Radioprotective Potential of a Polyphenol-Rich Extract Blend: Preclinical Evaluation in Female Balb/c Mice Exposed to Ionizing Radiation
Abstract
1. Introduction
2. Results
2.1. The Phytochemical Composition of Individual Extracts and Their Blend
2.2. Blood Analysis
2.3. Flow Cytometry Analysis
2.4. TNF-α Measurement in Bone Marrow Cells
2.5. Gene Expression Analysis
2.6. Assessment of Lipid Peroxidation
2.7. Histological Evaluation
3. Discussion
4. Materials and Methods
4.1. Investigational Blend
Identification and Quantification of Anthocyanins and Phenolic Acids in Individual Extract and Their Blend
4.2. In Vivo Mouse Model
4.3. Experimental Design
4.4. Cell Isolation from Spleen and Bone Marrow
4.5. Flow Cytometry Analysis
4.6. TNF-α Measurement in Bone Marrow
4.7. RNA Isolation and Gene Expression Analysis
4.8. Lipid Peroxidation
4.9. Histological Sample Preparation and Evaluation
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, J.; Bao, X.; Wang, H.; Bian, C.; Zhao, Q.; Jiang, X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front. Immunol. 2023, 14, 1247268. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Asaithamby, A. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Transl. Cancer Res. 2017, 6 (Suppl. 5), S822. [Google Scholar] [CrossRef]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef]
- Frane, N.; Bitterman, A. Radiation Safety and Protection; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Majeed, H.; Gupta, V. Adverse Effects of Radiation Therapy; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yu, Z.; Xu, C.; Song, B.; Zhang, S.; Chen, C.; Li, C.; Zhang, S. Tissue fibrosis induced by radiotherapy: Current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J. Transl. Med. 2023, 21, 708. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation Sources, Effects and Risks of Ionizing Radiation: UNSCEAR 2017 Report to the General Assembly with Scientific Annexes. UN 2018. Available online: https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2017_Report-CORR.pdf (accessed on 19 May 2025).
- Tang, F.R.; Loganovsky, K. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ. Radioact. 2018, 192, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Mabro, M.; Faivre, S.; Raymond, E. A risk-benefit assessment of amifostine in cytoprotection. Drug Saf. 1999, 21, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Prades-Sagarra, È.; Yaromina, A.; Dubois, L.J. Polyphenols as potential protectors against radiation-induced adverse effects in patients with thoracic cancer. Cancers 2023, 15, 2412. [Google Scholar] [CrossRef]
- Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S.; et al. Radioprotective role of natural polyphenols: From sources to mechanisms. Anti-Cancer Agents Med. Chem. 2022, 22, 30–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Li, Z.; Wu, H.; Zou, B.; Xu, Y. Exploring natural products as radioprotective agents for cancer therapy: Mechanisms, challenges, and opportunities. Cancers 2023, 15, 3585. [Google Scholar] [CrossRef]
- Zhai, S.; Xu, H.; Xue, J.; Gan, L.; Gao, F.; Hu, L. Resveratrol reduces radiation-induced liver damage and fibrosis, and may be related to inhibiting cellular aging and reducing inflammation. Innate Immun. 2025, 31, 17534259251352623. [Google Scholar] [CrossRef]
