Protective Effect of Factor XIII Intron-K G Allele on Subclinical Vascular Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444–470. [Google Scholar] [CrossRef]
- Koch, M.; Zernecke, A. The hemostatic system as a regulator of inflammation in atherosclerosis. IUBMB Life 2014, 66, 735–744. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A coagulation factor with multiple plasmatic and cellular functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef]
- Memtsas, V.P.; Arachchillage, D.R.J.; Gorog, D.A. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int. J. Mol. Sci. 2021, 22, 1472. [Google Scholar] [CrossRef]
- Rijken, D.C.; Uitte de Willige, S. Inhibition of Fibrinolysis by Coagulation Factor XIII. Biomed. Res. Int. 2017, 2017, 1209676. [Google Scholar] [CrossRef]
- Ariëns, R.A.; Kohler, H.P.; Mansfield, M.W.; Grant, P.J. Subunit antigen and activity levels of blood coagulation factor XIII in healthy individuals. Relation to sex, age, smoking, and hypertension. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2012–2016. [Google Scholar] [CrossRef]
- Bereczky, Z.; Balogh, E.; Katona, E.; Czuriga, I.; Edes, I.; Muszbek, L. Elevated factor XIII level and the risk of myocardial infarction in women. Haematologica 2007, 92, 287–288. [Google Scholar] [CrossRef]
- Balogh, L.; Katona, É.; Mezei, Z.A.; Kállai, J.; Gindele, R.; Édes, I.; Muszbek, L.; Papp, Z.; Bereczky, Z. Effect of factor XIII levels and polymorphisms on the risk of myocardial infarction in young patients. Mol. Cell Biochem. 2018, 448, 199–209. [Google Scholar] [CrossRef]
- Kłoczko, J.; Wojtukiewicz, M.; Bielawiec, M.; Zarzycka, B.; Kinalska, I. Plasma factor XIII and some other haemostasis parameters in patients with diabetic angiopathy. Acta Haematol. 1986, 76, 81–85. [Google Scholar] [CrossRef]
- Dunn, E.J.; Ariëns, R.A.; Grant, P.J. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005, 48, 1198–1206. [Google Scholar] [CrossRef]
- Dunn, E.J.; Philippou, H.; Ariëns, R.A.; Grant, P.J. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia 2006, 49, 1071–1080. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Sandhu, M.S.; Wareham, N.J.; Luben, R.; Reitsma, P.H.; Khaw, K.T. Fibrinogen plasma levels modify the association between the factor XIII Val34Leu variant and risk of coronary artery disease: The EPIC-Norfolk prospective population study. J. Thromb. Haemost. 2006, 4, 2204–2209. [Google Scholar] [CrossRef]
- Bereczky, Z.; Balogh, E.; Katona, E.; Pocsai, Z.; Czuriga, I.; Széles, G.; Kárpáti, L.; Adány, R.; Edes, I.; Muszbek, L. Modulation of the risk of coronary sclerosis/myocardial infarction by the interaction between factor XIII subunit A Val34Leu polymorphism and fibrinogen concentration in the high risk Hungarian population. Thromb. Res. 2007, 120, 567–573. [Google Scholar] [CrossRef]
- Ariëns, R.A.; Philippou, H.; Nagaswami, C.; Weisel, J.W.; Lane, D.A.; Grant, P.J. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000, 96, 988–995. [Google Scholar] [CrossRef]
