Harnessing Microbial Consortia for Efficient Keratinous Biomass Biotransformation
Abstract
1. Introduction
2. Potential Economic Significance of Keratinous Waste
3. Traditional Approaches of Keratinous Biomass Valorization
4. Biodecomposition of Keratinous Biomass: Potential Benefits
Hydrolysate Source | Microbial Strain | Composition | Use | Application Potential | Functional Attributes | References |
---|---|---|---|---|---|---|
Chicken feathers | Bacillus Pumilus AR57 | ND | Bio-stimulant Bio-fertilizer | Agriculture | To promote plant growth, soil fertility and soil microbiota. | [54] |
Chicken feathers | Streptomyces tanashiensis RCM-SSR-6 Bacillus sp. RCM-SSR-102 | Bioactive peptides | Antioxidant Enzyme inhibitor | Health | To inhibit angiotensin-converting enzyme (ACE), lipoxygenase, and xanthine oxidase. | [49] |
Chicken feathers | Bacillus licheniformis AS-S24-1 | Nitrogen Amino acids | Organic fertilizer | Agriculture | To enhance the growth of Bengal gram seed germination and promote the soil microbial community. | [55] |
Porcine bristles | Amycolatopsis keratiniphila D2 | Peptides Amino acids | Feed additive | Feed industry | To serve as an alternative protein source in animal feed formulation. | [56] |
Chicken feathers | Bacillus sp. CL18 | ND | Antioxidant Enzyme inhibitor | Health | Displays free radical scavenging activity and inhibits angiotensin I-converting enzyme and dipeptidyl peptidase-IV activities. | [57] |
Chicken feathers | Bacillus subtilis | Amino acids | Feed additive | Feed industry | To provide an alternative protein source for animal feed. | [58] |
Chicken feathers | Bacillus licheniformis MW45 Bacillus paralicheniformis MW48 | Nitrogen | Bio-fertilizer | Agriculture | To promote the germination and growth of spinach. | [59] |
Chicken feathers | Bacillus pumilus AR57 | Amino acids | Microbial media | Biomanufacturing | To serve as an alternative source of peptone for growing microbial strains. | [60] |
Chicken feathers | Bacillus cytotoxicus LT-1 Bacillus cytotoxicus OII-15 | ND | Antioxidant | Health | Performs free radical-scavenging activity and displays Fe3+ reducing potential. | [61] |
Chicken feathers | Bacillus licheniformis BBE11-1 Stenotrophomonas maltophilia BBE11-1 | Amino acids Peptides | Antioxidant Feed additive | Health Feed industry | Demonstrates antioxidant activity and possesses soluble proteins ideal for animal feed formulation. | [62] |
Chicken feathers | Bacillus methylotrophicus gh1 | ND | Bio-fertilizer Bio-stimulant | Agriculture | Increases the fresh and dry weight of lettuce’s shoot and root. | [63] |
Chicken feathers | Streptomyces netropsis A-ICA Bacillus subtilis ALICA | ND | Antioxidant Feed additive | Feed industry | Exhibits an excellent antioxidant property. | [64] |
Chicken feathers | S. maltophilia K279a Bacillus cereus JF70 Acinetobacter sp. PD12 | Organic carbon Nitrogen Phosphates Potash | Organic fertilizer | Agriculture | Promotes plant growth and development. | [65] |
Chicken feathers | Streptomyces sp. RCM-SSR-6 | Indole-3-acetic acid | Organic fertilizer Phyto-stimulator Biocontrol agent | Agriculture | Enhances the germination of garden pea seed. | [66] |
Chicken feathers | Bacillus sp. B4 | Amino acids | Feed supplement | Feed industry | Serves as a functional supplement for animal production. | [67] |
Chicken feathers | Bacillus safensis Aquamicrobium defluvii | Amino acids Nitrogen | Biofertilizer | Feed industry | promotes the seed germination and vigour index of jute mallow, Cockscomb and Pendant amaranth. | [68] |
Goat hair | Bacillus licheniformis ER-15 | Melanin | Pigment | Cosmetics industry | Sustainable production of personal care products. | [69] |
Feathers | Bacillus amyloliquefaciens CU33 | Amino acids | Feed additive | Feed industry | Promoting the broiler growth by enhancing the duodenal morphology. | [70] |