- Saloua, K.S.; Alansari, R.M. Impact of ionizing radiation and low-energy electrons on DNA functionality: Radioprotection and radiosensitization potential of natural products. J. Genet. Eng. Biotechnol. 2025, 23, 100501. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, L.; Xu, H.; Xing, X.; Wu, W.; Feng, Y.; Ma, L.; Zhou, Z.; Li, B.; He, Y. Research on the mechanisms of natural products in radiation protection. Front. Bioeng. Biotechnol. 2025, 13, 1640682. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Ma, F.; Yang, X.; Cheng, C.; Yao, L. Protective effect of anthocyanin from Lonicera caerulea var. edulis on radiation-induced damage in mice. Int. J. Mol. Sci. 2012, 13, 11773–11782. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Smeriglio, A.; Trombetta, D.; Nieddu, M.; Piras, F.; Sogos, V.; Rosa, A. Chemical composition, nutritional, and biological properties of extracts obtained with different techniques from Aronia melanocarpa berries. Molecules 2024, 29, 2577. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.G.; Avula, B.; Katragunta, K.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Elderberry extracts: Characterization of the polyphenolic chemical composition, quality consistency, safety, adulteration, and attenuation of oxidative stress-and inflammation-induced health disorders. Molecules 2023, 28, 3148. [Google Scholar] [CrossRef] [PubMed]
- Kierońska, E.; Skoczylas, J.; Dziadek, K.; Pomietło, U.; Piątkowska, E.; Kopeć, A. Basic Chemical Composition, Selected Polyphenolic Profile and Antioxidant Activity in Various Types of Currant (Ribes spp.) Fruits. Appl. Sci. 2024, 14, 8882. [Google Scholar] [CrossRef]
- Chmielewska-Kassassir, M.; Sobierajska, K.; Ciszewski, W.M.; Bukowiecka-Matusiak, M.; Szczesna, D.; Burzynska-Pedziwiatr, I.; Wiczkowski, W.; Wagner, W.; Wozniak, L.A. Polyphenol extract from evening primrose (Oenothera paradoxa) inhibits invasion properties of human malignant pleural mesothelioma cells. Biomolecules 2020, 10, 1574. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Antioxidative and immunomodulating properties of Aronia melanocarpa extract rich in anthocyanins. Plants 2022, 11, 3333. [Google Scholar] [CrossRef]
- Bonarska-Kujawa, D.; Cyboran, S.; Żyłka, R.; Oszmiański, J.; Kleszczyńska, H. Biological activity of blackcurrant extracts (Ribes nigrum L.) in relation to erythrocyte membranes. Biomed Res. Int. 2014, 2014, 783059. [Google Scholar] [CrossRef]
- Sałaga, M.; Lewandowska, U.; Sosnowska, D.; Zakrzewski, P.K.; Cygankiewicz, A.I.; Piechota-Polańczyk, A.; Sobczak, M.; Mosinska, P.; Chen, C.; Krajewska, W.M.; et al. Polyphenol extract from evening primrose pomace alleviates experimental colitis after intracolonic and oral administration in mice. Naunyn-Schmiedeb. Arch. Pharmacol. 2014, 387, 1069–1078. [Google Scholar] [CrossRef]
- Nikolova, G.D.; Karamalakova, Y.D.; Momchilova, S.; Kancheva, V.; Denev, P.; Tolekova, A.; Gadjeva, V.G. Protective effect of gamma-irradiated extract of Aronia Melanocarpa, L. in the gastro-intestinal tract of healthy mice models. Bulg. Chem. Comm. 2020, 52, 84–88. [Google Scholar]
- Yamamoto, A.; Hirouchi, T.; Kawamorita, S.; Nakashima, K.; Sugiyama, A.; Kato, Y. Radioprotective activity of blackcurrant extract evaluated by in vitro micronucleus and gene mutation assays in TK6 human lymphoblastoid cells. Genes Environ. 2017, 39, 22. [Google Scholar] [CrossRef]
- Belli, M.; Tabocchini, M.A. Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int. J. Mol. Sci. 2020, 21, 5993. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Lee, S.; Kang, H.; Kim, J.; Kim, K.; Youn, H.; Jin, Y.W.; Seo, S.; Youn, B. Organ-specific effects of low dose radiation exposure: A comprehensive review. Front. Genet. 2020, 11, 566244. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef]
- Li, K.; Ji, M.; Sun, X.; Shan, J.; Su, G. Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Curr. Nutr. Rep. 2024, 13, 884–895. [Google Scholar] [CrossRef]
- Fan, Z.L.; Wang, Z.Y.; Zuo, L.L.; Tian, S.Q. Protective effect of anthocyanins from lingonberry on radiation-induced damages. Int. J. Environ. Res. Public Health 2012, 9, 4732–4743. [Google Scholar] [CrossRef]
- Shao, L.; Luo, Y.; Zhou, D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid. Redox Signal. 2014, 20, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.; Collins, A.; Griffith, K.; Ghosh, S.; Wong, N.; Wang, X.; Grant, A.C.; Krambs, J.; Link, D.; Dennis, E.H.; et al. Radiation induces iatrogenic immunosuppression by indirectly affecting hematopoiesis in bone marrow. Oncotarget 2020, 11, 1681. [Google Scholar] [CrossRef]
