Angiotensin II and Atherosclerosis: A New Cardiovascular Risk Factor Beyond Hypertension
Abstract
1. Introduction
2. Renin–Angiotensin–Aldosterone System
2.1. Renin–Angiotensin–Aldosterone System and Production of Angiotensin II
2.2. Angiotensin II Type 1 and Type 2 Receptors
2.3. Renin–Angiotensin–Aldosterone System in Hypertension
3. The Effects of Renin–Angiotensin–Aldosterone System on Atherosclerosis
3.1. Animal Studies
3.1.1. Neovascularization
3.1.2. Fatty Streaks
3.1.3. Inflammation
3.2. Human Studies
4. Drugs Targeting the Renin–Angiotensin–Aldosterone System
4.1. The Renin–Angiotensin–Aldosterone System Inhibition Beyond Hypertension
4.2. Renin–Angiotensin–Aldosterone System Inhibition and Atherosclerosis
4.2.1. Animal Studies
4.2.2. Human Studies
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mentz, R.J.; Bakris, G.L.; Waeber, B.; McMurray, J.J.V.; Gheorghiade, M.; Ruilope, L.M.; Maggioni, A.P.; Swedberg, K.; Piña, I.L.; Fiuzat, M.; et al. The past, present and future of renin–angiotensin aldosterone system inhibition. Int. J. Cardiol. 2013, 167, 1677–1687. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the Renin-Angiotensin System—An Endocrine and Paracrine System. Endocrinology 2003, 144, 2179–2183. [Google Scholar] [CrossRef]
- Triebel, H.; Castrop, H. The renin angiotensin aldosterone system. Pflüg. Arch.-Eur. J. Physiol. 2024, 476, 705–713. [Google Scholar] [CrossRef]
- Pop, D.; Dădârlat-Pop, A.; Tomoaia, R.; Zdrenghea, D.; Caloian, B. Updates on the Renin–Angiotensin–Aldosterone System and the Cardiovascular Continuum. Biomedicines 2024, 12, 1582. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol.-Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, K. Renin-Angiotensin System and Sympathetic Neurotransmitter Release in the Central Nervous System of Hypertension. Int. J. Hypertens. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Behuliak, M.; Bencze, M.; Boroš, A.; Vavřínová, A.; Vodička, M.; Ergang, P.; Vaněčková, I.; Zicha, J. Chronic inhibition of angiotensin converting enzyme lowers blood pressure in spontaneously hypertensive rats by attenuation of sympathetic tone: The role of enhanced baroreflex sensitivity. Biomed. Pharmacother. 2024, 176, 116796. [Google Scholar] [CrossRef] [PubMed]
- Qadri, F.; Culman, J.; Veltmar, A.; Maas, K.; Rascher, W.; Unger, T. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J. Pharmacol. Exp. Ther. 1993, 267, 567–574. [Google Scholar] [CrossRef]
- Underwood, C.F.; Burke, P.G.R.; Kumar, N.N.; Goodchild, A.K.; McMullan, S.; Phillips, J.K.; Hildreth, C.M. Upregulated Angiotensin Ia Receptors in the Hypothalamic Paraventricular Nucleus Sensitize Neuroendocrine Vasopressin Release and Blood Pressure in a Rodent Model of Polycystic Kidney Disease. Neuroendocrinology 2022, 112, 1200–1213. [Google Scholar] [CrossRef]
- Liu, D.-X.; Zhang, Y.-Q.; Hu, B.; Zhang, J.; Zhao, Q. Association of AT1R polymorphism with hypertension risk: An update meta-analysis based on 28,952 subjects. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 898–909. [Google Scholar] [CrossRef]
- Álvarez, R. Angiotensin-converting enzyme and angiotensin II receptor 1 polymorphisms: Association with early coronary disease. Cardiovasc. Res. 1998, 40, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Kruzliak, P.; Kovacova, G.; Pechanova, O.; Balogh, S. Association between Angiotensin II Type 1 Receptor Polymorphism and Sudden Cardiac Death in Myocardial Infarction. Dis. Markers 2013, 35, 287–293. [Google Scholar] [CrossRef]