Chicken feathers | Pedobacter sp. 3.14.7 | Amino acids | Feed supplement | Feed industry | Displayed iron-reducing power, free radical and nitric oxide scavenging activities. | [71] |
Feathers Wool | Trichoderma asperellum | indole-3-acetic acid Nitrogen | Bio-stimulant Organic fertilizer | Agriculture | Enhancing seed germination and the growth of tomato plants. | [51] |
Feathers | Cladosporium sp. | Indole-3-acetic acid Ammonium | Bio-fertilizer | Agriculture | Supports the growth performance in tomato seedlings. | [72] |
5. Axenic Culture in Keratin Degradation
6. Microbial Consortia in Keratinous Biomass Degradation
6.1. Natural Microbial Consortia in Keratinous Biomass Degradation
6.2. Artificial Microbial Consortia in Keratinous Biomass Decomposition
7. Participation of Ancillary Enzymes in Keratinous Biomass Decomposition
8. Limitations and Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CE | Circular economy |
AMC | Artificial microbial consortia |
NMC | Natural microbial consortia |
SS | Single strain |
MC | Microbial consortia |
ACE | Angiotensin-converting enzyme |
SMC | Simplified microbial consortia |
NPK | Nitrogen phosphorus potassium |
References
- Anbesaw, M.S. Bioconversion of keratin wastes using keratinolytic microorganisms to generate value-added products. Int. J. Biomater. 2022, 2022, 2048031. [Google Scholar] [CrossRef]
- Ossai, I.C.; Shahul Hamid, F.; Hassan, A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Manag. 2022, 151, 81–104. [Google Scholar] [CrossRef]
- Deng, R.; Wang, X.; Li, R. Dermatophyte infection: From fungal pathogenicity to host immune responses. Front. Immunol. 2023, 14, 1285887. [Google Scholar] [CrossRef] [PubMed]
- Rajput, N.; Sharma, H.; Bajwa, J. Potential role of keratinase in the environmental remediation. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Okoh, A.I.; Nwodo, U.U. Bacillus sp. FPF-1 Produced Keratinase with High Potential for Chicken Feather Degradation. Molecules 2020, 25, 1505. [Google Scholar] [CrossRef]
- Gurav, R.G.; Jadhav, J.P. Biodegradation of keratinous waste by Chryseobacterium sp. RBT isolated from soil contaminated with poultry waste. J. Basic Microbiol. 2013, 53, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Barman, N.C.; Zohora, F.T.; Das, K.C.; Mowla, M.G.; Banu, N.A.; Salimullah, M.; Hashem, A. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 2017, 7, 181. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Park, K.-H.; Oh, D.-J.; Hwang, D.-Y.; Kim, H.-S.; Lee, C.-Y.; Son, H.-J. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5. Polym. Degrad. Stab. 2010, 95, 1969–1977. [Google Scholar] [CrossRef]
- Lange, L.; Huang, Y.; Busk, P.K. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 2016, 100, 2083–2096. [Google Scholar] [CrossRef]
- Qiu, J.; Wilkens, C.; Barrett, K.; Meyer, A.S. Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol. Adv. 2020, 44, 107607. [Google Scholar] [CrossRef]
- Lu, J.; Yang, Z.; Xu, W.; Shi, X.; Guo, R. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk. J. Environ. Sci. 2019, 78, 118–126. [Google Scholar] [CrossRef]
- Vu, V.N.H.; Kohári-Farkas, C.; Filep, R.; Laszlovszky, G.; Ban, M.T.; Bujna, E.; Gupta, V.K.; Nguyen, Q.D. Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation. Biofuel Res. J. 2023, 10, 1890–1900. [Google Scholar] [CrossRef]
- Rajeswari, G.; Kumar, V.; Jacob, S. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification. Enzyme Microb. Technol. 2024, 174, 110393. [Google Scholar] [CrossRef]
- Lara-Moreno, A.; Morillo, E.; Merchán, F.; Villaverde, J. A comprehensive feasibility study of effectiveness and environmental impact of PAH bioremediation using an indigenous microbial degrader consortium and a novel strain Stenotrophomonas maltophilia CPHE1 isolated from an industrial polluted soil. J. Environ. Manag. 2021, 289, 112512. [Google Scholar] [CrossRef]
- Rathour, R.; Jain, K.; Madamwar, D.; Desai, C. Microaerophilic biodegradation of raw textile effluent by synergistic activity of bacterial community DR4. J. Environ. Manag. 2019, 250, 109549. [Google Scholar] [CrossRef]
