Variation of Pro- and Anti-Inflammatory Factors in Severe Burns: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Reporting Framework
2.2. Research Question and Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Study Selection Process
2.5. Data Extraction and Synthesis
2.6. Risk of Bias and Quality Appraisal
3. Results
3.1. Pro-Inflammatory Cytokines
3.2. Anti-Inflammatory and Counter-Regulatory Cytokines
3.3. Balance of Pro- and Anti-Inflammatory Factors
3.4. Hematologic Ratios and Systemic Inflammation Indices
3.5. Acute-Phase Reactants and Other Mediators
3.6. Complement Activation and Neutrophil-Related Mediators
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABSI | Abbreviated Burn Severity Index |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| APC | Activated Protein C |
| APC-PCI | Activated Protein C-Protein C Inhibitor complex |
| AUC | Area Under the Curve |
| BUN | Blood Urea Nitrogen |
| bFGF | basic Fibroblast Growth Factor |
| C3a | Complement component 3a |
| CARS | Compensatory Anti-inflammatory Response Syndrome |
| CBC | Complete Blood Count |
| CCL2 (MCP-1) | Monocyte Chemoattractant Protein-1 |
| CCL4 (MIP-1β) | Macrophage Inflammatory Protein-1 beta |
| CCR4 | C-C chemokine receptor type 4 |
| CCR6 | C-C chemokine receptor type 6 |
| CitH3 | Citrullinated Histone H3 |
| CRP | C-reactive Protein |
| G-CSF | Granulocyte Colony-Stimulating Factor |
| GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
| ICU | Intensive Care Unit |
| IFN-α | Interferon alpha |
| IFN-γ | Interferon gamma |
| IL | Interleukin |
| IL-1Ra | Interleukin-1 receptor antagonist |
| INL | Índice Neutrófilo-Linfocito (Spanish for NLR) |
| LPR | Lymphocyte-to-Platelet Ratio |
| MIP-1α | Macrophage Inflammatory Protein-1 alpha |
| MIP-3α | Macrophage Inflammatory Protein-3 alpha |
| MLR | Monocyte-to-Lymphocyte Ratio |
| MPO | Myeloperoxidase |
| NE | Neutrophil Elastase |
| NET | Neutrophil Extracellular Trap |
| NLR | Neutrophil-to-Lymphocyte Ratio |
| NLPR | Neutrophil-to-Lymphocyte-to-Platelet Ratio |
| NMR | Neutrophil-to-Monocyte Ratio |
| PBD | Post-Burn Day |
| PC | Protein C |
| PCT | Procalcitonin |
| PDGF-BB | Platelet-Derived Growth Factor subunit B |
| PIICS | Persistent Inflammation, Immunosuppression and Catabolism Syndrome |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RDW | Red Cell Distribution Width |
| REE | Resting Energy Expenditure |
| ROC | Receiver Operating Characteristic |
| sEPCR | soluble Endothelial Protein C Receptor |
| SII | Systemic Immune-Inflammation Index |
| SIRS | Systemic Inflammatory Response Syndrome |
| sIL-6R | soluble Interleukin-6 Receptor |
| SIRI | Systemic Inflammation Response Index |
| SOFA | Sequential Organ Failure Assessment score |
| sTNFR | Soluble Tumor Necrosis Factor Receptor |
| TBSA | Total Body Surface Area |
| TGF-α | Transforming Growth Factor alpha |
| TNF-α | Tumor Necrosis Factor alpha |
| Tregs | Regulatory T cells |
| VAP | Ventilator-Associated Pneumonia |
| VEGF | Vascular Endothelial Growth Factor |
References
- Burgess, M.; Valdera, F.; Varon, D.; Kankuri, E.; Nuutila, K. The immune and regenerative response to burn injury. Cells 2022, 11, 3073. [Google Scholar] [CrossRef]
- Cowin, A.J.; Bayat, A.; Murray, R.Z.; Kopecki, Z. Inflammation in healing and regeneration of cutaneous wounds. Front. Immunol. 2021, 12, 806687. [Google Scholar] [CrossRef]