- Vokó, Z.; Bereczky, Z.; Katona, E.; Adány, R.; Muszbek, L. Factor XIII Val34Leu variant protects against coronary artery disease. A meta-analysis. Thromb. Haemost. 2007, 97, 458–463. [Google Scholar]
- Chen, F.; Qiao, Q.; Xu, P.; Fan, B.; Chen, Z. Effect of factor XIII-A Val34Leu polymorphism on myocardial infarction risk: A meta-analysis. Clin. Appl. Thromb. Hemost. 2014, 20, 783–792. [Google Scholar] [CrossRef]
- Kattula, S.; Bagoly, Z.; Tóth, N.K.; Muszbek, L.; Wolberg, A.S. The factor XIII-A Val34Leu polymorphism decreases whole blood clot mass at high fibrinogen concentrations. J. Thromb. Haemost. 2020, 18, 885–894. [Google Scholar] [CrossRef]
- Board, P.G. Genetic polymorphism of the B subunit of human coagulation factor XIII. Am. J. Hum. Genet. 1980, 32, 348–353. [Google Scholar]
- Komanasin, N.; Catto, A.J.; Futers, T.S.; van Hylckama Vlieg, A.; Rosendaal, F.R.; Ariëns, R.A. A novel polymorphism in the factor XIII B-subunit (His95Arg): Relationship to subunit dissociation and venous thrombosis. J. Thromb. Haemost. 2005, 3, 2487–2496. [Google Scholar] [CrossRef]
- Pruissen, D.M.; Rosendaal, F.R.; Frijns, C.J.; Kappelle, L.J.; Vos, H.L.; Algra, A.; Group, S.S. Prothrombotic gene variants and mortality after cerebral ischemia of arterial origin. Neuroepidemiology 2011, 37, 109–113. [Google Scholar] [CrossRef]
- Mezei, Z.A.; Bereczky, Z.; Katona, É.; Gindele, R.; Balogh, E.; Fiatal, S.; Balogh, L.; Czuriga, I.; Ádány, R.; Édes, I.; et al. Factor XIII B subunit polymorphisms and the risk of coronary artery disease. Int. J. Mol. Sci. 2015, 16, 1143–1159. [Google Scholar] [CrossRef]
- Iwata, H.; Kitano, T.; Umetsu, K.; Yuasa, I.; Yamazaki, K.; Kemkes-Matthes, B.; Ichinose, A. Distinct C-terminus of the B subunit of factor XIII in a population-associated major phenotype: The first case of complete allele-specific alternative splicing products in the coagulation and fibrinolytic systems. J. Thromb. Haemost. 2009, 7, 1084–1091. [Google Scholar] [CrossRef]
- Mezei, Z.A.; Katona, É.; Kállai, J.; Bereczky, Z.; Molnár, É.; Kovács, B.; Ajzner, É.; Bagoly, Z.; Miklós, T.; Muszbek, L. Regulation of plasma factor XIII levels in healthy individuals; a major impact by subunit B intron K c.1952+144 C>G polymorphism. Thromb. Res. 2016, 148, 101–106. [Google Scholar] [CrossRef]
- Cismaru, G.; Serban, T.; Tirpe, A. Ultrasound Methods in the Evaluation of Atherosclerosis: From Pathophysiology to Clinic. Biomedicines 2021, 9, 418. [Google Scholar] [CrossRef]
- Polak, J.F.; Pencina, M.J.; Pencina, K.M.; O’Donnell, C.J.; Wolf, P.A.; D’Agostino, R.B. Carotid-wall intima-media thickness and cardiovascular events. N. Engl. J. Med. 2011, 365, 213–221. [Google Scholar] [CrossRef]
- Poredos, P.; Jezovnik, M.K. Preclinical carotid atherosclerosis as an indicator of polyvascular disease: A narrative review. Ann. Transl. Med. 2021, 9, 1204. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100,667 Patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef]
