Bone Marker Proteins in Women With and Without Polycystic Ovary Syndrome
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Cohorts
4.1.1. Obese PCOS and Control Group [42]
4.1.2. Nonobese PCOS and Control Group [45]
4.1.3. Sample Processing and Biochemical Analysis
4.2. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norman, R.J.; Dewailly, D.; Legro, R.S.; Hickey, T.E. Polycystic ovary syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef]
- Ollila, M.-M.; Hoek, A.; Piltonen, T.T. The association between polycystic ovary syndrome and early cardiovascular disease morbidity strengthens. Eur. J. Endocrinol. 2023, 189, R4–R5. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Atkin, S.L. Recent advances in cardiovascular aspects of polycystic ovary syndrome. Eur. J. Endocrinol. 2012, 166, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Chiovato, L.; Nappi, R.E. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef]
- Puder, J.J.; Varga, S.; Kraenzlin, M.; De Geyter, C.; Keller, U.; Müller, B. Central fat excess in polycystic ovary syndrome: Relation to low-grade inflammation and insulin resistance. J. Clin. Endocrinol. Metab. 2005, 90, 6014–6021. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Weickert, M.O.; Franks, S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119874042. [Google Scholar] [CrossRef] [PubMed]
- Dargham, S.R.; Ahmed, L.; Kilpatrick, E.S.; Atkin, S.L. The prevalence and metabolic characteristics of polycystic ovary syndrome in the Qatari population. PLoS ONE 2017, 12, e0181467. [Google Scholar] [CrossRef] [PubMed]
- Good, C.; Tulchinsky, M.; Mauger, D.; Demers, L.M.; Legro, R.S. Bone mineral density and body composition in lean women with polycystic ovary syndrome. Fertil. Steril. 1999, 72, 21–25. [Google Scholar] [CrossRef]
- Mørch, N.F.; Aziz, M.; Svendsen, P.F. Bone mass density in lean and overweight women with polycystic ovary syndrome. Scand. J. Clin. Lab. Investig. 2022, 82, 210–217. [Google Scholar] [CrossRef]
- Schmidt, J.; Dahlgren, E.; Brännström, M.; Landin-Wilhelmsen, K. Body composition, bone mineral density and fractures in late postmenopausal women with polycystic ovary syndrome—A long-term follow-up study. Clin. Endocrinol. 2012, 77, 207–214. [Google Scholar] [CrossRef]
- Rubin, K.H.; Glintborg, D.; Nybo, M.; Andersen, M.; Abrahamsen, B. Fracture Risk Is Decreased in Women With Polycystic Ovary Syndrome: A Register-Based and Population-Based Cohort Study. J. Bone Miner. Res. 2016, 31, 709–717. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, H.S.; Huang, W.T.; Chen, M.J.; Chen, S.C.; Hsu, Y.H. Increased risk of fractures in patients with polycystic ovary syndrome: A nationwide population-based retrospective cohort study. J. Bone Miner. Metab. 2018, 36, 741–748. [Google Scholar] [CrossRef]