- Kim, H.S.; Yang, H.T.; Hur, J.; Chun, W.; Kang, H.J.; Lee, K.M. Changes of cytokines and outcome prediction in burn patients. Cytokine 2012, 59, 533–538. [Google Scholar] [CrossRef]
- Korkmaz, H.I.; Flokstra, G.; Waasdorp, M.; Pijpe, A.; Papendorp, S.G.; de Jong, E.; Rustemeyer, T.; Gibbs, S.; van Zuijlen, P.P.M. The complexity of the post-burn immune response: An overview of the associated local and systemic complications. Cells 2023, 12, 345. [Google Scholar] [CrossRef]
- Schaffrick, L.; Ding, J.; Kwan, P.; Tredget, E.E. The dynamic changes of monocytes and cytokines during wound healing post-burn injury. Cytokine 2023, 168, 156231. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Herndon, D.N.; Przkora, R.; Pereira, C.T.; Oliveira, H.M.; Queiroz, D.M.M.; Rocha, A.M.C.; Jeschke, M.G. Cytokine expression profile over time in severely burned pediatric patients. Shock 2006, 26, 13–19. [Google Scholar] [CrossRef]
- Matsuura, H.; Matsumoto, H.; Osuka, A.; Ogura, H.; Shimizu, K.; Kang, S.; Tanaka, T.; Ueyama, M.; Shimazu, T. Clinical importance of a cytokine network in major burns. Shock 2019, 51, 185–193. [Google Scholar] [CrossRef]
- Awad, M.K.A.; Elsahhar, A.; Alwakeel, M.; Awad, R.; Gomaa, N.; Salem, A.M.A.; Ramadan, M.; Elsahhar, G.; Abdelbaky, R.E.R.; Fadell, F. Admission neutrophil-to-lymphocyte ratio to predict mortality in burn patients: A meta-analysis. Intensiv. Care Med. Exp. 2024, 12, 86. [Google Scholar] [CrossRef]
- Laggner, M.; Lingitz, M.-T.; Copic, D.; Direder, M.; Klas, K.; Bormann, D.; Gugerell, A.; Moser, B.; Radtke, C.; Hacker, S.; et al. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci. Rep. 2022, 12, 1654. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.H.Y.; Wollenman, C.C.; Moore-Lotridge, S.N.; Keller, P.R.; Summitt, J.B.; Revenko, A.R.; Flick, M.J.; Blackwell, T.S.; Schoenecker, J.G. Plasmin drives burn-induced systemic inflammatory response syndrome. J. Clin. Investig. 2021, 6, e154439. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.N.; Moore, M.; Dimisko, L.; Alexander, A.; Ibrahim, A.; Hassell, B.A.; Warren, H.S.; Tompkins, R.G.; Fagan, S.P.; Irimia, D. Spontaneous neutrophil migration patterns during sepsis after major burns. PLoS ONE 2014, 9, e114509. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Abdel-Hafez, N.M.; Saleh Hassan, Y.; El-Metwally, T.H. A study on biomarkers, cytokines, and growth factors in children with burn injuries. Ann. Burn. Fire Disasters 2007, 20, 89–100. [Google Scholar]
- Finnerty, C.C.; Herndon, D.N.; Chinkes, D.L.; Jeschke, M.G. Serum cytokine differences in severely burned children with and without sepsis. Shock 2007, 27, 4–9. [Google Scholar] [CrossRef]
- Sikora, J.P.; Chlebna-Sokół, D.; Andrzejewska, E.; Chrul, S.; Polakowska, E.; Wysocka, A.; Sikora, A. Clinical evaluation of proinflammatory cytokine inhibitors and anti-inflammatory cytokines after burn-induced inflammation. Scand. J. Immunol. 2008, 68, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Jeschke, M.G.; Herndon, D.N.; Gamelli, R.; Gibran, N.; Klein, M.; Silver, G.; Arnoldo, B.; Remick, D.; Tompkins, R.G.; et al. Temporal cytokine profiles in severely burned patients: A comparison of adults and children. Mol. Med. 2008, 14, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Mikhal’chik, E.V.; Piterskaya, J.A.; Budkevich, L.Y.; Pen’kov, L.Y.; Facchiano, A.; De Luca, C.; Ibragimova, G.A.; Korkina, L.G. Comparative study of cytokine content in the plasma and wound exudate from children with severe burns. Bull. Exp. Biol. Med. 2009, 148, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Csontos, C.; Földi, V.; Pálinkas, L.; Bogár, L.; Röth, E.; Weber, G.; Lantos, J. Time course of pro- and anti-inflammatory cytokine levels in patients with burns—Prognostic value of interleukin-10. Burns 2010, 36, 483–494. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Gauglitz, G.G.; Finnerty, C.C.; Kraft, R.; Mlcak, R.P.; Herndon, D.N. Survivors versus nonsurvivors postburn: Differences in inflammatory and hypermetabolic trajectories. Ann. Surg. 2014, 259, 814–823. [Google Scholar] [CrossRef]
- Hur, J.; Yang, H.T.; Chun, W.; Kim, J.-H.; Shin, S.-H.; Kang, H.J.; Kim, H.S. Inflammatory cytokines and their prognostic ability in cases of major burn injury. Ann. Lab. Med. 2015, 35, 105–110. [Google Scholar] [CrossRef]
- Shelhamer, M.C.; Rowan, M.P.; Cancio, L.C.; Aden, J.K.; Rhie, R.Y.; Merrill, G.A.; Wolf, S.E.; Renz, E.M.; Chung, K.K. Elevations in inflammatory cytokines are associated with poor outcomes in mechanically ventilated burn patients. J. Trauma Acute Care Surg. 2015, 79, 431–436. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Patsouris, D.; Stanojcic, M.; Abdullahi, A.; Rehou, S.; Pinto, R.; Chen, P.; Burnett, M.; Amini-Nik, S. Pathophysiologic response to burns in the elderly. EBioMedicine 2015, 2, 1536–1548. [Google Scholar] [CrossRef] [PubMed]
- Rehou, S.; Abdullahi, A.; Jeschke, M.G. Classic IL-6 signaling is associated with poor outcomes in burn patients. Shock 2023, 59, 155–160. [Google Scholar] [CrossRef]
- Tang, X.-D.; Qiu, L.; Wang, F.; Liu, S.; Lü, X.-W.; Chen, X.-L. Diagnostic value of procalcitonin and red blood cell distribution width at admission on the prognosis of patients with severe burns: A retrospective analysis. Int. Wound J. 2023, 20, 3708–3716. [Google Scholar] [CrossRef] [PubMed]
- Juárez Guzmán, U.; Sánchez Zúñiga, M.J. Asociación entre índice neutrófilo/linfocito como biomarcador de mortalidad en pacientes con quemaduras mayores. Med. Crit. 2023, 37, 17–20. [Google Scholar] [CrossRef]
- Zaldívar Castillo, D.; Palacios Alfonso, I. Evaluación del índice neutrófilos-linfocitos en lesionados severamente quemados. An. Fac. Cienc. Méd. 2024, 57, 59–66. [Google Scholar] [CrossRef]
- Hung, T.D.; Lam, N.N.; Hung, N.T. Prognostic values of neutrophil/lymphocyte ratio in severe burn patients. Ann. Burns Fire Disasters 2024, 37, 124–129. [Google Scholar]
- Li, F.; He, Q.; Peng, H.; Zhou, J.; Zhong, C.; Liang, G.; Li, W.; Xu, D. The systemic inflammation indexes after admission predict in-hospital mortality in patients with extensive burns. Burns 2024, 50, 980–990. [Google Scholar] [CrossRef]
- Mulder, P.P.G.; Vlig, M.; Boekema, B.K.H.L.; Stoop, M.M.; Pijpe, A.; van Zuijlen, P.P.M.; de Jong, E.; van Cranenbroek, B.; Joosten, I.; Koenen, H.J.P.M.; et al. Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles. Front. Immunol. 2021, 12, 621222. [Google Scholar] [CrossRef]
- Zhao, R.; Lang, T.C.; Kim, A.; Wijewardena, A.; Vandervord, J.; McGrath, R.; Fulcher, G.; Xue, M.; Jackson, C. Early protein C activation is reflective of burn injury severity and plays a critical role in inflammatory burden and patient outcomes. Burns 2022, 48, 91–103. [Google Scholar] [CrossRef]
