Sustainable Production and Characterization of Eumelanin from Organically Cultivated Mucuna ceniza Seeds: A High-Performance Biomaterial for Optoelectronic Applications
Abstract
1. Introduction
2. Results
2.1. Standardized Melanin Preparation
2.2. Elemental Analysis of Mucuna ceniza Melanin
2.3. Spectroscopic Characterization and Structural Authentication
2.3.1. UV-Visible Absorption Spectrum
2.3.2. FTIR Spectroscopy Analysis
2.3.3. Raman Spectroscopy Analysis
2.3.4. NMR Spectroscopy Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material and Standardized Cultivation
4.2. Sustainable L-DOPA Extraction and Standardization
4.3. Eumelanin Conversion Optimization in Bioreactor
4.4. Eumelanin Isolation and Purification
4.5. Elemental Analysis
4.6. Thin Layer Chromatography
4.7. Analytical Characterization Methods
4.7.1. UV-Visible Spectroscopy
4.7.2. FTIR Spectroscopy
4.7.3. Raman Spectroscopy
4.7.4. NMR Spectroscopy
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DHI | 5,6-dihydroxyindole |
| DHICA | 5,6-dihydroxyindole-2-carboxylic acid |
| vvm | volume of air per volume of medium per minute |
| DMSO | Dimethyl sulfoxide |
| PSi | Porous silicon |
| PSP | Porous Silicon Powder |
References
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 498276. [Google Scholar] [CrossRef]
- Pralea, I.-E.; Moldovan, R.-C.; Petrache, A.-M.; Ilieș, M.; Hegheș, S.-C.; Ielciu, I.; Nicoară, R.; Moldovan, M.; Ene, M.; Radu, M.; et al. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis. Int. J. Mol. Sci. 2019, 20, 3943. [Google Scholar] [CrossRef]
- Bothma, J.P.; de Boor, J.; Divakar, U.; Schwenn, P.E.; Meredith, P. Device-Quality Electrically Conducting Melanin Thin Films. Adv. Mater. 2008, 20, 3539–3542. [Google Scholar] [CrossRef]
- Meredith, P.; Sarna, T. The Physical and Chemical Properties of Eumelanin. Pigment. Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef] [PubMed]
- Surwase, S.N.; Jadhav, S.B.; Phugare, S.S.; Jadhav, J.P. Optimization of Melanin Production by Brevundimonas sp. SGJ Using Response Surface Methodology. 3 Biotech 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Lerner, A.B.; Fitzpatrick, T.B. Biochemistry of Melanin Formation. Physiol. Rev. 1950, 30, 91–126. [Google Scholar] [CrossRef]
- Song, W.; Yang, H.; Liu, S.; Yu, H.; Li, D.; Li, P.; Xing, R. Melanin: Insights into Structure, Analysis, and Biological Activities for Future Development. J. Mater. Chem. B 2023, 11, 7528–7543. [Google Scholar] [CrossRef]
- Huang, L.; Liu, M.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Recent Advances and Progress on Melanin-like Materials and Their Biomedical Applications. Biomacromolecules 2018, 19, 1858–1868. [Google Scholar] [CrossRef]
- Cuzzubbo, S.; Carpentier, A.F. Applications of Melanin and Melanin-Like Nanoparticles in Cancer Therapy: A Review of Recent Advances. Cancers 2021, 13, 1463. [Google Scholar] [CrossRef]
- Wilczek, A.; Kondoh, H.; Mishima, Y. Composition of Mammalian Eumelanins: Analyses of DHICA-Derived Units in Pigments From Hair and Melanoma Cells. Pigment Cell Res. 1996, 9, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Peles, D.N.; Lin, E.; Wakamatsu, K.; Ito, S.; Simon, J.D. Ultraviolet Absorption Coefficients of Melanosomes Containing Eumelanin As Related to the Relative Content of DHI and DHICA. J. Phys. Chem. Lett. 2010, 1, 2391–2395. [Google Scholar] [CrossRef]