- Kang, D.; Herschend, J.; Al-Soud, W.A.; Mortensen, M.S.; Gonzalo, M.; Jacquiod, S.; Sørensen, S.J. Enrichment and characterization of an environmental microbial consortium displaying efficient keratinolytic activity. Bioresour. Technol. 2018, 270, 303–310. [Google Scholar] [CrossRef]
- Nasipuri, P.; Herschend, J.; Brejnrod, A.D.; Madsen, J.S.; Espersen, R.; Svensson, B.; Burmølle, M.; Jacquiod, S.; Sørensen, S.J. Community-intrinsic properties enhance keratin degradation from bacterial consortia. PLoS ONE 2020, 15, e0228108. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Jacquiod, S.; Herschend, J.; Wei, S.; Nesme, J.; Sørensen, S.J. Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front. Microbiol. 2020, 10, 3010. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Huang, Y.; Nesme, J.; Herschend, J.; Jacquiod, S.; Kot, W.; Hansen, L.H.; Lange, L.; Sørensen, S.J. Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms. Sci. Total Environ. 2021, 761, 143281. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, A.; Das, N.; Nath, T.; Langthasa, M.; Pandey, P.; Kumar, V.; Choure, K.; Kumar, S.; Pandey, P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. Environ. Sci. Pollut. Res. 2024, 31, 57478–57507. [Google Scholar] [CrossRef]
- Thadiyan, V.; Sharma, V.; Gupta, R. Keratinase and its diverse applications. 3 Biotech 2025, 15, 151. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, I.; Kango, N. Harnessing Bacillus keratinases for sustainable keratin waste valorization: A current appraisal. Crit. Rev. Biotechnol. 2025, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Abol-Fotouh, D.; Omer, A.M.; Tamer, T.M.; Abbas, E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int. J. Biol. Macromol. 2020, 154, 567–583. [Google Scholar] [CrossRef] [PubMed]
- de Menezes, C.L.A.; Santos, R.d.C.; Santos, M.V.; Boscolo, M.; da Silva, R.; Gomes, E.; da Silva, R.R. Industrial sustainability of microbial keratinases: Production and potential applications. World J. Microbiol. Biotechnol. 2021, 37, 86. [Google Scholar] [CrossRef] [PubMed]
- Sypka, M.; Jodłowska, I.; Białkowska, A.M. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021, 11, 1900. [Google Scholar] [CrossRef]
- Moktip, T.; Salaipeth, L.; Cope, A.E.; Taherzadeh, M.J.; Watanabe, T.; Phitsuwan, P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem. Res. Int. 2025, 2025, 6619273. [Google Scholar] [CrossRef]
- Vikash, V.L.; Kamini, N.R.; Ponesakki, G.; Anandasadagopan, S.K. Keratinous bioresources: Their generation, microbial degradation, and value enhancement for biotechnological applications. World J. Microbiol. Biotechnol. 2025, 41, 118. [Google Scholar] [CrossRef]
- Mengistu, A.; Andualem, G.; Abewaa, M.; Berhane, D.; Angassa, K.; Mamuye, W.; Dinku, A.; Bekele, N. Integrated circular economic approach of solid waste management and resource recovery: Poultry feather-based keratin extraction and its application in leather processing. Results Eng. 2024, 23, 102578. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, J.; Bai, W. A review of poultry waste-to-wealth: Technological progress, modeling and simulation studies, and economic- environmental and social sustainability. Sustainability 2023, 15, 5620. [Google Scholar] [CrossRef]
- Shestakova, A.; Timorshina, S.; Osmolovskiy, A. Biodegradation of keratin-rich husbandry waste as a path to sustainable agriculture. Sustainability 2021, 13, 8691. [Google Scholar] [CrossRef]
- Ghaffari-Bohlouli, P.; Jafari, H.; Taebnia, N.; Abedi, A.; Amirsadeghi, A.; Niknezhad, S.V.; Alimoradi, H.; Jafarzadeh, S.; Mirzaei, M.; Nie, L.; et al. Protein by-products: Composition, extraction, and biomedical applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9436–9481. [Google Scholar] [CrossRef]