- Langley, D.; Zimmermann, K.; Krenske, E.; Stefanutti, G.; Kimble, R.M.; Holland, A.J.A.; Fear, M.W.; Wood, F.M.; Kenna, T.; Cuttle, L. Unremitting pro-inflammatory T-cell phenotypes and macrophage activity following paediatric burn injury. Clin. Transl. Immunol. 2024, 13, e1496. [Google Scholar] [CrossRef]
- Stanojcic, M.; Abdullahi, A.; Rehou, S.; Parousis, A.; Jeschke, M.G. Pathophysiological response to burn injury in adults. Ann. Surg. 2018, 267, 576–584. [Google Scholar] [CrossRef]
- Qin, Y.; Hamilton, J.L.; Bird, M.D.; Chen, M.M.; Ramirez, L.; Zahs, A.; Kovacs, E.J.; Makowski, L. Adipose inflammation and macrophage infiltration after binge ethanol and burn injury. Alcohol. Clin. Exp. Res. 2014, 38, 204–213. [Google Scholar] [CrossRef]
- Mulder, P.P.G.; Vlig, M.; Fasse, E.; Stoop, M.M.; Pijpe, A.; van Zuijlen, P.P.M.; Joosten, I.; Boekema, B.K.H.L.; Koenen, H.J.P.M. Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Front. Immunol. 2022, 13, 1034420. [Google Scholar] [CrossRef]
- Vinaik, R.; Barayan, D.; Jeschke, M.G. NLRP3 inflammasome in inflammation and metabolism: Identifying novel roles in post-burn adipose dysfunction. Endocrinology 2020, 161, bqaa116. [Google Scholar] [CrossRef]
- Osuka, A.; Shigeno, A.; Matsuura, H.; Onishi, S.; Yoneda, K. Systemic immune response of burns from the acute to chronic phase. Acute Med. Surg. 2024, 11, e976. [Google Scholar] [CrossRef]
- Boldeanu, L.; Boldeanu, M.V.; Bogdan, M.; Meca, A.D.; Coman, C.G.; Buca, B.R.; Tartau, C.G.; Mititelu Tartau, L. Immunological approaches and therapy in burns. Exp. Ther. Med. 2020, 20, 2361–2367. [Google Scholar] [CrossRef] [PubMed]
- Rehou, S.; Shahrokhi, S.; Thai, J.; Stanojcic, M.; Jeschke, M.G. Acute phase response in critically ill elderly burn patients. Crit. Care Med. 2019, 47, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, T.; Mertowska, P.; Mertowski, S.; Podgajna, M.; Grywalska, E.; Strużyna, J.; Torres, K. The role of the immune system in pediatric burns: A systematic review. J. Clin. Med. 2022, 11, 2262. [Google Scholar] [CrossRef]
- Kim, A.; Lang, T.; Xue, M.; Wijewardana, A.; Jackson, C.; Vandervord, J. The role of Th-17 cells and γδ T-cells in modulating the systemic inflammatory response to severe burn injury. Int. J. Mol. Sci. 2017, 18, 758. [Google Scholar] [CrossRef] [PubMed]
- Nourigheimasi, S.; Yazdani, E.; Ghaedi, A.; Khanzadeh, M.; Lucke-Wold, B.; Dioso, E.; Bazrgar, A.; Ebadi, M.; Khanzadeh, S. Association of inflammatory biomarkers with overall survival in burn patients: A systematic review and meta-analysis. BMC Emerg. Med. 2024, 24, 76. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, F.; Touma, D.; Pappas, A.; Abu-Alrub, M.; Al-Kurd, M.; Hameed, T.; Al-Khatib, W.; Alnasser, S.; Mansi, R.; Abdelrahman, A.; et al. Decoding burn trauma: Biomarkers for early diagnosis of burn-induced pathologies. Biomark. Res. 2024, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Sierawska, O.; Małkowska, P.; Taskin, C.; Hrynkiewicz, R.; Mertowska, P.; Grywalska, E.; Korzeniowski, T.; Torres, K.; Surowiecka, A.; Niedźwiedzka-Rystwej, P.; et al. Innate immune system response to burn damage: Focus on cytokine alteration. Int. J. Mol. Sci. 2022, 23, 716. [Google Scholar] [CrossRef]
- Xiang, Y.; Pan, B.-H.; Zhang, J.; Chen, J.-Q.; Fang, H.; Wang, Q.; Li, L.-H.; Chen, T.-S.; Chen, J.-X.; Li, C.; et al. Suppression of overactivated immunity in the early stage is the key to improve the prognosis in severe burns. Front. Immunol. 2024, 15, 1455899. [Google Scholar] [CrossRef]