- Dutta, A.; Dahiya, A.; Verma, S. Quercetin-3-rutinoside protects against gamma radiation inflicted hematopoietic dysfunction by regulating oxidative, inflammatory, and apoptotic mediators in mouse spleen and bone marrow. Free Radic. Res. 2021, 55, 230–245. [Google Scholar] [CrossRef] [PubMed]
- El-Desouky, W.; Hanafi, A.; Abbas, M.M. Radioprotective effect of green tea and grape seed extracts mixture on gamma irradiation induced immune suppression in male albino rats. Int. J. Radiat. Biol. 2017, 93, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Stoecklein, V.M.; Osuka, A.; Ishikawa, S.; Lederer, M.R.; Wanke-Jellinek, L.; Lederer, J.A. Radiation exposure induces inflammasome pathway activation in immune cells. J. Immunol. 2015, 194, 1178–1189. [Google Scholar] [CrossRef]
- Loinard, C.; Benadjaoud, M.A.; Lhomme, B.; Flamant, S.; Baijer, J.; Tamarat, R. Inflammatory cells dynamics control neovascularization and tissue healing after localized radiation induced injury in mice. Commun. Biol. 2023, 6, 571. [Google Scholar] [CrossRef]
- Semaeva, E.; Tenstad, O.; Skavland, J.; Enger, M.; Iversen, P.O.; Gjertsen, B.T.; Wiig, H. Access to the spleen microenvironment through lymph shows local cytokine production, increased cell flux, and altered signaling of immune cells during lipopolysaccharide-induced acute inflammation. J. Immunol. 2010, 184, 4547–4556. [Google Scholar] [CrossRef]
- Li, T.; Cao, Y.; Li, B.; Dai, R. The biological effects of radiation-induced liver damage and its natural protective medicine. Prog. Biophys. Mol. Biol. 2021, 167, 87–95. [Google Scholar] [CrossRef]
- Klaus, R.; Niyazi, M.; Lange-Sperandio, B. Radiation-induced kidney toxicity: Molecular and cellular pathogenesis. Radiat. Oncol. 2021, 16, 43. [Google Scholar] [CrossRef]
- Ross, D.; Siegel, D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021, 41, 101950. [Google Scholar] [CrossRef]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Bil, P.; Ciesielska, S.; Jaksik, R.; Rzeszowska-Wolny, J. Circuits regulating superoxide and nitric oxide production and neutralization in different cell types: Expression of participating genes and changes induced by ionizing radiation. Antioxidants 2020, 9, 701. [Google Scholar] [CrossRef]
- Gaur, A. Ameliorating effects of genestein: Study on mice liver glutathione and lipid peroxidation after irradiation. Iran. J. Radiat. Res. 2010, 7, 187–199. [Google Scholar]
- Baselet, B.; Sonveaux, P.; Baatout, S.; Aerts, A. Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell. Mol. Life Sci. 2019, 76, 699–728. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Pallatt, S.; Banerjee, A.; Banerjee, A.G.; Pathak, R.; Pathak, S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024, 13, 1560. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; et al. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med. 2013, 54, 40–50. [Google Scholar] [CrossRef]
- Altomare, A.; Fiore, M.; D’Ercole, G.; Imperia, E.; Nicolosi, R.M.; Della Posta, S.; Pasqua, G.; Cicala, M.; De Gara, L.; Ramella, S.; et al. Protective role of natural compounds under radiation-induced injury. Nutrients 2022, 14, 5374. [Google Scholar] [CrossRef] [PubMed]
- Hamieda, S.F.; Saied, M.; Abd-El-Nour, K.N.; Hassan, A.I. Radioprotective potential of pomegranate peel extract against gamma irradiation-induced hazards. Bull. Natl. Res. Cent. 2024, 48, 104. [Google Scholar] [CrossRef]
- Yi, J.; Chen, C.; Liu, X.; Kang, Q.; Hao, L.; Huang, J.; Lu, J. Radioprotection of EGCG based on immunoregulatory effect and antioxidant activity against 60Coγ radiation-induced injury in mice. Food Chem. Toxicol. 2020, 135, 111051. [Google Scholar] [CrossRef]