- Katulski, K.; Slawek, S.; Czyzyk, A.; Podfigurna-Stopa, A.; Paczkowska, K.; Ignaszak, N.; Podkowa, N.; Meczekalski, B. Bone mineral density in women with polycystic ovary syndrome. J. Endocrinol. Investig. 2014, 37, 1219–1224. [Google Scholar] [CrossRef]
- Rissetti, G.; Piovezan, J.M.; Premaor, M.O.; Comim, F.V. Contrasting Bone Profiles in PCOS Are Related to BMI: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2024, 109, e1911–e1921, Erratum in J. Clin. Endocrinol. Metab. 2024, 109, e1987. [Google Scholar] [CrossRef]
- Ganie, M.A.; Chakraborty, S.; Sehgal, A.; Sreejith, M.; Kandasamy, D.; Jana, M.; Rashid, A. Bone Mineral Density is Unaltered in Women with Polycystic Ovary Syndrome. Horm. Metab. Res. 2018, 50, 754–760. [Google Scholar] [CrossRef]
- Adami, S.; Zamberlan, N.; Castello, R.; Tosi, F.; Gatti, D.; Moghetti, P. Effect of hyperandrogenism and menstrual cycle abnormalities on bone mass and bone turnover in young women. Clin. Endocrinol. 1998, 48, 169–173. [Google Scholar] [CrossRef]
- Yüksel, O.; Dökmetaş, H.S.; Topcu, S.; Erselcan, T.; Sencan, M. Relationship between bone mineral density and insulin resistance in polycystic ovary syndrome. J. Bone Miner. Metab. 2001, 19, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Armutcu, F.; McCloskey, E. Insulin resistance, bone health, and fracture risk. Osteoporos. Int. A J. Establ. Result Coop. Between Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2024, 35, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Kalyan, S.; Patel, M.S.; Kingwell, E.; Côté, H.C.F.; Liu, D.; Prior, J.C. Competing Factors Link to Bone Health in Polycystic Ovary Syndrome: Chronic Low-Grade Inflammation Takes a Toll. Sci. Rep. 2017, 7, 3432. [Google Scholar] [CrossRef] [PubMed]
- Sudhakaran, G.; Priya, P.S.; Jagan, K.; Haridevamuthu, B.; Meenatchi, R.; Arockiaraj, J. Osteoporosis in polycystic ovary syndrome (PCOS) and involved mechanisms. Life Sci. 2023, 335, 122280. [Google Scholar] [CrossRef]
- Kudo, A. Periostin in Bone Biology. Adv. Exp. Med. Biol. 2019, 1132, 43–47. [Google Scholar]
- Kuebart, T.; Oezel, L.; Gürsoy, B.; Maus, U.; Windolf, J.; Bittersohl, B.; Grotheer, V. Periostin Splice Variant Expression in Human Osteoblasts from Osteoporotic Patients and Its Effects on Interleukin-6 and Osteoprotegerin. Int. J. Mol. Sci. 2025, 26, 932. [Google Scholar] [CrossRef]
- Rousseau, J.C.; Sornay-Rendu, E.; Bertholon, C.; Chapurlat, R.; Garnero, P. Serum periostin is associated with fracture risk in postmenopausal women: A 7-year prospective analysis of the OFELY study. J. Clin. Endocrinol. Metab. 2014, 99, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Pickering, M.E.; Oris, C.; Chapurlat, R. Periostin in Osteoporosis and Cardiovascular Disease. J. Endocr. Soc. 2023, 7, bvad081. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huo, L.; Ren, L.; Li, Y.; Sun, Y.; Li, Y.; Zhang, P.; Chen, S.; Song, G.-Y. Polycystic Ovary Syndrome Is Associated With Elevated Periostin Levels. Exp. Clin. Endocrinol. Diabetes 2018, 127, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Gonulalan, G.; Guney, I.; Sackan, F.; Acar, S. The Relationship between Polycystic Ovary Syndrome and Serum Periostin Level. J. Coll. Physicians Surg. Pak. 2021, 31, 1291–1295. [Google Scholar] [CrossRef]