- Tuna, D.; Udvarhelyi, A.; Sobolewski, A.L.; Domcke, W.; Domratcheva, T. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin. J. Phys. Chem. B 2016, 120, 3493–3502. [Google Scholar] [CrossRef]
- Paulin, J.V.; Coleone, A.P.; Batagin-Neto, A.; Burwell, G.; Meredith, P.; Graeff, C.F.O.; Mostert, A.B. Melanin Thin-Films: A Perspective on Optical and Electrical Properties. J. Mater. Chem. C 2021, 9, 8345–8358. [Google Scholar] [CrossRef]
- Choudhury, A.; Ghosh, D. Elucidating the Structure of Melanin and Its Structure–Property Correlation. Acc. Chem. Res. 2025, 58, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Paulin, J.V.; Graeff, C.F.O. From Nature to Organic (Bio)Electronics: A Review on Melanin-Inspired Materials. J. Mater. Chem. C 2021, 9, 14514–14531. [Google Scholar] [CrossRef]
- Abdullah, W.; Razak, N.N.A.N.A.; Dheyab, M.A.; Salem, F.; Aziz, A.A.; Alanezi, S.T.; Oladzadabbasabadi, N.; Ghasemlou, M. Melanin-Driven Green Synthesis and Surface Modification of Metal and Metal-Oxide Nanoparticles for Biomedical Applications. Adv. Funct. Mater. 2025, 2503017. [Google Scholar] [CrossRef]
- Cavallini, C.; Vitiello, G.; Adinolfi, B.; Silvestri, B.; Armanetti, P.; Manini, P.; Pezzella, A.; d’Ischia, M.; Luciani, G.; Menichetti, L. Melanin and Melanin-Like Hybrid Materials in Regenerative Medicine. Nanomaterials 2020, 10, 1518. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Saber, W.I.A. Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers 2022, 14, 1339. [Google Scholar] [CrossRef]
- Singh, R.; Rahman, S.; Abbas, S.A.; Singh, A.; Rahman, U.; Sharma, M.; Mir, N.R.; Kapoor, N.; Kurian, N.K. Melanin: Comprehensive Insights into Pathways and Sustainable Applications. Curr. Pharmacol. Rep. 2025, 11, 37. [Google Scholar] [CrossRef]
- Glagoleva, A.Y.; Shoeva, O.Y.; Khlestkina, E.K. Melanin Pigment in Plants: Current Knowledge and Future Perspectives. Front. Plant Sci. 2020, 11, 770. [Google Scholar] [CrossRef]
- Aghajanyan, A.E.; Hambardzumyan, A.A.; Minasyan, E.V.; Hovhannisyan, G.J.; Yeghiyan, K.I.; Soghomonyan, T.M.; Avetisyan, S.V.; Sakanyan, V.A.; Tsaturyan, A.H. Efficient Isolation and Characterization of Functional Melanin from Various Plant Sources. Int. J. Food Sci. Technol. 2024, 59, 3545–3555. [Google Scholar] [CrossRef]
- Chang, T.-M. Tyrosinase and Tyrosinase Inhibitors. J. Biocatal. Biotransform. 2012, 1, 2. [Google Scholar] [CrossRef]
- Saranya, G.; Jiby, M.V.; Jayakumar, K.S.; Pillai, P.P.; Jayabaskaran, C. L-DOPA Synthesis in Mucuna pruriens (L.) DC. Is Regulated by Polyphenol Oxidase and Not CYP 450/Tyrosine Hydroxylase: An Analysis of Metabolic Pathway Using Biochemical and Molecular Markers. Phytochemistry 2020, 178, 112467. [Google Scholar] [CrossRef]
- Hao, S.; Ge, Q.; Shao, Y.; Tang, B.; Fan, G.; Qiu, C.; Wu, X.; Li, L.; Liu, X.; Shi, C.; et al. Chromosomal-Level Genome of Velvet Bean (Mucuna pruriens) Provides Resources for L-DOPA Synthetic Research and Development. DNA Res. 2022, 29, dsac031. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Dhawan, S.S.; Lal, R.K.; Shanker, K.; Singh, M. Biochemical Characterization and Spatio-Temporal Analysis of the Putative l-DOPA Pathway in Mucuna pruriens. Planta 2018, 248, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Caamal, J.B.; Jiménez-Osornio, J.J.; López-Pérez, A.; Aguilar-Cordero, W.; Castillo-Caamal, A.M. Feeding Mucuna Beans to Small Ruminants of Mayan Farmers in the Yucatán Peninsula, México. Trop. Subtrop. Agroecosyst. 2003, 1, 113–117. [Google Scholar]