- Banasaz, S.; Ferraro, V. Keratin from animal by-products: Structure, characterization, extraction and application—A review. Polymers 2024, 16, 1999. [Google Scholar] [CrossRef]
- Salehizadeh, M.; Tajabadi Ebrahimi, M.; Mousavi, S.N.; Sepahi, A.A.; Orooji, R. Transforming Feather Meal Into a High-Performance Feed for Broilers. Vet. Med. Sci. 2025, 11, e70199. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, R.; Zhang, Y.; Wu, L. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: High density steam flash-explosion. Green Chem. 2012, 14, 3352–3360. [Google Scholar] [CrossRef]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017, 68, 626–635. [Google Scholar] [CrossRef]
- Mpaka, L.; Nnolim, N.E.; Nwodo, U.U. Genome Mining of Chryseobacterium proteolyticum for Keratinolytic Properties and Prospective Applications. J. Pure Appl. Microbiol. 2025, 19, 2001–2012. [Google Scholar] [CrossRef]
- Maurya, S.D.; Singh, A. Application and future perspectives of keratin protein extracted from waste chicken feather: A review. Sustain. Chem. Eng. 2024, 5, 31–45. [Google Scholar] [CrossRef]
- Perța-Crișan, S.; Ursachi, C.Ș.; Gavrilaș, S.; Oancea, F.; Munteanu, F.-D. Closing the loop with keratin-rich fibrous materials. Polymers 2021, 13, 1896. [Google Scholar] [CrossRef]
- Habe, H.; Sato, Y.; Kirimura, K. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass. Appl. Microbiol. Biotechnol. 2020, 104, 7767–7775. [Google Scholar] [CrossRef]
- Khumalo, M.; Sithole, B.; Tesfaye, T. Valorisation of waste chicken feathers: Optimisation of keratin extraction from waste chicken feathers by sodium bisulphite, sodium dodecyl sulphate and urea. J. Environ. Manag. 2020, 262, 110329. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, A.; Kumar, A.; Kee, C.G.; Kamyab, H.; Saufi, S.M. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean. Technol. Environ. Policy 2018, 20, 2157–2167. [Google Scholar] [CrossRef]
- Mpaka, L.; Nnolim, N.E.; Nwodo, U.U. Microbial Keratinolysis: Eco-Friendly Valorisation of Keratinous Waste into Functional Peptides. Microorganisms 2025, 13, 2270. [Google Scholar] [CrossRef]
- Rothman, D.L.; Moore, P.B.; Shulman, R.G. The impact of metabolism on the adaptation of organisms to environmental change. Front. Cell Dev. Biol. 2023, 11, 1197226. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, R. Hydrolyzing proficiency of keratinases in feather degradation. Indian J. Microbiol. 2014, 54, 466–470. [Google Scholar] [CrossRef]
- Kokwe, L.; Nnolim, N.E.; Ezeogu, L.I.; Sithole, B.; Nwodo, U.U. Thermoactive metallo-keratinase from Bacillus sp. NFH5: Characterization, structural elucidation, and potential application as detergent additive. Heliyon 2023, 9, e13635. [Google Scholar] [CrossRef] [PubMed]
- Alhomaidi, E. A sustainable exploitation of high-protein feather waste for production of cold-adapted keratinase by Penicillium lanosocoeruleum KSA-55. Electron. J. Biotechnol. 2025, 74, 1–10. [Google Scholar] [CrossRef]
- Abdel-Latif, A.M.A.; Abo-Dahab, N.F.; Moharram, A.M.; Hassane, A.M.A.; Al-Bedak, O.A.M. Sustainable exploitation of high-protein feather waste for green production of cold-adapted and detergent-stable keratinase by Penicillium oxalicum AUMC 15084. World J. Microbiol. Biotechnol. 2025, 41, 190. [Google Scholar] [CrossRef]
- Hendrick, Q.; Nnolim, N.E.; Nwodo, U.U. Chryseobacterium cucumeris FHN1 keratinolytic enzyme valorized chicken feathers to amino acids with polar, anionic and non-polar imino side chain characteristics. Biocatal. Agric. Biotechnol. 2021, 35, 102109. [Google Scholar] [CrossRef]
- Kshetri, P.; Singh, P.L.; Chanu, S.B.; Singh, T.S.; Rajiv, C.; Tamreihao, K.; Singh, H.N.; Chongtham, T.; Devi, A.K.; Sharma, S.K.; et al. Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electron. J. Biotechnol. 2022, 60, 11–18. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, M.; Wu, L.; Yang, Y.; Sun, Y.; Wang, Q.; Gao, X. Bioconversion of feather waste into bioactive nutrients in water by Bacillus licheniformis WHU. Appl. Microbiol. Biotechnol. 2023, 107, 7055–7070. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.; Raut, I.; Arsene, M.L.; Capra, L.; Gurban, A.M.; Doni, M.; Jecu, L. Applications of fungal strains with keratin-degrading and plant growth promoting characteristics. Agronomy 2019, 9, 543. [Google Scholar] [CrossRef]