- Berge, K.E.; Bakken, A.; Bøhn, M.; Erikssen, J.; Berg, K. A DNA polymorphism at the angiotensin II type 1 receptor (AT1R) locus and myocardial infarction. Clin. Genet. 1997, 52, 71–76. [Google Scholar] [CrossRef]
- Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens. 2007, 21, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Delafontaine, P.; Rittenhouse, S.E.; Gimbrone, M.A.; Alexander, R.W. Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II-stimulated cultured vascular smooth muscle cells. J. Biol. Chem. 1987, 262, 14555–14562. [Google Scholar] [CrossRef]
- Lassègue, B.; Alexander, R.W.; Nickenig, G.; Clark, M.; Murphy, T.J.; Griendling, K.K. Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: Evidence for homologous and heterologous regulation. Mol. Pharmacol. 1995, 48, 601–609. [Google Scholar] [CrossRef]
- Touyz, R.M.; He, G.; Deng, L.Y.; Schiffrin, E.L. Role of extracellular signal-regulated kinases in angiotensin II-stimulated contraction of smooth muscle cells from human resistance arteries. Circulation 1999, 99, 392–399. [Google Scholar] [CrossRef]
- Griendling, K.K.; Lassègue, B.; Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Bedecs, K.; Elbaz, N.; Sutren, M.; Masson, M.; Susini, C.; Strosberg, A.D.; Nahmias, C. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem. J. 1997, 325, 449–454. [Google Scholar] [CrossRef]
- Munzenmaier, D.H.; Greene, A.S. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 1996, 27 Pt 2, 760–765. [Google Scholar] [CrossRef]
- Bumpus, F.M.; Catt, K.J.; Chiu, A.T.; DeGasparo, M.; Goodfriend, T.; Husain, A.; Peach, M.J.; Taylor, D.G.; Timmermans, P.B. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 1991, 17, 720–721. [Google Scholar] [CrossRef]
- Wang, Y.; Del Borgo, M.; Lee, H.W.; Baraldi, D.; Hirmiz, B.; Gaspari, T.A.; Denton, K.M.; Aguilar, M.-I.; Samuel, C.S.; Widdop, R.E. Anti-fibrotic Potential of AT2 Receptor Agonists. Front. Pharmacol. 2017, 8, 564. [Google Scholar] [CrossRef]
- Abdel Ghafar, M.T. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020, 163, 108701. [Google Scholar] [CrossRef] [PubMed]
- Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical Renin-Angiotensin System in Kidney Physiology. In Comprehensive Physiology, 1st ed.; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 1201–1228. ISBN 978-0-470-65071-4. [Google Scholar]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, C.J. Neurogenic Hypertension: A Synthesis and Review, 1st ed.; Chapman and Hall: London, UK, 1991; ISBN 978-0-412-39630-4. [Google Scholar]
- Sigmund, C.D.; Grobe, J.L. A colorful view of the brain renin-angiotensin system. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2020, 43, 357–359. [Google Scholar] [CrossRef]
- Esler, M.; Zweifler, A.; Randall, O.; Julius, S.; DeQuattro, V. The determinants of plasma-renin activity in essential hypertension. Ann. Intern. Med. 1978, 88, 746–752. [Google Scholar] [CrossRef]
- Goldsmith, S.R. Interactions between the sympathetic nervous system and the RAAS in heart failure. Curr. Heart Fail. Rep. 2004, 1, 45–50. [Google Scholar] [CrossRef]
- Gisterå, A.; Ketelhuth, D.F.J.; Malin, S.G.; Hansson, G.K. Animal Models of Atherosclerosis–Supportive Notes and Tricks of the Trade. Circ. Res. 2022, 130, 1869–1887. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Jackson, C.L. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 2001, 154, 399–406. [Google Scholar] [CrossRef]