- Koutika, L.-S.; Hauser, S.; Henrot, J. Soil Organic Matter Assessment in Natural Regrowth, Pueraria phaseoloides and Mucuna pruriens Fallow. Soil Biol. Biochem. 2001, 33, 1095–1101. [Google Scholar] [CrossRef]
- Hernández-Orihuela, A.L.; Castro-Cerritos, K.V.; López, M.G.; Martínez-Antonio, A. Compound Characterization of a Mucuna Seed Extract: L-Dopa, Arginine, Stizolamine, and Some Fructooligosaccharides. Compounds 2023, 3, 1–16. [Google Scholar] [CrossRef]
- Divya, B.J.; Suman, B.; Venkataswamy, M.; ThyagaRaju, K. The Traditional Uses and Pharmacological Activities of Mucuna pruriens (L.) Dc: A Comprehensive Review. Indoam. J. Pharm. Res. 2017, 7, 7516–7525. [Google Scholar] [CrossRef]
- Lampariello, L.R.; Cortelazzo, A.; Guerranti, R.; Sticozzi, C.; Valacchi, G. The Magic Velvet Bean of Mucuna pruriens. J. Tradit. Complement. Med. 2012, 2, 331–339. [Google Scholar] [CrossRef]
- Inamdar, S.; Joshi, S.; Bapat, V.; Jadhav, J. Innovative Use of Mucuna monosperma (Wight) Callus Cultures for Continuous Production of Melanin by Using Statistically Optimized Biotransformation Medium. J. Biotechnol. 2014, 170, 28–34. [Google Scholar] [CrossRef]
- Huisden, C.M.; Adesogan, A.T.; Szabo, N.J. Effect of Sonication and Two Solvent Extraction Methods on the L-Dopa Concentration and Nutritional Value of Mucuna pruriens. In Proceedings of the 44th Annual Meeting, Miami, FL, USA, 13–17 July 2008. [Google Scholar]
- Solano, F. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules. Int. J. Mol. Sci. 2017, 18, 1561. [Google Scholar] [CrossRef]
- Permyakova, N.M.; Zheltonozhskaya, T.B.; Beregova, T.V.; Klymchuk, D.O.; Falalyeyeva, T.M.; Grishchenko, L.N. Micellar Nanocarriers for Anticancer Drug Melanin. Mol. Cryst. Liq. Cryst. 2016, 640, 122–133. [Google Scholar] [CrossRef]
- Theansungnoen, T.; Nitthikan, N.; Wilai, M.; Chaiwut, P.; Kiattisin, K.; Intharuksa, A. Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four Mucuna Species. Cosmetics 2022, 9, 14. [Google Scholar] [CrossRef]
- Mata-Bermudez, A.; Trejo-Chávez, R.; Martínez-Vargas, M.; Pérez-Arredondo, A.; de los Ángeles Martínez-Cardenas, M.; Diaz-Ruiz, A.; Rios, C.; Romero-Sánchez, H.A.; Martínez-Antonio, A.; Navarro, L. Effect of Mucuna pruriens Seed Extract on Depression-like Behavior Derived from Mild Traumatic Brain Injury in Rats. Biomed. Taipei 2024, 14, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Mata-Bermudez, A.; Trejo-Chávez, R.; Martínez-Vargas, M.; Pérez-Arredondo, A.; Diaz-Ruiz, A.; Rios, C.; Romero-Sánchez, H.A.; Martínez-Cárdenas, M.d.l.Á.; Ugalde-Muñiz, P.; Noriega-Navarro, R.; et al. The Effect of Mucuna pruriens on Depression-like Behavior Induced by a Mild Traumatic Brain Injury in Rats Is Associated with a Decrease in Brain Nitrite and Nitrate Levels. NeuroSci 2025, 6, 92. [Google Scholar] [CrossRef]