- Pečar Fonović, U.; Kos, J.; Mitrović, A. Compensational role between cathepsins. Biochimie 2024, 226, 62–76. [Google Scholar] [CrossRef]
- Kakegawa, H.; Nikawa, T.; Tagami, K.; Kamioka, H.; Sumitani, K.; Kawata, T.; Drobnic-Kosorok, M.; Lenarcic, B.; Turk, V.; Katunuma, N. Participation of cathepsin L on bone resorption. FEBS Lett. 1993, 321, 247–250. [Google Scholar] [CrossRef]
- Lang, T.; Willinger, U.; Holzer, G. Soluble cathepsin-L: A marker of bone resorption and bone density? J. Lab. Clin. Med. 2004, 144, 163–166. [Google Scholar] [CrossRef]
- Cookingham, L.M.; Voorhis, B.J.V.; Ascoli, M. Do Alterations in Follicular Fluid Proteases Contribute to Human Infertility? J. Assist. Reprod. Genet. 2015, 32, 737–745. [Google Scholar] [CrossRef]
- Komori, T. What is the function of osteocalcin? J. Oral Biosci. 2020, 62, 223–227. [Google Scholar] [CrossRef]
- Mizokami, A.; Kawakubo-Yasukochi, T.; Hirata, M. Osteocalcin and its endocrine functions. Biochem. Pharmacol. 2017, 132, 1–8. [Google Scholar] [CrossRef]
- Rossi, M.; Battafarano, G.; Pepe, J.; Minisola, S.; Del Fattore, A. The endocrine function of osteocalcin regulated by bone resorption: A lesson from reduced and increased bone mass diseases. Int. J. Mol. Sci. 2019, 20, 4502. [Google Scholar] [CrossRef] [PubMed]
- Piovezan, J.M.; Premaor, M.O.; Comim, F.V. Negative impact of polycystic ovary syndrome on bone health: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, Y.; He, Q.; Schneider, L.; Zhang, J.; Wan, C. Lysosomal cathepsin D regulates bone turnover through distinct mode of actions of the autophagy pathways in osteoblasts and osteoclasts. bioRxiv 2025. bioRxiv:2025.04.09.645406. [Google Scholar] [CrossRef]
- Amjadi, F.; Mehdizadeh, M.; Ashrafi, M.; Nasrabadi, D.; Taleahmad, S.; Mirzaei, M.; Gupta, V.; Salekdeh, G.H.; Aflatoonian, R. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women. Reprod. Biomed. Online 2018, 37, 184–200. [Google Scholar] [CrossRef]
- Jin, M.; Cai, J.; Hu, Y.J.; Lu, X.E.; Huang, H.F. Cathepsin D expression in ovaries from polycystic ovarian syndrome patients. Zhejiang Da Xue Xue Bao Yi Xue Ban 2007, 36, 429–432. [Google Scholar]
- Grewe, J.M.; Knapstein, P.-R.; Donat, A.; Jiang, S.; Smit, D.J.; Xie, W.; Keller, J. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res. 2022, 10, 34. [Google Scholar] [CrossRef]