- Moreno, P.R.; Purushothaman, K.-R.; Sirol, M.; Levy, A.P.; Fuster, V. Neovascularization in Human Atherosclerosis. Circulation 2006, 113, 2245–2252. [Google Scholar] [CrossRef]
- Da Cunha, V.; Martin-McNulty, B.; Vincelette, J.; Choy, D.F.; Li, W.-W.; Schroeder, M.; Mahmoudi, M.; Halks-Miller, M.; Wilson, D.W.; Vergona, R.; et al. Angiotensin II induces histomorphologic features of unstable plaque in a murine model of accelerated atherosclerosis. J. Vasc. Surg. 2006, 44, 364–371. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, H.; Li, X.; Yao, H.; Liu, X.; Lu, Q.; Wan, J.; Xu, J. Angiotensin II-accelerated vulnerability of carotid plaque in a cholesterol-fed rabbit model-assessed with magnetic resonance imaging comparing to histopathology. Saudi J. Biol. Sci. 2017, 24, 495–503. [Google Scholar] [CrossRef]
- Kolodgie, F.D.; Gold, H.K.; Burke, A.P.; Fowler, D.R.; Kruth, H.S.; Weber, D.K.; Farb, A.; Guerrero, L.J.; Hayase, M.; Kutys, R.; et al. Intraplaque Hemorrhage and Progression of Coronary Atheroma. N. Engl. J. Med. 2003, 349, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.J.; Loftus, I.M.; Thompson, M.M.; Jones, L.; London, N.J.M.; Bell, P.R.F.; Naylor, A.R.; Brindle, N.P.J. Angiogenesis and the atherosclerotic carotid plaque: An association between symptomatology and plaque morphology. J. Vasc. Surg. 1999, 30, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Mofidi, R.; Crotty, T.B.; McCarthy, P.; Sheehan, S.J.; Mehigan, D.; Keaveny, T.V. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. J. Br. Surg. 2001, 88, 945–950. [Google Scholar] [CrossRef]
- Brasier, A.R.; Recinos, A.; Eledrisi, M.S. Vascular Inflammation and the Renin-Angiotensin System. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1257–1266. [Google Scholar] [CrossRef]
- Daugherty, A.; Manning, M.W.; Cassis, L.A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J. Clin. Investig. 2000, 105, 1605–1612. [Google Scholar] [CrossRef]
- Keidar, S.; Attias, J.; Heinrich, R.; Coleman, R.; Aviram, M. Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 1999, 146, 249–257. [Google Scholar] [CrossRef]
- Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 2015, 278, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Garlanda, C.; Bottazzi, B.; Bastone, A.; Mantovani, A. Pentraxins at the Crossroads Between Innate Immunity, Inflammation, Matrix Deposition, and Female Fertility. Annu. Rev. Immunol. 2005, 23, 337–366. [Google Scholar] [CrossRef] [PubMed]
- Cipollone, F.; Fazia, M.; Iezzi, A.; Pini, B.; Cuccurullo, C.; Zucchelli, M.; De Cesare, D.; Ucchino, S.; Spigonardo, F.; De Luca, M.; et al. Blockade of the Angiotensin II Type 1 Receptor Stabilizes Atherosclerotic Plaques in Humans by Inhibiting Prostaglandin E2 –Dependent Matrix Metalloproteinase Activity. Circulation 2004, 109, 1482–1488. [Google Scholar] [CrossRef]
- Galis, Z.S.; Khatri, J.J. Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly. Circ. Res. 2002, 90, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, D.M.; De Meyer, G.R.Y.; Kockx, M.M.; Herman, A.G.; Martinet, W. Phagocytosis of Apoptotic Cells by Macrophages Is Impaired in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1256–1261. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, D.; Zhang, L.-S.; Deng, F.-X.; Shu, S.; Wang, L.-J.; Wu, Y.; Guo, N.; Zhou, J.; et al. Angiotensin II Deteriorates Advanced Atherosclerosis by Promoting MerTK Cleavage and Impairing Efferocytosis through the AT1 R/ROS/P38 MAPK/ADAM17 Pathway. Am. J. Physiol.-Cell Physiol. 2019, 317, C776–C787. [Google Scholar] [CrossRef]