- Dhanani, T.; Singh, R.; Shah, S.; Kumari, P.; Kumar, S. Comparison of Green Extraction Methods with Conventional Extraction Method for Extract Yield, L-DOPA Concentration and Antioxidant Activity of Mucuna pruriens Seed. Green Chem. Lett. Rev. 2015, 8, 43–48. [Google Scholar] [CrossRef]
- Tesoro, C.; Lelario, F.; Ciriello, R.; Bianco, G.; Di Capua, A.; Acquavia, M.A. An Overview of Methods for L-Dopa Extraction and Analytical Determination in Plant Matrices. Separations 2022, 9, 224. [Google Scholar] [CrossRef]
- Tran-Ly, A.N.; Reyes, C.; Schwarze, F.W.M.R.; Ribera, J. Microbial Production of Melanin and Its Various Applications. World J. Microbiol. Biotechnol. 2020, 36, 170. [Google Scholar] [CrossRef]
- Aghajanyan, A.E.; Vardanyan, A.A.; Hovsepyan, A.C.; Hambardzumyan, A.A.; Filipenia, V.; Saghyan, A.C. Development of Technology for Obtaining Water-Soluble Bacterial Melanin and Determination of Some of Pigment Properties. BioTechnologia 2017, 98, 315–322. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, X.; McCallum, N.C.; Hu, Z.; Ni, Q.Z.; Kapoor, U.; Heil, C.M.; Cay, K.S.; Zand, T.; Mantanona, A.J.; et al. Unraveling the Structure and Function of Melanin through Synthesis. J. Am. Chem. Soc. 2021, 143, 2622–2637. [Google Scholar] [CrossRef]
- Harki, E.; Talou, T.; Dargent, R. Purification, Characterisation and Analysis of Melanin Extracted from Tuber melanosporum Vitt. Food Chem. 1997, 58, 69–73. [Google Scholar] [CrossRef]
- Hou, R.; Liu, X.; Xiang, K.; Chen, L.; Wu, X.; Lin, W.; Zheng, M.; Fu, J. Characterization of the Physicochemical Properties and Extraction Optimization of Natural Melanin from Inonotus Hispidus Mushroom. Food Chem. 2019, 277, 533–542. [Google Scholar] [CrossRef]
- Zou, Y.; Xie, C.; Fan, G.; Gu, Z.; Han, Y. Optimization of Ultrasound-Assisted Extraction of Melanin from Auricularia Auricula Fruit Bodies. Innov. Food Sci. Emerg. Technol. 2010, 11, 611–615. [Google Scholar] [CrossRef]
- Lomovskiy, I.; Podgorbunskikh, E.; Lomovsky, O. Effect of Ultra-Fine Grinding on the Structure of Plant Raw Materials and the Kinetics of Melanin Extraction. Processes 2021, 9, 2236. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Watanabe, B.; Matsui, K.; Lumyong, S. Characterization of Melanin and Optimal Conditions for Pigment Production by an Endophytic Fungus, Spissiomyces Endophytica SDBR-CMU319. PLoS ONE 2019, 14, e0222187. [Google Scholar] [CrossRef] [PubMed]
- Rudrappa, M.; Kumar, R.S.; Basavarajappa, D.S.; Bhat, M.P.; Nagaraja, S.K.; Almansour, A.I.; Perumal, K.; Nayaka, S. Penicillium Citrinum NP4 Mediated Production, Extraction, Physicochemical Characterization of the Melanin, and Its Anticancer, Apoptotic, Photoprotection Properties. Int. J. Biol. Macromol. 2023, 245, 125547. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ito, S. Recent Advances in Characterization of Melanin Pigments in Biological Samples. Int. J. Mol. Sci. 2023, 24, 8305. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, S.; Zhao, J.; Cui, L.; Wang, X.; Cai, N.; Li, H.; Ren, S.; Li, T.; Shu, L. Synthesis and Structural Characteristics Analysis of Melanin Pigments Induced by Blue Light in Morchella sextelata. Front. Microbiol. 2023, 14, 1276457. [Google Scholar] [CrossRef]