- Willeit, P.; Thompson, S.G.; Agewall, S.; Bergström, G.; Bickel, H.; Catapano, A.L.; Chien, K.L.; de Groot, E.; Empana, J.P.; Etgen, T.; et al. Inflammatory markers and extent and progression of early atherosclerosis: Meta-analysis of individual-participant-data from 20 prospective studies of the PROG-IMT collaboration. Eur. J. Prev. Cardiol. 2016, 23, 194–205. [Google Scholar] [CrossRef]
- Kohler, H.P.; Ariëns, R.A.; Mansfield, M.W.; Whitaker, P.; Grant, P.J. Factor XIII activity and antigen levels in patients with coronary artery disease. Thromb. Haemost. 2001, 85, 569–570. [Google Scholar] [CrossRef]
- Shemirani, A.H.; Szomják, E.; Csiki, Z.; Katona, E.; Bereczky, Z.; Muszbek, L. Elevated factor XIII level and the risk of peripheral artery disease. Haematologica 2008, 93, 1430–1432. [Google Scholar] [CrossRef]
- Szomják, E.; Csiki, Z.; Zsóri, K.S.; András, C.; Shemirani, A.H. The effect of FXIII-A Val34Leu genotype on the risk of peripheral arterial disease. Blood Coagul. Fibrinolysis 2013, 24, 351–352. [Google Scholar] [CrossRef]
- Yalım, Z.; Tutgun Onrat, S.; Alan, S.; Aldemir, M.; Avşar, A.; Doğan, İ.; Onrat, E. The effects of genetic polymorphisms and diabetes mellitus on the development of peripheral artery disease. Turk. Kardiyol. Dern. Ars. 2020, 48, 484–493. [Google Scholar] [CrossRef]
- Wang, G.; Zou, Z.; Ji, X.; Ni, Q.; Ma, Z. Factor XIII-A Val34Leu polymorphism might beassociated with myocardial infarction risk: An updated meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 5547–5552. [Google Scholar]
- Jung, J.H.; Song, G.G.; Kim, J.H.; Seo, Y.H.; Choi, S.J. Association of factor XIII Val34Leu polymorphism and coronary artery disease: A meta-analysis. Cardiol. J. 2017, 24, 74–84. [Google Scholar] [CrossRef]
- Kain, K.; Bamford, J.; Bavington, J.; Young, J.; Catto, A.J. Factor XIII--circulating levels and Val34Leu polymorphism in relatives of South Asian patients with ischemic stroke. J. Thromb. Haemost. 2005, 3, 171–173. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Shemirani, A.H.; Katona, E. Factor XIII and atherothrombotic diseases. Semin. Thromb. Hemost. 2010, 36, 18–33. [Google Scholar] [CrossRef]
- Lim, B.C.; Ariëns, R.A.; Carter, A.M.; Weisel, J.W.; Grant, P.J. Genetic regulation of fibrin structure and function: Complex gene-environment interactions may modulate vascular risk. Lancet 2003, 361, 1424–1431. [Google Scholar] [CrossRef]
- Warner, D.; Mansfield, M.; Grant, P.J. Coagulation factor XIII levels in UK Asian subjects with type 2 diabetes mellitus and coronary artery disease. Thromb. Haemost. 2001, 86, 1117–1118. [Google Scholar] [CrossRef]
- Mansfield, M.W.; Kohler, H.P.; Ariëns, R.A.; McCormack, L.J.; Grant, P.J. Circulating levels of coagulation factor XIII in subjects with type 2 diabetes and in their first-degree relatives. Diabetes Care 2000, 23, 703–705. [Google Scholar] [CrossRef]