- Ishii, M.; Egen, J.G.; Klauschen, F.; Meier-Schellersheim, M.; Saeki, Y.; Vacher, J.; Proia, R.L.; Germain, R.N. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009, 458, 524–528, Erratum in Nature 2010, 465, 966. [Google Scholar] [CrossRef]
- Millest, A.; Breen, S.; Loveday, B.; Clarkson, P.; Simpson, C.; Waterton, J.; Johnstone, D. Effects of an inhibitor of cathepsin L on bone resorption in thyroparathyroidectomized and ovariectomized rats. Bone 1997, 20, 465–471. [Google Scholar] [CrossRef]
- Dera, A.A.; Ranganath, L.; Barraclough, R.; Vinjamuri, S.; Hamill, S.; Barraclough, D.L. Cathepsin Z as a novel potential biomarker for osteoporosis. Sci. Rep. 2019, 9, 9752. [Google Scholar] [CrossRef]
- Butler, A.E.; Moin, A.S.M.; Sathyapalan, T.; Atkin, S.L. Components of the Complement Cascade Differ in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 12232. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Al-Qaissi, A.; Kilpatrick, E.S.; Dargham, S.R.; Atkin, S.L. Anti-Mullerian hormone measurement for the diagnosis of polycystic ovary syndrome. Clin. Endocrinol. 2017, 88, 258–262. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Al-Qaissi, A.; Kilpatrick, E.S.; Dargham, S.R.; Adaway, J.; Keevil, B.; Atkin, S.L. Salivary testosterone measurement in women with and without polycystic ovary syndrome. Sci. Rep. 2017, 7, 3589. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Sathyapalan, T.; Butler, A.E.; Atkin, S.L. Classical and alternate complement factor overexpression in non-obese weight matched women with polycystic ovary syndrome does not correlate with vitamin D. Front. Endocrinol. 2022, 13, 935750. [Google Scholar] [CrossRef]
- Cunningham, T.K.; Allgar, V.; Dargham, S.R.; Kilpatrick, E.; Sathyapalan, T.; Maguiness, S.; Rudin, H.R.M.; Ghani, N.M.A.; Latiff, A.; Atkin, S.L. Association of Vitamin D Metabolites with Embryo Development and Fertilization in Women with and Without PCOS Undergoing Subfertility Treatment. Front. Endocrinol. 2019, 10, 13. [Google Scholar] [CrossRef]
- Kahal, H.; Halama, A.; Aburima, A.; Bhagwat, A.M.; Butler, A.E.; Grauman, J.; Suhre, K.; Sathyapalan, T.; Atkin, S.L. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci. Rep. 2020, 10, 10233, Erratum in Sci. Rep. 2020, 10, 4750. [Google Scholar] [CrossRef]
- Kraemer, S.; Vaught, J.D.; Bock, C.; Gold, L.; Katilius, E.; Keeney, T.R.; Kim, N.; A Saccomano, N.; Wilcox, S.K.; Zichi, D.; et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS ONE 2011, 6, e26332. [Google Scholar] [CrossRef]
- Dincel, A.S.; Jørgensen, N.R. New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif. Tissue Int. 2023, 112, 243–257. [Google Scholar] [CrossRef]
- Lingaiah, S.; Morin-Papunen, L.; Piltonen, T.; Puurunen, J.; Sundström-Poromaa, I.; Stener-Victorin, E.; Bloigu, R.; Risteli, J.; Tapanainen, J.S. Bone markers in polycystic ovary syndrome: A multicentre study. Clin. Endocrinol. 2017, 87, 673–679. [Google Scholar] [CrossRef]