- Yoon, J.; Kym, D.; Cho, Y.S.; Yim, H.; Yang, H.T.; Hur, J.; Kim, J.H.; Cho, Y.R.; Kim, H.S. Advanced biomarker clustering analysis reveals mortality predictors in burn patients with sepsis. Sci. Rep. 2024, 14, 22784. [Google Scholar] [CrossRef]
- Palmieri, T.L.; Heard, J. Biomarkers of sepsis in burn injury: An update. Burn. Trauma 2025, 13, tkae080. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Suchithra, T.V.; Bhatia, N. Burn injury induces elevated inflammatory traffic: The role of NF-κB. Inflamm. Res. 2021, 70, 51–65. [Google Scholar] [CrossRef]

| Author/Year | Study Characteristics | Key Biomarkers (Measured) | Main Findings |
|---|---|---|---|
| Finnerty et al., 2006 [6] | Severely burned pediatric patients (n = 19; >40% TBSA, no sepsis or inhalation injury) vs. healthy controls (n = 14); serial sampling up to 5 weeks | 17 cytokines (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17, IFN-γ, MCP-1, MIP-1α, G-CSF, GM-CSF, TNF-α) | Fifteen out of 17 cytokines were significantly higher during week 1; GM-CSF peaked in week 2; TNF-α showed no significant difference vs. controls. Levels trended down but remained above controls by week 5; authors suggested a therapeutic window in the first week. |
| Abdel-Hafez et al., 2007 [13] | Children with burns (n = 42; sepsis 47.6%; mortality 28.6%) vs. controls (n = 26); baseline and day 8 | TNF-α, IL-6, PCT, CRP, leptin, bFGF, TGF-α | Burn patients had higher TNF-α, IL-6, PCT, CRP, leptin vs. controls. In sepsis and in non-survivors, IL-6, TNF-α, PCT and CRP were further increased, while leptin, bFGF and TGF-α were lower. IL-6 and PCT had prognostic value for sepsis and mortality. |
| Finnerty et al., 2007 [14] | Pediatric burn patients (n = 44; septic fatal n = 15 vs. non-septic survivors n = 29); admission samples | 7 cytokines (IL-6, IL-8, IL-10, IFN-γ, TNF-α, IL-12p70, GM-CSF) | All seven cytokines were significantly higher in septic fatal patients at admission. In multivariable modeling, the best predictor of fatal sepsis combined elevated IL-6 and IL-12p70 with relatively decreased TNF-α (AUC 0.92); the TNF-α decrease reflects the model coefficient although raw TNF-α was higher in fatal cases. |
| Sikora et al., 2008 [15] | Burned children (n = 17) vs. controls (n = 20); early phase (6–24 h) and post-therapy | sTNFR-I, sTNFR-II, IL-1Ra, IL-10, IL-13, neutrophil ROS | Burn patients showed increased IL-10, sTNFR-I, sTNFR-II, IL-1Ra, and a non-significant trend toward higher IL-13, with reduced neutrophil ROS. After therapy, inhibitors and IL-10/IL-13 decreased while ROS increased. Poor outcome (hypovolemic shock) was associated with persistently high inhibitors/IL-10/IL-13 and low ROS. |
| Finnerty et al., 2008 [16] | Adults (n = 25) vs. children (n = 24), all survivors of flame burns (>20% TBSA in adults, >40% in children) | 22 cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IFN-γ, TNF, MCP-1, MIP-1α, IP-10, GM-CSF, G-CSF, eotaxin) | During the first week, adults had significantly higher IFN-γ, IL-10, IL-17, IL-4, IL-6 and IL-8. Children showed later increases in IL-1β (week 2), IL-18 (week 3) and IL-1α (days 21–66). GM-CSF was consistently lower in children at all time points. Additional differences were observed for eotaxin, G-CSF, IL-13, IL-15, IP-10, MCP-1 and MIP-1α, whereas IL-12, IL-2, IL-7 and TNF did not differ between groups. |