- de Maat, M.P.; Bladbjerg, E.M.; Drivsholm, T.; Borch-Johnsen, K.; Møller, L.; Jespersen, J. Inflammation, thrombosis and atherosclerosis: Results of the Glostrup study. J. Thromb. Haemost. 2003, 1, 950–957. [Google Scholar] [CrossRef]
- Ames, P.R.; Iannaccone, L.; Alves, J.D.; Margarita, A.; Lopez, L.R.; Brancaccio, V. Factor XIII in primary antiphospholipid syndrome. J. Rheumatol. 2005, 32, 1058–1062. [Google Scholar]
- Wagenknecht, L.E.; Bowden, D.W.; Carr, J.J.; Langefeld, C.D.; Freedman, B.I.; Rich, S.S. Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes 2001, 50, 861–866. [Google Scholar] [CrossRef]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Moskau, S.; Golla, A.; Grothe, C.; Boes, M.; Pohl, C.; Klockgether, T. Heritability of carotid artery atherosclerotic lesions: An ultrasound study in 154 families. Stroke 2005, 36, 5–8. [Google Scholar] [CrossRef]
- Bogáti, R.; Katona, É.; Shemirani, A.H.; Balogh, E.; Bárdos, H.; Jeney, V.; Muszbek, L. The Effect of Activated FXIII, a Transglutaminase, on Vascular Smooth Muscle Cells. Int. J. Mol. Sci. 2022, 23, 5845. [Google Scholar] [CrossRef]
- Dardik, R.; Krapp, T.; Rosenthal, E.; Loscalzo, J.; Inbal, A. Effect of FXIII on monocyte and fibroblast function. Cell Physiol. Biochem. 2007, 19, 113–120. [Google Scholar] [CrossRef]
- AbdAlla, S.; Lother, H.; Langer, A.; el Faramawy, Y.; Quitterer, U. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell 2004, 119, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Dardik, R.; Solomon, A.; Loscalzo, J.; Eskaraev, R.; Bialik, A.; Goldberg, I.; Schiby, G.; Inbal, A. Novel proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1472–1477. [Google Scholar] [CrossRef]
- Huang, R.; Mills, K.; Romero, J.; Li, Y.; Hu, Z.; Cao, Y.; Huang, H.; Xu, Y.; Jiang, L. Comparative effects of lipid lowering, hypoglycemic, antihypertensive and antiplatelet medications on carotid artery intima-media thickness progression: A network meta-analysis. Cardiovasc. Diabetol. 2019, 18, 14. [Google Scholar] [CrossRef]
- Lv, Q.; Yang, Y.; Lv, Y.; Wu, Q.; Hou, X.; Li, L.; Ye, X.; Yang, C.; Wang, S. Long-term effects of different hypoglycemic drugs on carotid intima-media thickness progression: A systematic review and network meta-analysis. Front. Endocrinol. 2024, 15, 1403606. [Google Scholar] [CrossRef]
- Shemirani, A.H.; Muszbek, L. Rapid detection of the factor XIII Val34Leu (163 G-->T) polymorphism by real-time PCR using fluorescence resonance energy transfer detection and melting curve analysis. Clin. Chem. Lab. Med. 2004, 42, 877–879. [Google Scholar] [CrossRef]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111; quiz 189–190. [Google Scholar] [CrossRef] [PubMed]

| Parameter | Controls n = 82 | Obese Patients n = 69 | T2DM Patients n = 104 | p * |
|---|---|---|---|---|
| Female/male | 45/37 (45% male) | 38/31 (45% male) | 53/51 (49% male) | 0.820 |