- Fasanya, H.O.; Siemann, D.W. The role of cathepsins in the growth of primary and secondary neoplasia in the bone. Osteology 2020, 1, 3–28. [Google Scholar] [CrossRef]

| (a) | ||
| Baseline Demographics | PCOS (n = 137) | Controls (n = 97) |
| Mean (SD) | Mean (SD) | |
| Age (Years) | 29.1 ± 6.1 | 29.6 ± 6.5 |
| BMI (Kg/m2) | 34.1 ± 7.5 | 26.7 ± 6.6 *** |
| Insulin (IU/mL) | 10.2 ± 6.1 | 6.2 ± 3.2 *** |
| HOMA-IR | 3.8 ± 0.6 | 1.6 ± 0.2 *** |
| Testosterone (nmol/L) | 1.6 ± 1.0 | 1.05 ± 0.48 *** |
| SHBG (nmol/L) | 42.5 ± 39.6 | 77.5 ± 78.4 *** |
| Free androgen index (FAI) | 4.5 ± 3.9 | 2.1 ± 1.4 *** |
| CRP (mg/L) | 4.4 ± 4.2 | 2.4 ± 3.9 *** |
| AMH (ng/mL) | 40 ± 31 | 18 ± 18 *** |
| (b) | ||
| PCOS (n = 24) | Control (n = 24) | |
| Age (years) | 31.0 ± 6.4 | 32.5 ± 4.1 |
| BMI (kg/m2) | 25.9 ± 1.8 | 24.8 ± 1.1 |
| Insulin (IU/mL) | 8.1 ± 4.7 | 7.7 ± 4.0 |
| HOMA-IR | 1.9 ± 1.6 | 1.8 ± 1.0 |
| Testosterone (nmol/L) | 1.4 ± 0.8 | 0.7 ± 0.4 *** |
| SHBG (nmol/L) | 71.7 ± 62.2 | 104 ± 80 |
| Free androgen index (FAI) | 4.1 ± 2.9 | 1.3 ± 0.5 ** |
| CRP (mg L−1) | 2.8 ± 2.6 | 2.3 ± 2.3 |
| AMH (ng/mL) | 57.0 ± 14.0 | 24.0 ± 13.0 ** |
| Control | PCOS | p Value | |
|---|---|---|---|
| Mean | Mean | ||
| Sclerostin | 17,492 ± 6445 | 16,633 ± 7141 | 0.34 |
| Dickkopf-related protein 1 | 21,810 ± 10,375 | 22,557 ± 11,375 | 0.60 |
| Glycogen synthase kinase-3 alpha/beta | 6307 ± 5672 | 5773 ± 4095 | 0.39 |
| Periostin | 5171 ± 1128 | 4853 ± 1292 | 0.05 |
| Tumor necrosis factor ligand superfamily member 11 (sRANKL) | 1419 ± 9359 | 519 ± 431 | 0.25 |
| Fibroblast growth factor 23 | 578 ± 378 | 579 ± 357 | 0.98 |
| Sphingosine kinase 1 | 3336 ± 3734 | 2918 ± 2416 | 0.29 |
| Sphingosine kinase 2 | 498 ± 432 | 468 ± 266 | 0.51 |
| Cathepsin Z | 4377 ± 1071 | 4600 ± 1058 | 0.11 |
| Cathepsin G | 869 ± 384 | 972 ± 551 | 0.11 |
| Cathepsin B | 1260 ± 382 | 1224 ± 257 | 0.39 |
| Cathepsin S | 903 ± 208 | 937 ± 224 | 0.30 |
| Cathepsin L | 1548 ± 498 | 1418 ± 22 | 0.05 |
| Cathepsin E | 1337 ± 2268 | 1190 ± 693 | 0.46 |
| Cathepsin D | 626 ± 434 | 837 ± 781 | 0.02 |
| Cathepsin H | 454 ± 148 | 510 ± 266 | 0.06 |
| Lysosomal protective protein | 6077 ± 2845 | 6037 ± 2392 | 0.91 |
| Parathyroid hormone | 2196 ± 76 | 2344 ± 878 | 0.18 |
| Osteocalcin | 3247 ± 9243 | 1438 ± 963 | 0.02 |
| Interleukin-1 beta | 3281 ± 2288 | 3185 ± 2207 | 0.74 |
| Protein | PCOS (n = 91) | Control (n = 19) | |
|---|---|---|---|
| Mean | Mean | p Value | |
| Sclerostin | 15,394 ± 7298 | 10,488 ± 8197 | 0.74 |
| Dickkopf-related protein 1 | 22,104 ± 11,749 | 19,114 ± 14,626 | 0.37 |
| Glycogen synthase kinase-3 alpha/beta | 5898 ± 4309 | 6123 ± 5343 | 0.98 |
| Periostin | 4382 ± 1485 | 2880 ± 1860 | 0.26 |
| Tumor necrosis factor ligand superfamily member 11 (sRANKL) | 479 ± 452 | 340 ± 185 | 0.59 |