| Mikhal’chik et al., 2009 [17] | Children with severe burns (n = 19); paired plasma vs. wound exudate | IL-1β, IL-1Ra, IL-2, IL-6, IL-8, IL-10, TNF-α, IFN-γ, MCP-1, MIP-1α, G-CSF, GM-CSF, PDGF-BB, VEGF | IL-1β, IL-1Ra, IL-8, MCP-1, MIP-1α, TNF-α, GM-CSF higher in exudate; IL-2, IL-6, IL-10, G-CSF, IFN-γ, PDGF-BB, VEGF higher in plasma. No plasma-exudate correlation; burn wounds are a local source of pro-inflammatory cytokines, with MPO correlating to MIP-1α, TNF-α, GM-CSF. |
| Csontos et al., 2010 [18] | Adults with severe burns (≥20% TBSA), n = 39; serial plasma measurements on days 1–6; comparison survivors (n = 21) vs. non-survivors (n = 18) | IL-1β, IL-6, IL-8, IL-10, TNF-α, IL-12p70 (undetectable); both unstimulated and PMA-stimulated plasma | IL-10 consistently higher in non-survivors and strongest predictor of ICU mortality (admission ≥ 14 pg/mL: sensitivity ~85%, specificity ~84%). IL-6 and IL-8 rose later and were higher in non-survivors. Pro/anti-inflammatory ratios (e.g., IL-6/IL-10) had limited prognostic value compared with IL-10 alone; early excess of IL-10 indicated poor outcome. |
| Jeschke et al., 2014 [19] | Pediatric burn cohort (n = 230; >30% TBSA); survivors vs. non-survivors; trajectories followed up to 180 days | IL-6, IL-8, G-CSF, MCP-1 (within a broader 17-plex panel), plus CRP, glucose, insulin, BUN, creatinine, bilirubin, and metabolic/REE measures | Non-survivors had persistently higher IL-6, G-CSF, MCP-1 (from early on) and IL-8 (diverging after day 8–10), along with higher CRP, metabolic and organ dysfunction markers, and more pronounced hypermetabolism. Distinct inflammatory/metabolic trajectories separated survivors from non-survivors. |
| Hur et al., 2015 [20] | Adults with major burns (n = 67; ≥20% TBSA); serum days 1 and 3; survivors vs. non-survivors | 27-plex cytokines (incl. IL-1Ra, IL-6, IL-8, IL-10, MCP-1, PDGF-BB, VEGF) | Non-survivors had higher IL-1Ra, IL-6, and MCP-1 on day 1, while by day 3 only PDGF-BB was lower. Compared with controls, several cytokines were elevated overall, with early IL-1Ra, IL-6, and MCP-1 emerging as the strongest indicators of poor outcome. |
| Shelhamer et al., 2015 [21] | Adults with severe burns requiring mechanical ventilation (n = 62; with/without inhalation injury); plasma on days 0, 3, 7 | IL-1α, IL-6, IL-8, GM-CSF, TNF-α | IL-6 and IL-8 were higher in non-survivors at day 7. In multivariable logistic regression, IL-8 independently predicted the composite of death or VAP with odds ratios of 7.9 (day 0), 26 (day 3) and 7.3 (day 7); IL-6 lost significance after adjustment. The majority of IL-1α, GM-CSF and TNF-α values were below the limit of quantification. |
| Jeschke et al., 2015 [22] | Adults (<65 years, n = 94) vs. elderly (≥65 years, n = 36) with severe burns; single-center cohort, subset of a larger registry (2796 total; 1461 analyzed 2006–2015) | Cytokines/chemokines (IL-1β, IL-6, IL-8, IL-10, TNF-α, MCP-1, GM-CSF, etc.), metabolic markers (REE, glucose, insulin, c-peptide), and wound-healing mediators | Elderly patients exhibited an early blunted but later sustained inflammatory response, delayed yet persistent hypermetabolism, impaired insulin secretion, and impaired repair processes, correlating with higher organ failure and mortality despite similar infection rates compared with younger adults. |