- Alahyaribeik, S.; Nazarpour, M.; Tabandeh, F.; Honarbakhsh, S.; Sharifi, S.D. Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Trop. Anim. Health Prod. 2022, 54, 271. [Google Scholar] [CrossRef]
- da Cunha, I.C.; Brandelli, A.; Braga, A.R.C.; Sala, L.; Kalil, S.J. Feather meal as a source of peptides with antioxidant activity from enzymatic hydrolysis. Waste Biomass Valorization 2023, 14, 421–430. [Google Scholar] [CrossRef]
- Jagadeesan, Y.; Meenakshisundaram, S.; Raja, K.; Balaiah, A. Sustainable and efficient-recycling approach of chicken feather waste into liquid protein hydrolysate with biostimulant efficacy on plant, soil fertility and soil microbial consortium: A perspective to promote the circular economy. Process Saf. Environ. Prot. 2023, 170, 573–583. [Google Scholar] [CrossRef]
- Rai, S.K.; Mukherjee, A.K. Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal. Agric. Biotechnol. 2015, 4, 632–644. [Google Scholar] [CrossRef]
- Falco, F.C.; Espersen, R.; Svensson, B.; Gernaey, K.V.; Eliasson Lantz, A. An integrated strategy for the effective production of bristle protein hydrolysate by the keratinolytic filamentous bacterium Amycolatopsis keratiniphila D2. Waste Manag. 2019, 89, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, K.; Welter, N.; Daroit, D.J. Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochem. 2018, 75, 1–9. [Google Scholar] [CrossRef]
- Ji, X.; Yang, J.; Chen, J.; Zhang, J.; Peng, Z. A synergistic catalytic system of keratinase and disulfide reductase for the bioconversion of feather wastes to feed alternative protein. Food Biosci. 2024, 59, 104219. [Google Scholar] [CrossRef]
- Saleem, I.; Asad, W.; Kiran, T.; Asad, S.B.; Khaliq, S.; Ali Mohammed Al-Harethi, A.; Mallasiy, L.O.; Shah, T.A. Enhancing spinach growth with a biofertilizer derived from chicken feathers using a keratinolytic bacterial consortium. BMC Microbiol. 2025, 25, 207. [Google Scholar] [CrossRef]
- Jagadeesan, Y.; Meenakshisundaram, S.; Saravanan, V.; Balaiah, A. Greener and sustainable biovalorization of poultry waste into peptone via Bacto-enzymatic digestion: A breakthrough chemical-free bioeconomy waste management approach. Waste Biomass Valorization 2022, 13, 3197–3219. [Google Scholar] [CrossRef]
- Cavello, I.; Bezus, B.; Cavalitto, S. The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities. J. Genet. Eng. Biotechnol. 2021, 19, 107. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 2019, 18, 84. [Google Scholar] [CrossRef]
- Ahmadi, L.; Baharlouei, J.; Khavazi, K.; Davoudi, M.H. Decomposed chicken feather: A biostimulant to lettuce (Lactuca sativa) growth. Indian J. Agric. Sci. 2024, 94, 246–250. [Google Scholar] [CrossRef]
- Abdelmoteleb, A.; Gonzalez-Mendoza, D.; Tzintzun-Camacho, O.; Grimaldo-Juárez, O.; Mendez-Trujillo, V.; Moreno-Cruz, C.; Ceceña-Duran, C.; Roumia, A.F. Keratinases from Streptomyces netropsis and Bacillus subtilis and their potential use in the chicken feather degrading. Fermentation 2023, 9, 96. [Google Scholar] [CrossRef]
- Shah, M.D.; Gupta, A.R.; Vaidya, R.B. Production of high-quality compost from feather waste: A novel, cost-effective and sustainable approach for feather waste management and organic soil management. In Waste Management and Resource Efficiency; Springer: Singapore, 2019; pp. 533–542. [Google Scholar]
- Kshetri, P.; Roy, S.S.; Sharma, S.K.; Singh, T.S.; Ansari, M.A.; Sailo, B.; Singh, S.; Prakash, N. Feather degrading, phytostimulating, and biocontrol potential of native actinobacteria from North Eastern Indian Himalayan Region. J. Basic. Microbiol. 2018, 58, 730–738. [Google Scholar] [CrossRef]