| Age (years) | 52 (44–57) [31–64] | 52 (41–58) [32–65] | 53 (46–59) [31–65] | 0.413 |
| BMI (kg/m2) | 25.0 (22.9–26.6) [17.9–29.4] | 34.6 (31.3–38.4) [30.0–55.3] | 34.3 (30.6–37.6) [21.0–52.8] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| Waist circumference (cm) | 96 (88–102) [72–140] | 112 (104–122) [82–156] | 114 (108–122) [78–170] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| Smoking (yes/no, n) | 14/55, n = 69 (20% smoker) | 8/51, n = 59 (14% smoker) | 17/69, n = 86 (20% smoker) | 0.550 |
| Parameters | Controls n = 82 | Obese Patients n = 69 | T2DM Patients n = 104 | p * |
|---|---|---|---|---|
| HbA1c (%) | 5.1 (5.4–5.8) [4.6–6.5] | 5.6 (5.3–5.9) [4.7–6.5] | 7.5 (6.7–8.9) [5.3–13.8] | C vs. T2DM < 0.0001 Ob vs. T2DM < 0.0001 |
| Insulin (mU/L) | 7.1 (4.6–10.0) [2.1–42.2] | 12.7 (8.7–17.2) [3.6–41.7] | 13.0 (7.5–20.9) [2.1–66.2] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| C-peptide (pmol/L) | 584 (503–752) [230–2068] | 932 (736–1198) [415–2725] | 911 (565–1322) [69–2212] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| Total cholesterol (mmol/L) | 5.1 (4.6–5.8) [3.4–7.2] | 5.3 (4.7–6.1) [3.1–8.9] | 4.9 (4.1–6.0) [3.1–11.0] | 0.159 |
| LDL-cholesterol (mmol/L) | 3.1 (2.6–3.7) [1.4–5.3] | 3.4 (2.8–4.2) [1.3–5.6] | 2.9 (2.2–3.8) [1.3–8.5] | Ob vs. T2DM 0.006 |
| HDL-cholesterol (mmol/L) | 1.7 (1.4–1.9) [0.9–3.0] | 1.3 (1.0–1.7) [0.7–4.1] | 1.2 (1.0–1.5) [0.6–2.7] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| Triglyceride (mmol/L) | 1.1 (0.7–1.5) [0.4–4.5] | 1.5 (1.1–1.9) [0.5–13.1] | 2.0 (1.3–2.8) [0.4–14.1] | C vs. Ob < 0.001 C vs. T2DM < 0.0001 Ob vs. T2DM 0.016 |
| ApoA1 (g/L) | 1.76 (1.55–1.95) [1.06–2.61] | 1.58 (1.36–1.82) [1.01–2.57] | 1.47 (1.29–1.70) [0.94–2.33] | C vs. Ob < 0.005 C vs. T2DM < 0.0001 |
| ApoB100 (g/L) | 0.95 (0.83–1.08) [0.47–1.65] | 1.08 (0.91–1.28) [0.56–1.68] | 1.02 (0.83–1.16) [0.40–2.38] | C vs. T2DM 0.007 |
| Lp (a) (mg/L) | 69 (<30–268) [<30–1110] | 56 (<30–224) [<30–1572] | 135 (54–447) [<30–1919] | C vs. T2DM 0.026 Ob vs. T2DM 0.005 |
| PT (s) | 7.8 (7.6–8.1) [7.2–9.4] | 7.8 (7.6–8.0) [7.2–20.6] | 8.1 (7.8–8.6) [7.2–29.0] | C vs. T2DM 0.0001 Ob vs. T2DM < 0.0005 |
| INR | 0.93 (0.91–0.96) [0.85–1.10] | 0.93 (0.91–0.96) [0.87–2.16] | 0.93 (0.91–0.99) [0.85–2.98] | 0.790 |
| APTT (s) | 27.8 (26.4–29.7) [21.5–34.3] | 27.2 (25.7–28.6) [21.1–46.0] | 26.8 (25.2–29.4) [20.5–47.7] | 0.185 |
| TT (s) | 16.6 (15.7–17.6) [14.2–19.5] | 17.5 (16.7–18.2) [14.4–19.5] | 16.0 (15.1–17.1) [13.4–21.9] | C vs. Ob 0.002 Ob vs. T2DM < 0.0001 |
| Fibrinogen (g/L) | 3.72 (3.17–4.42) [2.04–7.8] | 3.66 (3.40–4.38) [2.57–6.75] | 3.94 (3.38–4.61) [2.69–7.34] | 0.078 |
| CRP (mg/L) | 1.1 (<0.5–2.4) [<0.5–73.8] | 3.1 (1.1–6.3) [<0.5–25.8] | 3.7 (1.9–8.0) [<0.5–39.8] | C vs. Ob < 0.0001 C vs. T2DM < 0.0001 |
| GFR (ml/min/1.73 m2) (>90/60–90/30–60) | 51/31/0 | 43/22/4 | 76/26/2 | 0.146 |