| Fibroblast growth factor 23 | 572 ± 414 | 405 ± 267 | 0.62 |
| Sphingosine kinase 1 | 3017 ± 2591 | 2996 ± 2403 | 0.81 |
| Sphingosine kinase 2 | 415 ± 117 | 323 ± 208 | 0.21 |
| Cathepsin Z | 4488 ± 1355 | 3501 ± 2236 | 0.40 |
| Cathepsin G | 993 ± 643 | 854 ± 678 | 0.08 |
| Cathepsin B | 1172 ± 347 | 875 ± 5534 | 0.32 |
| Cathepsin S | 898 ± 300 | 721 ± 446 | 0.46 |
| Cathepsin L | 1281 ± 532 | 747±491 | 0.24 |
| Cathepsin E | 1149 ± 751 | 826 ± 462 | 0.72 |
| Cathepsin D | 786 ± 691 | 679 ± 412 | 0.24 |
| Cathepsin H | 489 ± 319 | 343 ± 217 | 0.35 |
| Lysosomal protective protein | 5922 ± 2551 | 4996 ± 3175 | 0.09 |
| Parathyroid hormone | 2200 ± 959 | 2069 ± 1569 | 0.77 |
| Osteocalcin | 1504 ± 1189 | 1204 ± 1015 | 0.60 |
| Interleukin-1 beta | 3214 ± 2823 | 2646 ± 1607 | 0.52 |
| Protein | BMI > 30 kg/m2 n = 91 | BMI < 26 kg/m2 n = 19 | |
|---|---|---|---|
| Mean | Mean | p Value | |
| Sclerostin | 15,259 ± 7609 | 7271 ± 6276 | 0.96 |
| Dickkopf-related protein 1 | 21,767 ± 12,202 | 11,290 ± 9267 | 0.33 |
| Glycogen synthase kinase-3 alpha/beta | 5918 ± 4383 | 3516 ± 2685 | 0.85 |
| Periostin | 4201 ± 1619 | 1849 ± 1178 | 0.001 |
| Tumor necrosis factor ligand superfamily member 11 (sRANKL) | 474 ± 464 | 278 ± 222 | 0.34 |
| Fibroblast growth factor 23 | 570 ± 425 | 303 ± 240 | 0.39 |
| Sphingosine kinase 1 | 3029 ± 2591 | 1854 ± 1386 | 0.85 |
| Sphingosine kinase 2 | 401 ± 129 | 175 ± 174 | 0.01 |
| Cathepsin Z | 4313 ± 1486 | 1921 ± 1875 | 0.14 |
| Cathepsin G | 950 ± 545 | 523 ± 414 | 0.88 |
| Cathepsin B | 1131 ± 376 | 498 ± 490 | 0.25 |
| Cathepsin S | 860 ± 321 | 393 ± 374 | 0.35 |
| Cathepsin L | 1186 ± 517 | 545 ± 504 | 0.001 |
| Cathepsin E | 1147 ± 774 | 586 ± 479 | 0.54 |
| Cathepsin D | 787 ± 706 | 481 ± 373 | 0.50 |
| Cathepsin H | 476 ± 329 | 250 ± 202 | 0.82 |
| Lysosomal protective protein | 5781 ± 2666 | 2807 ± 2457 | 0.31 |
| Parathyroid hormone | 2194 ± 992 | 1104 ± 952 | 0.37 |
| Osteocalcin | 1444 ± 1101 | 842 ± 641 | 0.52 |
| Interleukin-1 beta | 3195 ± 2886 | 1861 ± 1439 | 0.41 |
| Protein | BMI > 30 kg/m2 (n = 19) | BMI < 26 kg/m2 (n = 59) | |
|---|---|---|---|
| Mean | Mean | p Value | |
| Sclerostin | 6483 ± 5609 | 1249 ± 7484 | 0.91 |
| Dickkopf-related protein 1 | 1017 ± 8532 | 21,230 ± 13,762 | 0.33 |
| Glycogen synthase kinase-3 alpha/beta | 3179 ± 2552 | 5334 ± 3806 | 0.58 |
| Periostin | 1671 ± 1552 | 3583 ± 1900 | 0.33 |
| Tumor necrosis factor ligand superfamily member 11 (sRANKL) | 241 ± 202 | 418 ± 411 | 0.56 |
| Fibroblast growth factor 23 | 266 ± 221 | 474 ± 318 | 0.85 |
| Sphingosine kinase 1 | 1655 ± 1310 | 2679 ± 1936 | 0.67 |
| Sphingosine kinase 2 | 162 ± 153 | 332 ± 159 | 0.04 |
| Cathepsin Z | 1765 ± 1648 | 3715 ± 1885 | 0.02 |
| Cathepsin G | 467 ± 383 | 843 ± 519 | 0.11 |
| Cathepsin B | 453 ± 427 | 919 ± 448 | 0.34 |
