional skin |
| Psoriasis | TIMP-1 | Flisiak et al., 2006 [40] | elevated plasma TIMP-1 levels, no changes in psoriatic scales |
| SLE | TIMP-2 | Brew et al., 2010 [13] | serum and mRNA levels of TIMP-2 significantly increased |
| SLE | TIMP-1 | Vira et al., 2019 [45] | concomitant presence of TIMP-1 372C alleles increased SLE risk; TIMP-1 correlated with SLEDAI score |
| SLE | TIMP-2 | Vira et al., 2020 [46] | active cases: TIMP-1, TIMP-2 significantly elevated (serum and mRNA) |
| SLE | TIMP-1 | Matache et al., 2003 [108] | TIMP-1 secretion is similar to controls |
| SLE | TIMP-1 | Robak et al., 2006 [109] | TIMP-1 levels are lower in SLE; a positive correlation of TIMP-1 correlated with VEGF |
| CLE | TIMP-1 | Ertugrul G et al., 2018 [54] | TIMP-1 increased in lesional skin |
| Neuropsychiatric SLE | α2M | Asano et al., 2017 [110] | increased CSF α2M/serum ratio; impaired blood–brain barrier integrity |
| Lupus nephritis | RECK | Tomita et al., 2025 [111] | miR-6516-3p decreases RECK, increasing MMP-9 expression and renal inflammation |
| AD exacerbation | TIMP-1 | Katoh et al., 2002 [112] | serum TIMP-1 higher than in non-atopic controls; elevated TIMP-1/MMP-3 ratios; correlated with eosinophils, IgE, LDH, eruption score, area, lichenification, and prurigo |
| AD | TIMP-1 | Basałygo et al., 2021 [85] | TIMP-1 > MMP-1 associated with lower TEWL and higher epidermal hydration |
| AD, eosinophils in vitro | TIMP-1 | de Oliveira Titz et al., 2016 [86] | no difference in serum; decreased basal TIMP-1 secretion from unstimulated eosinophils from AD patients |
| AD | TIMP-1 | Lesiak et al., 2010 [55] | increased serum TIMP-1 after chloroquine therapy |
| Chronic dermatitis model (NC/Kuj mice, Df extract-induced eczema) | TIMP-2 | Miyoshi et al., 2005 [113] | TIMP-2 treatment reduced eczema severity, epidermal hyperkeratosis, acanthosis, spongiosis, dermal inflammation; decreased TEWL and epidermal thickness |
| AD | a2-M | Burdina et al., 2014 [114] | elevated levels in AD patients vs. controls; correlated with disease severity (SCORAD) |
| Pemphigus vulgaris (PV) mouse model | TIMP-3 | Cirillo, N et al., 2007 [71] | decreased TIMP-3 in skin of mice injected with PV sera |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwińska, J.; Owczarczyk-Saczonek, A. Matrix Metalloproteinases in Inflammatory Dermatoses. Int. J. Mol. Sci. 2025, 26, 10319. https://doi.org/10.3390/ijms262110319
Czerwińska J, Owczarczyk-Saczonek A. Matrix Metalloproteinases in Inflammatory Dermatoses. International Journal of Molecular Sciences. 2025; 26(21):10319. https://doi.org/10.3390/ijms262110319
Chicago/Turabian StyleCzerwińska, Joanna, and Agnieszka Owczarczyk-Saczonek. 2025. "Matrix Metalloproteinases in Inflammatory Dermatoses" International Journal of Molecular Sciences 26, no. 21: 10319. https://doi.org/10.3390/ijms262110319
APA StyleCzerwińska, J., & Owczarczyk-Saczonek, A. (2025). Matrix Metalloproteinases in Inflammatory Dermatoses. International Journal of Molecular Sciences, 26(21), 10319. https://doi.org/10.3390/ijms262110319