| Mean cIMT (mm) | 0.5965 (0.5115–0.6580) [0.4005–0.8765] | 0.6105 (0.5455–0.6780) [0.4170–0.9145] | 0.7105 (0.5948–0.7568) [0.3700–1.0550] | C vs. T2DM < 0.0001 Ob vs. T2DM 0.003 |
| Total n = 255 | Controls n = 82 | Obese Patients n = 69 | T2DM Patients n = 104 | p | |
|---|---|---|---|---|---|
| Val34Leu | |||||
| Val/Val | 130 | 36 | 37 | 57 | 0.368 |
| Val/Leu | 102 | 37 | 24 | 41 | |
| Leu/Leu | 23 | 9 | 8 | 6 | |
| Leu allele frequency | 29% | 34% | 29% | 25% | 0.236 |
| HWE p value | 0.825 | >0.999 | 0.509 | 0.877 | |
| His95Arg | |||||
| His/His | 196 | 63 | 51 | 82 | 0.492 |
| His/Arg | 44 | 12 | 13 | 19 | |
| Arg/Arg | 15 | 7 | 5 | 3 | |
| Arg allele frequency | 15% | 16% | 17% | 12% | 0.407 |
| HWE p value | <0.0001 | 0.0002 | 0.037 | 0.631 | |
| Intron-K C>G | |||||
| C/C | 188 | 65 | 48 | 75 | 0.489 |
| C/G | 66 | 17 | 21 | 28 | |
| G/G | 1 | 0 | 0 | 1 | |
| G allele frequency | 13% | 10% | 15% | 14% | 0.389 |
| HWE p value | 0.206 | 0.527 | 0.275 | 0.716 | |
| Explanatory Variables | r | p |
|---|---|---|
| Age | 0.420 | <0.0001 |
| BMI | 0.258 | 0.0001 |
| Waist circumference | 0.278 | <0.0001 |
| CRP | 0.180 | 0.004 |
| HbA1c | 0.284 | <0.0001 |
| C-peptide | 0.148 | 0.020 |
| APTT | 0.143 | 0.023 |
| Fibrinogen | 0.153 | 0.016 |
| Lp(a) | 0.180 | 0.004 |
| Triglyceride | 0.227 | 0.0003 |
| ApoA1 | −0.170 | 0.007 |
| HDL-C | −0.214 | 0.0006 |
| Dependent Variable: Mean cIMT | |||
|---|---|---|---|
| Predictors | Standardized β | SE of Standardized β | p Value |
| Age | 0.399 | 0.066 | <0.0001 |
| Male sex | 0.165 | 0.074 | 0.026 |
| HbA1c | 0.185 | 0.077 | 0.017 |
| Hypertension | 0.162 | 0.069 | 0.020 |
| Intron-K G carrier | −0.146 | 0.059 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cogoi, B.; Esze, R.; Somodi, S.; Shemirani, A.H.; Bereczky, Z.; Muszbek, L.; Paragh, G.; Katkó, M.; Káplár, M. Protective Effect of Factor XIII Intron-K G Allele on Subclinical Vascular Disease. Int. J. Mol. Sci. 2025, 26, 10293. https://doi.org/10.3390/ijms262110293
Cogoi B, Esze R, Somodi S, Shemirani AH, Bereczky Z, Muszbek L, Paragh G, Katkó M, Káplár M. Protective Effect of Factor XIII Intron-K G Allele on Subclinical Vascular Disease. International Journal of Molecular Sciences. 2025; 26(21):10293. https://doi.org/10.3390/ijms262110293
Chicago/Turabian StyleCogoi, Barbara, Regina Esze, Sándor Somodi, Amir H. Shemirani, Zsuzsanna Bereczky, László Muszbek, György Paragh, Mónika Katkó, and Miklós Káplár. 2025. "Protective Effect of Factor XIII Intron-K G Allele on Subclinical Vascular Disease" International Journal of Molecular Sciences 26, no. 21: 10293. https://doi.org/10.3390/ijms262110293
APA StyleCogoi, B., Esze, R., Somodi, S., Shemirani, A. H., Bereczky, Z., Muszbek, L., Paragh, G., Katkó, M., & Káplár, M. (2025). Protective Effect of Factor XIII Intron-K G Allele on Subclinical Vascular Disease. International Journal of Molecular Sciences, 26(21), 10293. https://doi.org/10.3390/ijms262110293