- Madhusudhan, D.N.; Mazhari, B.B.Z.; Dastager, S.G.; Agsar, D. Production and Cytotoxicity of Extracellular Insoluble and Droplets of Soluble Melanin by Streptomyces lusitanus DMZ-3. BioMed Res. Int. 2014, 2014, 306895. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xing, R.; Yang, H.; Gao, K.; Liu, S.; Li, X.; Yu, H.; Li, P. Eumelanin: A Natural Antioxidant Isolated from Squid Ink by New Enzymatic Technique and Prediction of Its Structural Tetramer. LWT 2023, 188, 115464. [Google Scholar] [CrossRef]
- Capozzi, V.; Perna, G.; Carmone, P.; Gallone, A.; Lastella, M.; Mezzenga, E.; Quartucci, G.; Ambrico, M.; Augelli, V.; Biagi, P.F.; et al. Optical and Photoelectronic Properties of Melanin. Thin Solid Films 2006, 511–512, 362–366. [Google Scholar] [CrossRef]
- Abd-EL-Aziz, A.S.; Abed, N.N.; Mahfouz, A.Y.; Fathy, R.M. Production and Characterization of Melanin Pigment from Black Fungus Curvularia soli AS21 ON076460 Assisted Gamma Rays for Promising Medical Uses. Microb. Cell Fact. 2024, 23, 68. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.W.; Laberge, M.; Vanderkooi, J.M. Surface of Cytochrome c: Infrared Spectroscopy of Carboxyl Groups. Biochemistry 1997, 36, 14724–14732. [Google Scholar] [CrossRef] [PubMed]
- Perna, G.; Lasalvia, M.; Capozzi, V. Vibrational Spectroscopy of Synthetic and Natural Eumelanin. Polym. Int. 2016, 65, 1323–1330. [Google Scholar] [CrossRef]
- Xin, C.; Ma, J.; Tan, C.; Yang, Z.; Ye, F.; Long, C.; Ye, S.; Hou, D. Preparation of Melanin from Catharsius molossus L. and Preliminary Study on Its Chemical Structure. J. Biosci. Bioeng. 2015, 119, 446–454. [Google Scholar] [CrossRef]
- Al Khatib, M.; Harir, M.; Costa, J.; Baratto, M.C.; Schiavo, I.; Trabalzini, L.; Pollini, S.; Rossolini, G.M.; Basosi, R.; Pogni, R. Spectroscopic Characterization of Natural Melanin from a Streptomyces cyaneofuscatus Strain and Comparison with Melanin Enzymatically Synthesized by Tyrosinase and Laccase. Molecules 2018, 23, 1916. [Google Scholar] [CrossRef]
- Centeno, S.A.; Shamir, J. Surface Enhanced Raman Scattering (SERS) and FTIR Characterization of the Sepia Melanin Pigment Used in Works of Art. J. Mol. Struct. 2008, 873, 149–159. [Google Scholar] [CrossRef]
- Galván, I.; Araujo-Andrade, C.; Marro, M.; Loza-Alvarez, P.; Wakamatsu, K. Raman Spectroscopy Quantification of Eumelanin Subunits in Natural Unaltered Pigments. Pigment Cell Melanoma Res. 2018, 31, 673–682. [Google Scholar] [CrossRef]
- Huang, Z.; Lui, H.; Chen, X.K.; Alajlan, A.; McLean, D.I.; Zeng, H. Raman Spectroscopy of in Vivo Cutaneous Melanin. JBO 2004, 9, 1198–1205. [Google Scholar] [CrossRef]
- Galván, I.; Jorge, A. Dispersive Raman Spectroscopy Allows the Identification and Quantification of Melanin Types. Ecol. Evol. 2015, 5, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xiao, J.; Liu, B.; Zhuang, Y.; Sun, L. Study on the Preparation and Chemical Structure Characterization of Melanin from Boletus Griseus. Int. J. Mol. Sci. 2018, 19, 3736. [Google Scholar] [CrossRef]
- Tabor, D.P.; Roch, L.M.; Saikin, S.K.; Kreisbeck, C.; Sheberla, D.; Montoya, J.H.; Dwaraknath, S.; Aykol, M.; Ortiz, C.; Tribukait, H.; et al. Accelerating the Discovery of Materials for Clean Energy in the Era of Smart Automation. Nat. Rev. Mater. 2018, 3, 5–20. [Google Scholar] [CrossRef]
- Hegab, H.; Shaban, I.; Jamil, M.; Khanna, N. Toward Sustainable Future: Strategies, Indicators, and Challenges for Implementing Sustainable Production Systems. Sustain. Mater. Technol. 2023, 36, e00617. [Google Scholar] [CrossRef]