| Matsuura et al., 2019 [7] | Adults with major burns (n = 38; ≥20% TBSA); serial serum samples days 1–30; survivors vs. non-survivors | 11 cytokines: IFN-α, IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-17A, TNF-α, MCP-1, IL-4 | IL-6, IL-8, IL-10, and MCP-1 were elevated early and formed a prognostic cytokine network. Higher levels in non-survivors correlated with SOFA and 28-day mortality; ROC analyses showed IL-6+IL-10 provided the best predictive accuracy. |
| Rehou et al., 2023 [23] | Adults with severe burns (n = 86), admitted within 7 days post-injury; grouped by IL-6/sIL-6R ratio (<0.185 vs. ≥0.185) | IL-6, soluble IL-6R; additional panel: IL-1β, IL-8, IL-17, TNF-α, IL-1Ra, IL-10, G-CSF, GM-CSF, MCP-1, MIP-1α/β, IL-2 | High-ratio patients (≥0.185, n = 46) had larger burns, more inhalation injury, higher IL-6 (but not sIL-6R), and elevated IL-1β, IL-8, TNF-α, IL-10, G-CSF, MCP-1, MIP-1β, IL-2. They showed higher mortality (26% vs. 3%), more acute kidney injury and graft loss, and longer hospitalization, indicating that predominant classic IL-6 signaling is associated with poor outcomes. |
| Author/Year | Study Characteristics | Key Biomarkers (Measured) | Main Findings |
|---|---|---|---|
| Tang et al., 2023 [24] | Adults with severe burns in China (n = 148; TBSA ≥ 30%; admission samples; 2017–2022) | PCT, RDW | Both higher in non-survivors. RDW (with age and TBSA) was an independent predictor; PCT was not. Higher values associated with increased 90-day mortality. |
| Juárez and Sánchez, 2023 [25] | Observational, retrospective, Mexico (CENIAQ); n = 85 (2020–2022); severe burns; NLR at admission; outcome: mortality | NLR | Admission NLR was higher in non-survivors. Suggested as a mortality predictor, though no ROC cut-off or multivariable analysis was provided. |
| Zaldívar Castillo and Palacios, 2024 [26] | Prospective, Cuba; 2022; n = 36 “Grandes Quemados”, 19–60 years; samples at 72h and day 6; outcomes at discharge | NLR (INL) | NLR rose by 72h and remained high at day 6. Higher values in poor prognosis and non-survivors. Directly related to burn severity and survival. |
| Hung et al., 2024 [27] | Retrospective, Vietnam; n = 245 adults (TBSA ≥ 20%), admitted <24h; NLR at admission, day 3, day 7; excluded deaths < 7 days | NLR | NLR elevated at all times; significantly higher in non-survivors. Only day 7 NLR independently predicted mortality, alongside age, burn size and inhalation injury. |
| Li et al., 2024 (Burns) [28] | Retrospective, China; n = 135 extensive burns; CBC indices at days 1/3/7; in-hospital mortality | LPR, NLR, NMR, MLR, NLPR, SII, SIRI | Certain derived indices (LPR day 1, NLPR days 3 and 7) independently predicted mortality. Higher values linked to worse survival; combining indices with burn severity improved prognostic performance. |
| Awad et al., 2024 (meta-analysis) [8] | Meta-analysis of admission NLR for mortality prediction; 9 studies, n = 1837; heterogeneity and meta-regression performed | NLR (admission) | Across studies, admission NLR consistently higher in non-survivors. Despite heterogeneity, supports NLR as simple and useful marker for early mortality risk stratification in burns. |
| Author/Year | Study Characteristics | Key Immune Markers/Assays (Measured) | Main Findings |
|---|---|---|---|