- Ohnaka, K.; Numaguchi, K.; Yamakawa, T.; Inagami, T. Induction of Cyclooxygenase-2 by Angiotensin II in Cultured Rat Vascular Smooth Muscle Cells. Hypertension 2000, 35, 68–75. [Google Scholar] [CrossRef]
- Yang, B.C.; Phillips, M.I.; Mohuczy, D.; Meng, H.; Shen, L.; Mehta, P.; Mehta, J.L. Increased Angiotensin II Type 1 Receptor Expression in Hypercholesterolemic Atherosclerosis in Rabbits. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1433–1439. [Google Scholar] [CrossRef]
- Jukema, R.A.; De Winter, R.W.; Van Diemen, P.A.; Driessen, R.S.; Danser, A.H.J.; Garrelds, I.M.; Raijmakers, P.G.; Van De Ven, P.M.; Knaapen, P.; Danad, I.; et al. The Relation of RAAS Activity and Endothelin-1 Levels to Coronary Atherosclerotic Burden and Microvascular Dysfunction in Chest Pain Patients. Atherosclerosis 2022, 347, 47–54. [Google Scholar] [CrossRef]
- Taddei, S.; Bortolotto, L. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity. Am. J. Cardiovasc. Drugs Drugs Devices Interv. 2016, 16, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Suchard, M.A.; Krumholz, H.M.; Schuemie, M.J.; Shea, S.; Duke, J.; Pratt, N.; Reich, C.G.; Madigan, D.; You, S.C.; et al. Comparative First-Line Effectiveness and Safety of ACE (Angiotensin-Converting Enzyme) Inhibitors and Angiotensin Receptor Blockers: A Multinational Cohort Study. Hypertension 2021, 78, 591–603. [Google Scholar] [CrossRef]
- Xie, W.; Zheng, F.; Evangelou, E.; Liu, O.; Yang, Z.; Chan, Q.; Elliott, P.; Wu, Y. Blood Pressure-Lowering Drugs and Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-Analysis. J. Hypertens. 2018, 36, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.M.; Smith, R.; Levy, P.; Strawn, W. The Hypertension-Lipid Connection: Insights into the Relation between Angiotensin II and Cholesterol in Atherogenesis. Am. J. Med. Sci. 2002, 323, 17–24. [Google Scholar] [CrossRef]
- Sleight, P. The HOPE Study (Heart Outcomes Prevention Evaluation). J. Renin Angiotensin Aldosterone Syst. 2000, 1, 18–20. [Google Scholar] [CrossRef] [PubMed]
- The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an Angiotensin-Converting–Enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kizer, J.R.; Dahlöf, B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; De Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristianson, K.; Lederballe-Pedersen, O.; et al. Stroke Reduction in Hypertensive Adults With Cardiac Hypertrophy Randomized to Losartan Versus Atenolol: The Losartan Intervention For Endpoint Reduction in Hypertension Study. Hypertension 2005, 45, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Dahlöf, B.; Sever, P.S.; Poulter, N.R.; Wedel, H.; Beevers, D.G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; et al. Prevention of Cardiovascular Events with an Antihypertensive Regimen of Amlodipine Adding Perindopril as Required versus Atenolol Adding Bendroflumethiazide as Required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A Multicentre Randomised Controlled Trial. The Lancet 2005, 366, 895–906. [Google Scholar] [CrossRef]
