Nanomaterials Covered with Cell Membranes for Intracellular Delivery Without Lysosomal Degradation and Innate Immunity Induction
Abstract
1. Introduction
2. Results
2.1. Isolation of EV from Culture Media
2.2. Thin Film Hydration
2.3. Cellular Uptake of the Fluorescent Particles
2.4. Induction of Innate Immunity
3. Discussion
4. Further Development
5. Materials and Methods
5.1. Cell Cultures
5.2. EV Isolation
5.3. Scanning Transmission Electron Microscopy (STEM)
5.4. Dynamic Light Scattering (DLS)
5.5. Ultraviolet (UV) Spectroscopy
5.6. Fluorescent Labeling and Quantitation
5.7. Thin Film Hydration
5.8. Confocal Microscopy
5.9. Reverse Transcription with Real Time PCR (RT2-PCR)
5.10. Enzyme-Linked Immunosorbent Assay (ELISA)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404, Erratum in: J. Extracell. Vesicles 2024, 13, e12451. https://doi.org/10.1002/jev2.12451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Zhang, T.; Zhao, G.L.; Lu, J.; Zhang, X.; Lai, Y.; Chen, Z.; Ding, X.; Tai, Z. Biological and Bioinspired Vesicles for Wound Healing: Insights, Advances and Challenges. Int. J. Nanomed. 2025, 20, 8497–8528. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, Z.F.; Ali, S.; Brock, A.; Jiang, J.; Schmittgen, T.D.; Han, S.; Hughes, S.J.; Graim, K.S.; He, M. Nanomaterial isolated extracellular vesicles enable high precision identification of tumor biomarkers for pancreatic cancer liquid biopsy. J. Nanobiotechnol. 2025, 23, 467. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Golubinskaya, P.A.; Obraztsova, E.A.; Eremeev, A.V.; Klinov, D.V. Structures, stability and cellular uptake of protein nanoparticles (NP) and extracellular vesicles (EVs). Curr. Drug Deliv. 2024, 21, 1217–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, H.; Zhang, J.; Pan, B.; Wang, N.; Chen, T.; Shi, Y.; Wang, Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int. J. Nanomed. 2023, 18, 6847–6868. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Li, R.; Liu, Z.; Xiang, D. Altered Neuroplasticity in Epilepsy is Associated with Neuroinflammation and Oxidative Stress: In vivo Evidence of Brain-Derived Extracellular Vesicles. Int. J. Nanomed. 2025, 20, 7185–7197. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Chan, A.M.L.; Hussain, H.B.; Lokanathan, Y. Advanced Therapeutic Approaches Based on Small Extracellular Vehicles (sEVs) For the Regeneration of Spinal Cord Injuries. Int. J. Nanomed. 2025, 20, 7415–7442. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pionneau, C.; Cocozza, F.; Boëlle, P.Y.; Chardonnet, S.; Charrin, S.; Théry, C.; Zimmermann, P.; Rubinstein, E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J. Extracell. Vesicles 2023, 12, e12352. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Huang, J.; Fu, J.; Li, L.; Yu, R.; Li, L. Medicinal Plant-Derived Exosome-Like Nanovesicles as Regulatory Mediators in Microenvironment for Disease Treatment. Int. J. Nanomed. 2025, 20, 8451–8479. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.C. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 1980, 104, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Obraztsova, E.A.; Klinov, D.V. Features of protein nanoparticles surrounded by cell membrane shells. Biotechnology 2024, 40, 144–145. (In Russian) [Google Scholar] [CrossRef]
- Oh, N.; Park, J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014, 9, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C. Viral membrane fusion. Virology 2015, 479–480, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Giannessi, F.; Percario, Z.; Lombardi, V.; Sabatini, A.; Sacchi, A.; Lisi, V.; Battistini, L.; Borsellino, G.; Affabris, E.; Angelini, D.F. Macrophages treated with interferons induce different responses in lymphocytes via extracellular vesicles. iScience 2024, 27, 109960. [Google Scholar] [CrossRef] [PubMed]
- Greening, D.W.; Xu, R.; Ale, A.; Hagemeyer, C.E.; Chen, W. Extracellular vesicles as next generation immunotherapeutics. Semin. Cancer Biol. 2023, 90, 73–100. [Google Scholar] [CrossRef] [PubMed]
- Ospelnikova, T.P.; Morozova, O.V.; Isaeva, E.I.; Andreeva, S.A.; Lyzogub, N.V.; Kolodyaznaya, L.V.; Vetrova, E.N.; Smirnova, M.Y.; Osipova, G.L.; Ershov, F.I.; et al. Respiratory Viruses and Proinflammatory Cytokines Imbalance in Adults and Children with Bronchial Asthma. J. Infect. Dis. Prev. Med. 2016, 4, 8731. [Google Scholar] [CrossRef]





| Days After Treatment of HEF with the Heterologous EV and Cellular Membranes | IFN λ RNA Ct (Genome-Equivalents per Cell) | IFN λ (pg/mL) |
|---|---|---|
| EV 1 day | 21.4 (119) | 62.29 |
| EV 3 days | 20.2 (273) | 67.36 |
| Cell membranes 1 day | 21.1 (147) | 68.41 |
| Cell membranes 3 days | 21.8 (90) | 71.2 |
| Names of Primers and Fluorescent Probes | Nucleotide Sequences (5′-3′ End) |
|---|---|
| IFN α—F | AAATACTTCCAAAGAATCAC |
| IFN α—R | AAGAGAGGGATCTCATG |
| IFN α—P | FAM-CTGACA ACCTCCCAGGCACAAG-BHQ1 |
| IFN β—F | GATTCTGCATTACCTGAAG |
| IFN β—R | AGGTAACCTGTAAGTCTG |
| IFN β—P | Cy3-GCCTGGACCATAGTCAGAGTGG-BHQ2 |
| IFN γ—F | GGAGACCATCAAGGAAGA |
| IFN γ—R | GACTTGAATGTCCAACGCAAAGC |
| IFN γ—P | R6G-GACTTGAATGTCCAACGCAAAGC-BHQ2 |
| IFN λ—F | CTGCAGGTGAGGGAGCGC |
| IFN λ—R | CAGGGTGTGAAGGGGCTG |
| IFN λ—P | Cy5-GAGGCTGAGCTGGCCCTGACGC-BHQ2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, O.; Obraztsova, E.; Klinov, D. Nanomaterials Covered with Cell Membranes for Intracellular Delivery Without Lysosomal Degradation and Innate Immunity Induction. Int. J. Mol. Sci. 2025, 26, 10244. https://doi.org/10.3390/ijms262010244
Morozova O, Obraztsova E, Klinov D. Nanomaterials Covered with Cell Membranes for Intracellular Delivery Without Lysosomal Degradation and Innate Immunity Induction. International Journal of Molecular Sciences. 2025; 26(20):10244. https://doi.org/10.3390/ijms262010244
Chicago/Turabian StyleMorozova, Olga, Ekaterina Obraztsova, and Dmitry Klinov. 2025. "Nanomaterials Covered with Cell Membranes for Intracellular Delivery Without Lysosomal Degradation and Innate Immunity Induction" International Journal of Molecular Sciences 26, no. 20: 10244. https://doi.org/10.3390/ijms262010244
APA StyleMorozova, O., Obraztsova, E., & Klinov, D. (2025). Nanomaterials Covered with Cell Membranes for Intracellular Delivery Without Lysosomal Degradation and Innate Immunity Induction. International Journal of Molecular Sciences, 26(20), 10244. https://doi.org/10.3390/ijms262010244