| Jones et al., 2014 [11] | Adults with major burns; prospective longitudinal sampling around sepsis onset (n = 13; 71 samples) | Neutrophil spontaneous migration (functional assay) | Aberrant spontaneous migration specific for sepsis, detectable 1–2 days (and significantly ≥3 days) before clinical diagnosis; values decreased after antibiotics. Averaging two consecutive samples from the same patient improved discrimination (AUC ~0.80). |
| Mulder et al., 2021 [29] | Adults with severe burns; n = 20 ICU patients (TBSA ≥ 15%) vs. n = 20 healthy controls; longitudinal PBD 0–39 | Flow cytometry: neutrophil maturation, monocyte subsets, CD4+ T-cell subsets; plasma cytokines | Burn patients showed persistent elevation of IL-6, IL-8, MCP-1, MIP-1β, MIP-3α, a sustained influx of immature neutrophils, expansion of monocyte subsets, and by week 2, increased CCR4+/CCR6+ CD4 T cells and Tregs, reflecting a prolonged pro-inflammatory state. |
| Laggner et al., 2022 [9] | Adults with thermal burns; n = 32 (TBSA > 10%) vs. 8 controls; samples daily (week 1) then weekly to day 28; severity stratified by ABSI, burn depth, SOFA, APACHE II | CitH3, neutrophil elastase (NE), MPO, C3a | CitH3 and NE higher in severe burns (ABSI ≥ 9, 3rd-degree); MPO/C3a elevated vs. controls but less discriminatory. NE also linked to higher SOFA, MPO/CitH3 to higher APACHE II. Markers did not predict mortality. |
| Zhao et al., 2022 [30] | Prospective, adults with severe burns; n = 86; serial sampling from admission to day 21 | APC (APC-PCI), PC, APC/PC (PC activation), sEPCR; CRP, IL-6, IL-8 | Early protein C activation reflected burn severity, was linked to stronger inflammation, and associated with worse clinical outcomes. |
| Langley et al., 2024 [31] | Pediatric burn patients; n = 6 vs. n = 4 controls; longitudinal immune profiling up to 18 months post-burn | T-cell phenotypes; macrophage activity markers | Pro-inflammatory T-cell profiles remained elevated up to 18 months, and macrophage activity was enhanced early after burn with some persistence later, indicating prolonged immune activation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinescu, M.-C.; Pertea, M.; Avadanei-Luca, S.; Amarandei, A.-H.; Bulgaru-Iliescu, A.-I.; Benamor, M.; Moraru, D.C.; Scripcariu, V. Variation of Pro- and Anti-Inflammatory Factors in Severe Burns: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 10131. https://doi.org/10.3390/ijms262010131
Constantinescu M-C, Pertea M, Avadanei-Luca S, Amarandei A-H, Bulgaru-Iliescu A-I, Benamor M, Moraru DC, Scripcariu V. Variation of Pro- and Anti-Inflammatory Factors in Severe Burns: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(20):10131. https://doi.org/10.3390/ijms262010131
Chicago/Turabian StyleConstantinescu, Mihai-Codrin, Mihaela Pertea, Stefana Avadanei-Luca, Alexandru-Hristo Amarandei, Andra-Irina Bulgaru-Iliescu, Malek Benamor, Dan Cristian Moraru, and Viorel Scripcariu. 2025. "Variation of Pro- and Anti-Inflammatory Factors in Severe Burns: A Systematic Review" International Journal of Molecular Sciences 26, no. 20: 10131. https://doi.org/10.3390/ijms262010131
APA StyleConstantinescu, M.-C., Pertea, M., Avadanei-Luca, S., Amarandei, A.-H., Bulgaru-Iliescu, A.-I., Benamor, M., Moraru, D. C., & Scripcariu, V. (2025). Variation of Pro- and Anti-Inflammatory Factors in Severe Burns: A Systematic Review. International Journal of Molecular Sciences, 26(20), 10131. https://doi.org/10.3390/ijms262010131