- Guo, L.; Li, W.; Gu, Z.; Wang, L.; Guo, L.; Ma, S.; Li, C.; Sun, J.; Han, B.; Chang, J. Recent Advances and Progress on Melanin: From Source to Application. Int. J. Mol. Sci. 2023, 24, 4360. [Google Scholar] [CrossRef]
- Eom, T.; Ozlu, B.; Ivanová, L.; Lee, S.; Lee, H.; Krajčovič, J.; Shim, B.S. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024, 25, 5489–5511. [Google Scholar] [CrossRef]
- Marcovici, I.; Coricovac, D.; Pinzaru, I.; Macasoi, I.G.; Popescu, R.; Chioibas, R.; Zupko, I.; Dehelean, C.A. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research—A Review. Cancers 2022, 14, 1838. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. New Insight into Melanin for Food Packaging and Biotechnology Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 4629–4655. [Google Scholar] [CrossRef]
- Tsouko, E.; Tolia, E.; Sarris, D. Microbial Melanin: Renewable Feedstock and Emerging Applications in Food-Related Systems. Sustainability 2023, 15, 7516. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.N.S.; Udumann, S.S.; Nuwarapaksha, T.D.; Atapattu, A.J.; Dissanayaka, D.M.N.S.; Udumann, S.S.; Nuwarapaksha, T.D.; Atapattu, A.J. Harnessing the Potential of Mucuna Cover Cropping: A Comprehensive Review of Its Agronomic and Environmental Benefits. Circ. Agric. Syst. 2024, 4, e003. [Google Scholar] [CrossRef]
- Magadlela, A.; Makhaye, N.; Pérez-Fernández, M. Symbionts in Mucuna pruriens Stimulate Plant Performance through Nitrogen Fixation and Improved Phosphorus Acquisition. J. Plant Ecol. 2021, 14, 310–322. [Google Scholar] [CrossRef]
- Castillo-Caamal, J.B.; Caamal-Maldonado, J.A.; Jiménez-Osornio, J.J.M.; Bautista-Zúñiga, F.; Amaya-Castro, M.J.; Rodríguez-Carrillo, R. Evaluación de Tres Leguminosas Como Coberturas Asociadas Con Maíz En El Trópico Subhúmedo. Agron. Mesoam. 2010, 21, 39–50. [Google Scholar] [CrossRef]
- Heppner, F.; Al-Shamery, N.; See Lee, P.; Bredow, T. Tuning Melanin: Theoretical Analysis of Functional Group Impact on Electrochemical and Optical Properties. Mater. Adv. 2024, 5, 5251–5259. [Google Scholar] [CrossRef]
- Mostert, A.B. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers 2021, 13, 1670. [Google Scholar] [CrossRef]
- Hammoud, F.; Ismail, A.; Zaher, R.; El Majzoub, R.; Abou-Abbas, L. Mucuna pruriens Treatment for Parkinson Disease: A Systematic Review of Clinical Trials. Park. Dis. 2025, 2025, 1319419. [Google Scholar] [CrossRef] [PubMed]
- Leite Tavares, R.; Vasconcelos, M.H.d.A.; Mathias Dorand, V.A.; Junior, E.U.T.; Toscano, L.d.L.T.; de Queiroz, R.T.; Francisco Alves, A.; Magnani, M.; Guzman-Quevedo, O.; Aquino, J. Mucuna pruriens Treatment Shows Anti-Obesity and Intestinal Health Effects in Obese Rats. Food Funct. 2021, 12, 6479–6489. [Google Scholar] [CrossRef]
- Adjei, S.; Dagadu, P.; Amoah, B.Y.; Hammond, G.N.A.; Nortey, E.; Obeng-Kyeremeh, R.; Orabueze, I.C.; Asare, G.A. Moderate Doses of Mucuna pruriens Seed Powder Is Safe and Improves Sperm Count and Motility. Phytomed. Plus 2023, 3, 100465. [Google Scholar] [CrossRef]
- Benitez-Lara, A.; Coutino-Gonzalez, E.; Morales-Morales, F.; Ávila-Gutiérrez, M.A.; Carrillo-Lopez, J.; Hernández-Orihuela, A.L.; Martínez Antonio, A. Vegetal Melanin-Induced Radiative Recombination Centers in Porous Silicon. Opt. Mater. 2023, 143, 114182. [Google Scholar] [CrossRef]