- Chrysant, S.G.; Chrysant, G.S. The Pleiotropic Effects of Angiotensin Receptor Blockers. J. Clin. Hypertens. Greenwich Conn 2006, 8, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okopień, B. Pleiotropic Effects of Angiotensin-Converting Enzyme Inhibitors in Normotensive Patients with Coronary Artery Disease. Pharmacol. Rep. PR 2008, 60, 514–523. [Google Scholar]
- Guerra-Cuesta, J.I.; Montón, M.; Rodríguez-Feo, J.A.; Jiménez, A.M.; González-Fernández, F.; Rico, L.A.; García, R.; Gómez, J.; Farré, J.; Casado, S.; et al. Effect of Losartan on Human Platelet Activation. J. Hypertens. 1999, 17, 447–452. [Google Scholar] [CrossRef]
- The PEACE Trial Investigators. Angiotensin-Converting–Enzyme Inhibition in Stable Coronary Artery Disease. N. Engl. J. Med. 2004, 351, 2058–2068. [Google Scholar] [CrossRef]
- Efficacy of Perindopril in Reduction of Cardiovascular Events among Patients with Stable Coronary Artery Disease: Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial (the EUROPA Study). The Lancet 2003, 362, 782–788. [CrossRef]
- Dagenais, G.R.; Pogue, J.; Fox, K.; Simoons, M.L.; Yusuf, S. Angiotensin-Converting-Enzyme Inhibitors in Stable Vascular Disease without Left Ventricular Systolic Dysfunction or Heart Failure: A Combined Analysis of Three Trials. The Lancet 2006, 368, 581–588. [Google Scholar] [CrossRef]
- Hotchi, J.; Hoshiga, M.; Takeda, Y.; Yuki, T.; Fujisaka, T.; Ishihara, T.; Hanafusa, T. Plaque-Stabilizing Effect of Angiotensin-Converting Enzyme Inhibitor and/or Angiotensin Receptor Blocker in a Rabbit Plaque Model. J. Atheroscler. Thromb. 2013, 20, 257–266. [Google Scholar] [CrossRef]
- Aono, J.; Suzuki, J.; Iwai, M.; Horiuchi, M.; Nagai, T.; Nishimura, K.; Inoue, K.; Ogimoto, A.; Okayama, H.; Higaki, J. Deletion of the angiotensin II type 1a receptor prevents atherosclerotic plaque rupture in apolipoprotein E−/− mice. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1453–1459, Erratum in Arterioscler. Thromb. Vasc. Biol. 2014, 34, e18. [Google Scholar] [CrossRef]
- Johnstone, M.T.; Perez, A.S.; Nasser, I.; Stewart, R.; Vaidya, A.; Al Ammary, F.; Schmidt, B.; Horowitz, G.; Dolgoff, J.; Hamilton, J.; et al. Angiotensin Receptor Blockade With Candesartan Attenuates Atherosclerosis, Plaque Disruption, and Macrophage Accumulation Within the Plaque in a Rabbit Model. Circulation 2004, 110, 2060–2065. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Zhou, W.; Zhang, W.; Wang, K.; Zhang, J. Neprilysin Inhibitor–Angiotensin II Receptor Blocker Combination Therapy (Sacubitril/Valsartan) Suppresses Atherosclerotic Plaque Formation and Inhibits Inflammation in Apolipoprotein E- Deficient Mice. Sci. Rep. 2019, 9, 6509. [Google Scholar] [CrossRef]
- Williams, C.; Han, D.; Takagi, H.; Fordyce, C.B.; Sellers, S.; Blanke, P.; Lin, F.Y.; Shaw, L.J.; Lee, S.-E.; Andreini, D.; et al. Effects of Renin-Angiotensin-Aldosterone-System Inhibitors on Coronary Atherosclerotic Plaques: The PARADIGM Registry. Atherosclerosis 2023, 383, 117301. [Google Scholar] [CrossRef]
- Clancy, P.; Seto, S.-W.; Koblar, S.A.; Golledge, J. Role of the Angiotensin Converting Enzyme 1/Angiotensin II/Angiotensin Receptor 1 Axis in Interstitial Collagenase Expression in Human Carotid Atheroma. Atherosclerosis 2013, 229, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.; Dhawan, S.S.; Binongo, J.N.G.; Alkhoder, A.; Jones, D.P.; Oshinski, J.N.; Quyyumi, A.A. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT). Am. Heart J. 2016, 174, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Lonn, E.; Yusuf, S.; Dzavik, V.; Doris, C.; Yi, Q.; Smith, S.; Moore-Cox, A.; Bosch, J.; Riley, W.; Teo, K.; et al. Effects of Ramipril and Vitamin E on Atherosclerosis: The Study to Evaluate Carotid Ultrasound Changes in Patients Treated with Ramipril and Vitamin E (SECURE). Circulation 2001, 103, 919–925. [Google Scholar] [CrossRef]