- Baran, M.; Yay, A.; Onder, G.O.; Canturk Tan, F.; Yalcin, B.; Balcioglu, E.; Yıldız, O.G. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int. J. Radiat. Biol. 2022, 98, 1473–1483. [Google Scholar] [CrossRef]
Compound | Retention Time [min] | Main Botanical Source in Blend | Relative% of Anthocyanins (est.) | Estimated Content in Blend (% m/m, Based on 20.4%) |
---|---|---|---|---|
C-3,5-di-Glu | 7.561 | Elderberry | 4.35% | 0.89% |
C-3-Sam-5-Glu | Elderberry | |||
D-3-Glu | 8.017 | Blackcurrant | 4.40% | 0.90% |
D-3-Rut | 8.245 | Blackcurrant | 5.11% | 1.04% |
C-3-Gal | 8.509 | Chokeberry | 17.41% | 3.55% |
C-3-Sam | 8.733 | Elderberry | 34.33% | 7.01% |
C-3-Glu | 8.852 | Elderberry + Blackcurrant | 24.77% | 5.05% |
C-3-Rut | 9.045 | Blackcurrant | 3.15% | 0.64% |
C-3-Ara | 9.225 | Chokeberry | 5.45% | 1.11% |
C-3-Xyl | 10.044 | Chokeberry | 1.03% | 0.21% |
Total | 100.00% | 20.40% |
Compound | Total Phenolic Content% (m/m) |
---|---|
Chokeberry | 70.86% |
Elderberry | 46.58% |
Blackcurrant | 47.11% |
Evening primrose | 50.99% |
The blend | 54.74% |
Gene | Primer Forward | Primer Reverse |
---|---|---|
Tbp | CAAACCCAGAATTGTTCTCCTT | ATGTGGTCTTCCTGAATCCCT |
Actb | CACCCGCGAGCACAGCTTCTTT | TTGTCGACGACCAGCGCAGCGATA |
Nrf2 | CGAGATATACGCAGGAGAGGTAAGA | GCTCGACAATGTTCTCCAGCT |
Nqo1 | TTCTCTGGCCGATTCAGAG | GGCTGCTTGGAGCAAAATAG |
Nox4 | TGTTGGGCCTAGGATTGTGTT | AGGGACCTTCTGTGATCCTCG |
Ho-1 | CGTGCTCGAATGAACACTCT | GGAAGCTGAGAGTGAGGACC |
Gpx1 | GACACCAGGAGAATGGCAAGA | ACCATTCACTTCGCACTTCTCA |
Cat | AGCGACCAGATGAAGCAGTG | TCCGCTCTCTGTCAAAGTGTG |
Sod1 | GGTGAACCAGTTGTGTTGTCAGG | ATGAGGTCCTGCACTGGTACAG |
Sod2 | TAACGCGCAGATCATGCAGCTG | AGGCTGAAGAGCGACCTGAGTT |
Sirt1 | GGAGCAGATTAGTAAGCGGCTTG | GTTACTGCCACAGGAACTAGAGG |
Nf-κB p65 | TGACCCCTGTCCTCTCACATCCG | CAGCTCCCAGAGTTCCGGTT |
Il-1β | TCGTGCTGTCGGACCCATAT | GGTTCTCCTTGTACAAAGCTCATG |
Il-6 | CTACCCCAATTTCCAATGCT | ACCACAGTGAGGAATGTCCA |
Casp1 | GGCACATTTCCAGGACTGACTG | GCAAGACGTGTACGAGTGGTTG |
Hmgb-1 | GGGTCACATGGATTATTAGTGTGT | CAGGGCATGTGGACAAAA |
Icam-1 | CCATCACCGTGTATTCGTTTCC | CTGGCGGCTCAGTATCTCCTC |
Ifnγ | CTGGCAGGATGATTCTGCTGG | GCATACGACAGGGTTCAAGTTAT |
Casp3 | GGAGTCTGACTGGAAAGCCGAA | CTTCTGGCAAGCCATCTCCTCA |
Bax | TGCAGAGGATGATTGCTGAC | GATCAGCTCGGGCACTTTAG |
Bcl-2 | CTGGCATCTTCTCCTTCCAG | GACGGTAGCGACGAGAGAAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niska, K.; Bloch, P.; Kowalczyk, P.K.; Zima, K.; Gramatyka, M.; Cichoń, T.; Dobkowski, M.; Lemke, K.; Khaidakov, B. Radioprotective Potential of a Polyphenol-Rich Extract Blend: Preclinical Evaluation in Female Balb/c Mice Exposed to Ionizing Radiation. Int. J. Mol. Sci. 2025, 26, 9972. https://doi.org/10.3390/ijms26209972
Niska K, Bloch P, Kowalczyk PK, Zima K, Gramatyka M, Cichoń T, Dobkowski M, Lemke K, Khaidakov B. Radioprotective Potential of a Polyphenol-Rich Extract Blend: Preclinical Evaluation in Female Balb/c Mice Exposed to Ionizing Radiation. International Journal of Molecular Sciences. 2025; 26(20):9972. https://doi.org/10.3390/ijms26209972
Chicago/Turabian StyleNiska, Karolina, Patrycja Bloch, Paulina Karolina Kowalczyk, Katarzyna Zima, Michalina Gramatyka, Tomasz Cichoń, Michał Dobkowski, Krzysztof Lemke, and Barbara Khaidakov. 2025. "Radioprotective Potential of a Polyphenol-Rich Extract Blend: Preclinical Evaluation in Female Balb/c Mice Exposed to Ionizing Radiation" International Journal of Molecular Sciences 26, no. 20: 9972. https://doi.org/10.3390/ijms26209972
APA StyleNiska, K., Bloch, P., Kowalczyk, P. K., Zima, K., Gramatyka, M., Cichoń, T., Dobkowski, M., Lemke, K., & Khaidakov, B. (2025). Radioprotective Potential of a Polyphenol-Rich Extract Blend: Preclinical Evaluation in Female Balb/c Mice Exposed to Ionizing Radiation. International Journal of Molecular Sciences, 26(20), 9972. https://doi.org/10.3390/ijms26209972