- Benitez-Lara, A.; Bautista-Bustamante, E.; Morales-Morales, F.; Moreno-Moreno, M.; Mendoza-Ramirez, M.C.; Morales-Sánchez, A.; Hernández-Orihuela, L.; Antonio, A.M. Synergistic Effects of Vegetal Melanin and Porous Silicon Powder to Improve the Efficiency of Solar Panel. Sol. Energy 2025, 287, 113241. [Google Scholar] [CrossRef]
- Paniagua-Chávez, M.L.; Garcés-Patiño, L.A.; Rodriguez-Gonzalez, C.; Meza-Gordillo, R.; Martínez-Antonio, A.; Ruiz-Baltazar, A.d.J.; Oliva, J. The Role of Green Redox Powder (Melanin) to Enhance the Capacitance of Graphene/FeOx Based Supercapacitors. J. Indian Chem. Soc. 2025, 102, 102048. [Google Scholar] [CrossRef]
- Vercruysse, K.; Whalen, M.M. Light- or Dark-Colored, L-DOPA-Based Melanins. ChemRxiv 2018. [Google Scholar] [CrossRef]
- Garcia-Abarca, E.; Calderon-Cerdas, R. Influencia de La Densidad de Siembra Sobre Producción y Desarrollo de Mucuna (Mucuna puriens L. DC). Agron. Costarric. 2021, 45, 103–113. [Google Scholar] [CrossRef]





| Element | Experimental a | Predicted b | Difference |
|---|---|---|---|
| C (%) | 48.04 ± 0.15 | 51.25 | −3.21 |
| H (%) | 6.14 ± 0.09 | 4.50 | +1.64 |
| N (%) | 11.85 ± 0.01 | 7.93 | +3.92 |
| S (%) c | 0.03 ± 0.01 | -- | -- |
| O (%) d | 33.94 | 35.82 | −1.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Herrera, P.A.; Hernández-Orihuela, A.L.; Renteria-Salcedo, A.; Palmerín-Carreño, D.M.; Huazano-García, A.; Carrillo-Ocampo, D.; Ramos-Valdovinos, M.A.; Martínez-Antonio, A. Sustainable Production and Characterization of Eumelanin from Organically Cultivated Mucuna ceniza Seeds: A High-Performance Biomaterial for Optoelectronic Applications. Int. J. Mol. Sci. 2025, 26, 10298. https://doi.org/10.3390/ijms262110298
Herrera-Herrera PA, Hernández-Orihuela AL, Renteria-Salcedo A, Palmerín-Carreño DM, Huazano-García A, Carrillo-Ocampo D, Ramos-Valdovinos MA, Martínez-Antonio A. Sustainable Production and Characterization of Eumelanin from Organically Cultivated Mucuna ceniza Seeds: A High-Performance Biomaterial for Optoelectronic Applications. International Journal of Molecular Sciences. 2025; 26(21):10298. https://doi.org/10.3390/ijms262110298
Chicago/Turabian StyleHerrera-Herrera, Pedro Arturo, Ana Lilia Hernández-Orihuela, Alejandra Renteria-Salcedo, Dulce María Palmerín-Carreño, Alicia Huazano-García, Danae Carrillo-Ocampo, Miguel Angel Ramos-Valdovinos, and Agustino Martínez-Antonio. 2025. "Sustainable Production and Characterization of Eumelanin from Organically Cultivated Mucuna ceniza Seeds: A High-Performance Biomaterial for Optoelectronic Applications" International Journal of Molecular Sciences 26, no. 21: 10298. https://doi.org/10.3390/ijms262110298
APA StyleHerrera-Herrera, P. A., Hernández-Orihuela, A. L., Renteria-Salcedo, A., Palmerín-Carreño, D. M., Huazano-García, A., Carrillo-Ocampo, D., Ramos-Valdovinos, M. A., & Martínez-Antonio, A. (2025). Sustainable Production and Characterization of Eumelanin from Organically Cultivated Mucuna ceniza Seeds: A High-Performance Biomaterial for Optoelectronic Applications. International Journal of Molecular Sciences, 26(21), 10298. https://doi.org/10.3390/ijms262110298