- Sironi, P.B.; Mazotto, A.M.; Fabio de Lima, M.; Nogueira, R.I.; Melim Miguel, Â.S.; Vermelho, A.B. Hydrolyzed feather keratin obtained by microbial fermentation encapsulated with maltodextrin—A sustainable approach to increase digestible protein in feed. Biocatal. Agric. Biotechnol. 2022, 40, 102297. [Google Scholar] [CrossRef]
- Adelere, I.A.; Lateef, A. Valorization of feather by Bacillus safensis and Aquamicrobium defluvii for growth promotion in leafy vegetables. Waste Biomass Valorization 2023, 14, 723–737. [Google Scholar] [CrossRef]
- Bindal, S.; Kadyan, S.; Saini, M.; Gupta, R. In-situ and cell-free goat hair hydrolysis by a consortium of proteases from Bacillus licheniformis strain ER-15: Hair hydrolysate valorization by melanin extraction. Waste Biomass Valorization 2022, 13, 3265–3282. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, Y.-S.; Yeh, R.-H.; Chen, K.-H.; Chen, K.-L. Bacillus amyloliquefaciens CU33 fermented feather meal-soybean meal product improves the intestinal morphology to promote the growth performance of broilers. Poult. Sci. 2022, 101, 102027. [Google Scholar] [CrossRef]
- Bezus, B.; Ruscasso, F.; Garmendia, G.; Vero, S.; Cavello, I.; Cavalitto, S. Revalorization of chicken feather waste into a high antioxidant activity feather protein hydrolysate using a novel psychrotolerant bacterium. Biocatal. Agric. Biotechnol. 2021, 32, 101925. [Google Scholar] [CrossRef]
- Răut, I.; Călin, M.; Capră, L.; Gurban, A.-M.; Doni, M.; Radu, N.; Jecu, L. Cladosporium sp. isolate as fungal plant growth promoting agent. Agronomy 2021, 11, 392. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.; Aich, A.; Verma, A.K.; Bhuyar, P.; Nadda, A.K.; Mulla, S.I.; Kalia, S. Chicken feather waste hydrolysate as a potential biofertilizer for environmental sustainability in organic agriculture management. Waste Biomass Valorization 2023, 14, 2783–2799. [Google Scholar] [CrossRef]
- Cao, Z.-J.; Lu, D.; Luo, L.-S.; Deng, Y.-X.; Bian, Y.-G.; Zhang, X.-Q.; Zhou, M.-H. Composition analysis and application of degradation products of whole feathers through a large scale of fermentation. Environ. Sci. Pollut. Res. 2012, 19, 2690–2696. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lim, W.J.; Suh, H.J. Feather-degrading Bacillus species from poultry waste. Process Biochem. 2001, 37, 287–291. [Google Scholar] [CrossRef]
- de Oliveira, C.T.; Pellenz, L.; Pereira, J.Q.; Brandelli, A.; Daroit, D.J. Screening of bacteria for protease production and feather degradation. Waste Biomass Valorization 2016, 7, 447–453. [Google Scholar] [CrossRef]
- Williams, C.M.; Richter, C.S.; MacKenzie, J.M.; Shih, J.C. Isolation, identification, and characterization of a feather-degrading bacterium. Appl. Environ. Microbiol. 1990, 56, 1509–1515. [Google Scholar] [CrossRef]
- Riffel, A.; Brandelli, A. Keratinolytic bacteria isolated from feather waste. Braz. J. Microbiol. 2006, 37, 395–399. [Google Scholar] [CrossRef]
- Dlume, T.; Nnolim, N.E.; Nwodo, U.U. Exiguobacterium acetylicum transformed poultry feathers into amino acids through an extracellular secretion of keratinolytic enzymes. AIMS Bioeng. 2024, 11, 489–505. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Udenigwe, C.C.; Okoh, A.I.; Nwodo, U.U. Microbial keratinase: Next generation green catalyst and prospective applications. Front. Microbiol. 2020, 11, 580164. [Google Scholar] [CrossRef]
- Jiang, M.; Qiao, X.; Zhu, E.; Gu, Y.; Chen, Z.; Ju, X.; Li, L.; Zhong, X.; Chen, Z. Molecular cloning and biochemical characterization of a novel disulfide bond-reductase from feather-degrading Stenotrophomonas sp. Yang-5. Appl. Biochem. Microbiol. 2025, 61, 49–57. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, X.; Zheng, X.; Li, W.; Wang, L. Insights into the keratin efficient degradation mechanism mediated by Bacillus sp. CN2 based on integrating functional degradomics. Biotechnol. Biofuels Bioprod. 2023, 16, 59. [Google Scholar] [CrossRef]