- Strawn, W.B.; Chappell, M.C.; Dean, R.H.; Kivlighn, S.; Ferrario, C.M. Inhibition of Early Atherogenesis by Losartan in Monkeys With Diet-Induced Hypercholesterolemia. Circulation 2000, 101, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Haddy, N. IL-6, TNF-α and Atherosclerosis Risk Indicators in a Healthy Family Population: The STANISLAS Cohort. Atherosclerosis 2003, 170, 277–283. [Google Scholar] [CrossRef]
- Saba, L.; Mannelli, L.; Balestrieri, A.; Serra, A.; Bassareo, P.; Murgia, A.; Politi, C.; Porcu, M.; Crivelli, P.; Micheletti, G.; et al. CT and MR Imaging of Carotid Wall and Plaque. J. Neurosonology Neuroimaging 2019, 11, 115–125. [Google Scholar] [CrossRef]
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.-W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. Efficacy and Safety of Sparsentan versus Irbesartan in Patients with IgA Nephropathy (PROTECT): 2-Year Results from a Randomised, Active-Controlled, Phase 3 Trial. The Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef] [PubMed]
- Civieri, G.; Iop, L.; Tona, F. Antibodies against Angiotensin II Type 1 and Endothelin 1 Type A Receptors in Cardiovascular Pathologies. Int. J. Mol. Sci. 2022, 23, 927. [Google Scholar] [CrossRef] [PubMed]
- Tona, F.; Civieri, G.; Vadori, M.; Masiero, G.; Iop, L.; Marra, M.P.; Perin, V.; Cuciz, E.; Cecere, A.; Bernava, G.; et al. Association of Angiotensin II Receptor Type 1 and Endothelin-1 Receptor Type A Agonistic Autoantibodies With Adverse Remodeling and Cardiovascular Events After Acute Myocardial Infarction. J. Am. Heart Assoc. 2024, 13, e032672. [Google Scholar] [CrossRef]
- Civieri, G.; Vadori, M.; Masiero, G.; Iop, L.; Tansella, D.; Pergola, V.; Cozzi, E.; Iliceto, S.; Tona, F. Spontaneous Coronary Artery Dissection in Women with Acute Myocardial Infarction: Is There a New Role for Autoimmunity? Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 856–861. [Google Scholar] [CrossRef]
- Civieri, G.; Iop, L.; Cozzi, E.; Iliceto, S.; Tona, F. Antibodies against Angiotensin II Type 1 and Endothelin-1 Type A Receptors Are Associated with Microvascular Obstruction after Revascularized ST-Elevation Myocardial Infarction. Eur. Heart J. Open 2024, 4, oeae099. [Google Scholar] [CrossRef]
Study | Model | Endpoint | Major Findings |
---|---|---|---|
Hotchi et al. [64] | Male Japanese white rabbits fed a high-cholesterol diet after balloon injury of the carotid arteries. | Compare the efficacy and mechanism of plaque stabilization by ACEI or ARB and to determine the effects of combination therapy | ACEI or ARB increased the thickness of the fibrous cap, collagen content and the number of smooth muscle cells in the intima and reduced the accumulation macrophages, suggesting the plaque-stabilizing effect. ACEI reduced MMP-9, while ARB did not. |
Aono et al. [65] | (ApoE)−/− and ApoE−/− AT1a−/− mice | Assess the role of AT1R in plaque rupture | Blocking AT1R may reduce atherosclerotic plaque rupture and AT1R mediated macrophage trapping, inflammation, oxidative stress, and matrix metalloproteinase activation. |