| Cathepsin S | 359 ± 330 | 736 ± 367 | 0.06 |
| Cathepsin L | 483 ± 441 | 949 ± 528 | 0.29 |
| Cathepsin E | 515 ± 436 | 921 ± 498 | 0.68 |
| Cathepsin D | 410 ± 330 | 772 ± 843 | 0.43 |
| Cathepsin H | 219 ± 183 | 429 ± 414 | 0.93 |
| Lysosomal protective protein | 2529 ± 2221 | 5256 ± 2893 | 0.05 |
| Parathyroid hormone | 1003 ± 871 | 1988 ± 1147 | 0.09 |
| Osteocalcin | 745 ± 596 | 1087 ± 661 | 0.26 |
| Interleukin-1 beta | 1636 ± 1334 | 2626 ± 1285 | 0.42 |
| Difference in LS-Means (PCOS—Control) [95% CI] | p-Value | |
|---|---|---|
| Sclerostin | −400.39 [−2065.98, 1265.20] | 0.64 |
| Dickkopf-related protein 1 | 224.24 [−2820.80, 3269.28] | 0.88 |
| Glycogen synthase kinase-3 alpha/beta | 224.24 [−2820.80, 3269.28] | 0.88 |
| Periostin | −312.29 [−654.16, 29.58] | 0.07 |
| Tumor necrosis factor ligand superfamily member 11 | −937.89 [−2631.59, 755.81] | 0.28 |
| Fibroblast growth factor 23 | 16.22 [−73.61, 106.06] | 0.72 |
| Sphingosine kinase 1 | −385.19 [−1228.76, 458.38] | 0.37 |
| Sphingosine kinase 2 | −36.67 [−132.04, 58.70] | 0.45 |
| Cathepsin Z | 248.06 [−42.63, 538.75] | 0.09 |
| Cathepsin G | 105.77 [−32.82, 244.37] | 0.13 |
| Cathepsin B | −23.04 [−109.47, 63.39] | 0.60 |
| Cathepsin S | 25.97 [−32.82, 84.76] | 0.38 |
| Cathepsin L | −137.91 [−272.51, −3.32] | 0.04 |
| Cathepsin E | −150.94 [−586.94, 285.07] | 0.50 |
| Cathepsin D | 210.46 [36.23, 384.69] | 0.02 |
| Cathepsin H | 61.22 [−2.95, 125.39] | 0.06 |
| Cathepsin A | −55.92 [−771.52, 659.67] | 0.88 |
| Parathyroid hormone | 192.06 [−41.14, 425.25] | 0.11 |
| Osteocalcin | −1692.95 [−3373.63, −12.26] | 0.05 |
| Tumor necrosis factor ligand superfamily member 11 | −937.89 [−2631.59, 755.81] | 0.28 |
| Interleukin-1 beta | −92.86 [−727.43, 541.71] | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atkin, B.M.L.; Sathyapalan, T.; Dempsey, L.; Atkin, S.L.; Butler, A.E. Bone Marker Proteins in Women With and Without Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2025, 26, 10273. https://doi.org/10.3390/ijms262110273
Atkin BML, Sathyapalan T, Dempsey L, Atkin SL, Butler AE. Bone Marker Proteins in Women With and Without Polycystic Ovary Syndrome. International Journal of Molecular Sciences. 2025; 26(21):10273. https://doi.org/10.3390/ijms262110273
Chicago/Turabian StyleAtkin, Benjamin M. L., Thozhukat Sathyapalan, Laura Dempsey, Stephen L. Atkin, and Alexandra E. Butler. 2025. "Bone Marker Proteins in Women With and Without Polycystic Ovary Syndrome" International Journal of Molecular Sciences 26, no. 21: 10273. https://doi.org/10.3390/ijms262110273
APA StyleAtkin, B. M. L., Sathyapalan, T., Dempsey, L., Atkin, S. L., & Butler, A. E. (2025). Bone Marker Proteins in Women With and Without Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 26(21), 10273. https://doi.org/10.3390/ijms262110273