- Yamamura, S.; Morita, Y.; Hasan, Q.; Yokoyama, K.; Tamiya, E. Keratin degradation: A cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 2002, 294, 1138–1143. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, J.; Liu, B.; Du, G.; Chen, J. Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int. Biodeterior. Biodegrad. 2013, 82, 166–172. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Bhange, K.; Bhatt, R.; Verma, P. Production of kertinases using chicken feathers as substrate by a novel multifunctional strain of Pseudomonas stutzeri and its dehairing application. Biocatal. Agric. Biotechnol. 2014, 3, 167–174. [Google Scholar] [CrossRef]
- Rahayu, S.; Syah, D.; Thenawidjaja Suhartono, M. Degradation of keratin by keratinase and disulfide reductase from Bacillus sp. MTS of Indonesian origin. Biocatal. Agric. Biotechnol. 2012, 1, 152–158. [Google Scholar] [CrossRef]
- Nunes, P.S.O.; Lacerda-Junior, G.V.; Mascarin, G.M.; Guimarães, R.A.; Medeiros, F.H.V.; Arthurs, S.; Bettiol, W. Microbial consortia of biological products: Do they have a future? Biol. Control 2024, 188, 105439. [Google Scholar] [CrossRef]
- Xia, W.; Jin, M.; Li, X.; Dong, C.; Han, Y. Construction of artificial microbial consortia for efficient degradation of chicken feathers and optimization of degradation conditions. World J. Microbiol. Biotechnol. 2024, 40, 312. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of microbial consortia for microbial degradation of complex compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. [Google Scholar] [CrossRef]
- Contreras-Salgado, E.A.; Sánchez-Morán, A.G.; Rodríguez-Preciado, S.Y.; Sifuentes-Franco, S.; Rodríguez-Rodríguez, R.; Macías-Barragán, J.; Díaz-Zaragoza, M. Multifaceted applications of synthetic microbial communities: Advances in biomedicine, bioremediation, and industry. Microbiol. Res. 2024, 15, 1709–1727. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, A.; Zhuang, G. Construction of environmental synthetic microbial consortia: Based on engineering and ecological principles. Front. Microbiol. 2022, 13, 829717. [Google Scholar] [CrossRef]
- Ibrahim, M.; Raajaraam, L.; Raman, K. Modelling microbial communities: Harnessing consortia for biotechnological applications. Comput. Struct. Biotechnol. J. 2021, 19, 3892–3907. [Google Scholar] [CrossRef]
- Salamah, L.M.; Faridah, N.; Andriyani, A.; Suharti, S. The genotype identification of microbial isolate from Pasuruan salt pond water and potential consortium of microbes with Bacillus sp. MD24 in keratinase fermentation. In Proceedings of the Innovation of Material Science for Sustainable Industrial Chemistry, Jember, Indonesia, 12–13 October 2023; p. 030003. [Google Scholar]
- Huang, Y.; Łężyk, M.; Herbst, F.A.; Busk, P.K.; Lange, L. Novel keratinolytic enzymes, discovered from a talented and efficient bacterial keratin degrader. Sci. Rep. 2020, 10, 10033. [Google Scholar] [CrossRef]
- Zhou, B.; Guo, Y.; Xue, Y.; Ji, X.; Huang, Y. Comprehensive insights into the mechanism of keratin degradation and exploitation of keratinase to enhance the bioaccessibility of soybean protein. Biotechnol. Biofuels Bioprod. 2023, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, Y.; Wu, J.C.; Li, Q. Unraveling dynamics and interactions of core microorganisms in the biodegradation of keratin-based feather wastes. J. Environ. Manag. 2024, 370, 122939. [Google Scholar] [CrossRef] [PubMed]
- Osman, Y.; Elsayed, A.; Mowafy, A.M.; Abdelrazak, A.; Fawzy, M. Bioprocess enhancement of feather degradation using alkaliphilic microbial mixture. Br. Poult. Sci. 2017, 58, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Tadevosyan, M.; Margaryan, A.; Panosyan, H. Assessment of feather degrading activity of thermophilic bacilli isolated from Armenian geothermal springs. Biologia 2025, 80, 765–777. [Google Scholar] [CrossRef]