Johnstone et al. [66] | New Zealand white rabbits fed a high-cholesterol diet after aortic balloon injury | Assess ARB effect on atherosclerosis progression | ARB attenuates the degree of atherosclerosis and reduces both plaque disruption and macrophage accumulation while increasing collagen deposition in the aorta of this animal model. |
Zhang et al. [67] | (ApoE)−/− mice fed a high-cholesterol diet after carotid injury | Compare the effect of the sacubitril/valsartan (LCZ696) combination versus valsartan alone | Both valsartan and LCZ696 decreased plaque lipid content and cross-sectional plaque area and increased fibrous cap thickness. LCZ696 performed the best in suppressing atherosclerosis and inhibiting the level of pro-inflammatory genes. |
Williams et al. [68] | Human without history of CAD | Asses RAAS inhibitor impact on atherosclerosis progression | RAAS inhibition caused a significant attenuation of non-calcified plaque progression in patients with elevated baseline percent atheroma volume. |
Clancy et al. [69] | Atheroma samples obtained from patient undergoing carotid endarterectomy | Asses ATR1 and ACE1 inhibitor on the expression and activity of MMP-1, -8 and -13 | AT1R blockade via irbesartan significantly reduced MMP-1 and MMP-8 secretion in plaque supernatants. |
Cipollone et al. [43] | Atheroma samples obtained from patient undergoing carotid endarterectomy | Asses AT1R inhibitor effect on the inflammatory infiltration and expression of COX-2/mPGES-1 and MMPs | Irbesartan decreased inflammation and inhibited COX-2/mPGES-1 expression in plaque macrophages. |
Ramadan et al. [70] | Patient with carotid intima media thickness > 0.65 mm by ultrasound | Asses AT1R inhibitor effect on carotid wall atherosclerosis | AT1R blockade was associated with regression of carotid atherosclerosis |
Lonn et al. [71] | Patients with vascular disease or diabetes and at least one other risk factor | Compare the effect on atherosclerosis progression of ramipril versus vitamin E | Treatment with ramipril had a beneficial effect on atherosclerosis progression, while the effect of vitamin E was neutral. |
Strawn et al. [72] | Male cynomolgus monkeys fed with a high-cholesterol diet | Assess ARBs effect on atherosclerosis progression | Treatment with losartan inhibited fatty-streak formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morat, N.; Civieri, G.; Spezia, M.; Menegolo, M.; Bernava, G.; Iliceto, S.; Iop, L.; Tona, F. Angiotensin II and Atherosclerosis: A New Cardiovascular Risk Factor Beyond Hypertension. Int. J. Mol. Sci. 2025, 26, 7527. https://doi.org/10.3390/ijms26157527
Morat N, Civieri G, Spezia M, Menegolo M, Bernava G, Iliceto S, Iop L, Tona F. Angiotensin II and Atherosclerosis: A New Cardiovascular Risk Factor Beyond Hypertension. International Journal of Molecular Sciences. 2025; 26(15):7527. https://doi.org/10.3390/ijms26157527
Chicago/Turabian StyleMorat, Nicola, Giovanni Civieri, Matteo Spezia, Mirko Menegolo, Giacomo Bernava, Sabino Iliceto, Laura Iop, and Francesco Tona. 2025. "Angiotensin II and Atherosclerosis: A New Cardiovascular Risk Factor Beyond Hypertension" International Journal of Molecular Sciences 26, no. 15: 7527. https://doi.org/10.3390/ijms26157527
APA StyleMorat, N., Civieri, G., Spezia, M., Menegolo, M., Bernava, G., Iliceto, S., Iop, L., & Tona, F. (2025). Angiotensin II and Atherosclerosis: A New Cardiovascular Risk Factor Beyond Hypertension. International Journal of Molecular Sciences, 26(15), 7527. https://doi.org/10.3390/ijms26157527