- Martín-González, D.; Bordel, S.; Santos-Beneit, F. Characterization of the keratinolytic activity of three Streptomyces strains and impact of their co-cultivation on this activity. Microorganisms 2023, 11, 1109. [Google Scholar] [CrossRef]
- Prajapati, S.; Koirala, S.; Anal, A.K. Bioutilization of chicken feather waste by newly isolated keratinolytic bacteria and conversion into protein hydrolysates with improved functionalities. Appl. Biochem. Biotechnol. 2021, 193, 2497–2515. [Google Scholar] [CrossRef]
- Avdiyuk, K.V.; Ivanytsia, V.O.; Varbanets, L.D.; Shtenikov, M.D. Bacteria of deep-sea sediments of the black sea breaking down keratin. Mikrobiolohichnyi Zhurnal 2024, 86, 18–26. [Google Scholar] [CrossRef]
- Cheong, C.W.; Lee, Y.S.; Ahmad, S.A.; Ooi, P.T.; Phang, L.Y. Chicken feather valorization by thermal alkaline pretreatment followed by enzymatic hydrolysis for protein-rich hydrolysate production. Waste Manag. 2018, 79, 658–666. [Google Scholar] [CrossRef]
- Fagbemi, O.D.; Sithole, B.; Tesfaye, T. Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustain. Chem. Pharm. 2020, 17, 100267. [Google Scholar] [CrossRef]
- Shiri, T.; Nnolim, N.E.; Nwodo, U.U. Delipidation of chicken feathers by lipolytic Bacillus species isolated from river-borne sediments. Clean Technol. 2023, 5, 1235–1247. [Google Scholar] [CrossRef]
- Aktayeva, S.; Khassenov, B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS ONE 2024, 19, e0312679. [Google Scholar] [CrossRef]
- Cavello, I.; Urbieta, M.S.; Segretin, A.B.; Giaveno, A.; Cavalitto, S.; Donati, E.R. Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina. Geomicrobiol. J. 2018, 35, 156–165. [Google Scholar] [CrossRef]
Treatment Options | Advantages | Disadvantages | References |
---|---|---|---|
Acid hydrolysis | It degrades keratinous biomass structure efficiently. | It destroys valuable peptides and amino acids in keratin. It causes the corrosion of equipment. It leads to the generation of hazardous effluents. | [32] |
Alkaline hydrolysis | It degrades keratinous waste into valuable hydrolysates. | It results in the generation of toxic chemical waste. | [38] |
Reducing agent treatment | It facilitates the extraction of soluble keratin in its native form. | It contributes to the chemical load of the effluents. | [40] |
Hydrothermal treatment | It increases the solubility and extractability of keratin proteins from biomass. | It consumes a high amount of energy. It leads to the loss of heat-labile proteins. | [34] |
Mechanical grinding | It reduces the particle size of keratinous biomass and can disrupt cell walls and other structural barriers. | It does not improve the bioavailability of the valuable nutrients. | [37] |
High-density steam flash-explosion | It destabilizes the inter- and intramolecular bonds, maintaining the structural stability of keratinous biomass. It preserves the structural integrity of soluble keratin. | It is capital-intensive, as the process requires a high investment in energy. It results in the loss of heat-sensitive amino acids. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nnolim, N.E.; Nwodo, U.U. Harnessing Microbial Consortia for Efficient Keratinous Biomass Biotransformation. Int. J. Mol. Sci. 2025, 26, 9898. https://doi.org/10.3390/ijms26209898
Nnolim NE, Nwodo UU. Harnessing Microbial Consortia for Efficient Keratinous Biomass Biotransformation. International Journal of Molecular Sciences. 2025; 26(20):9898. https://doi.org/10.3390/ijms26209898
Chicago/Turabian StyleNnolim, Nonso E., and Uchechukwu U. Nwodo. 2025. "Harnessing Microbial Consortia for Efficient Keratinous Biomass Biotransformation" International Journal of Molecular Sciences 26, no. 20: 9898. https://doi.org/10.3390/ijms26209898
APA StyleNnolim, N. E., & Nwodo, U. U. (2025). Harnessing Microbial Consortia for Efficient Keratinous Biomass Biotransformation. International Journal of Molecular Sciences, 26(20), 9898. https://doi.org/10.3390/ijms26209898