Drug Repositioning in Doxorubicin-Induced Cardiotoxicity Protection
Abstract
1. Introduction
2. Molecular Mechanisms of Doxorubicin-Induced Cardiotoxicity: Potential Targets for Prevention
2.1. Oxidative Stress
2.2. Induction of Apoptosis and Ferroptosis
2.3. Disruption of Calcium Homeostasis
2.4. AMPK Signaling Pathway
2.5. Role of Endothelin-1
2.6. Extracellular Matrix Remodeling and Inflammation
2.7. Disturbances of Myocardial Adrenergic Signaling
2.8. Epigenetic Changes in Doxorubicin-Induced Cardiotoxicity
2.9. Cardiotoxicity Beyond Cardiomyocytes: Fibroblasts and Other Cellular Targets of Doxorubicin
3. Current Strategies for Doxorubicin-Induced Cardiotoxicity Protection
3.1. Dose Reduction
3.2. Pharmacokinetics/Pharmacodynamics Approach
3.3. Nanosized Particle Approach
3.4. Dexrazoxane
3.5. Antioxidants
3.6. Cardiovascular Drugs
3.7. Sensitive and Specific Methods for Early Diagnosis
3.8. Understanding of the Phenotypic Heterogeneity of Doxorubicin-Induced Cardiotoxicity
3.9. Pharmacogenomics
4. Drug Repositioning in Doxorubicin-Induced Cardiotoxicity
4.1. Statins
4.2. Metformin
4.3. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors
4.4. Pioglitazone
4.5. Fibrates
4.6. Minocycline
4.7. Erythropoietin
4.8. Potential Repurposing for Target-Based Doxorubicin-Induced Cardiotoxicity Protection
5. Paroxetine in Doxorubicin-Induced Cardiotoxicity Protection
6. Discussion and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DOX | Doxorubicin |
| DNA | Deoxyribonucleic Acid |
| TOP2 | Topoisomerase 2 |
| DIC | Doxorubicin-Induced Cardiotoxicity |
| HF | Heart Failure |
| SSRI | Selective Serotonin Reuptake Inhibitor |
| ROS | Reactive Oxygen Species |
| NOX | Nicotinamide Adenine Dinucleotide Phosphate Oxidase |
| NOS | Nitric Oxide Synthase |
| eNOS | Endothelial Nitric Oxide Synthase |
| iNOS | Inducible Nitric Oxide Synthase |
| AMPK | Adenosine Monophosphate-Activated Protein Kinase |
| ACC | Acetyl-CoA Carboxylase |
| MAPK | Mitogen-Activated Protein Kinase |
| ET-1 | Endothelin-1 |
| EGF | Epidermal Growth Factor |
| TNFα | Tumor Necrosis Factor Alpha |
| MMP | Matrix Metalloproteinase |
| TGF-β | Transforming Growth Factor-beta |
| LV | Left Ventricular |
| TLR | Toll-Like Receptor |
| IL | Interlekin |
| DAMP | Damage-Associated Molecular Pattern |
| ATP | Adenosine Triphosphate |
| β-AR | Beta Adrenergic Receptor |
| GRK2 | G protein-Coupled Receptor Kinase 2 |
| RNA | Ribonucleic Acid |
| FDA | Food and Drug Administration |
| EPR | Enhanced Permeability and Retention |
| HPMA | N-(2-hydroxypropyl) Methylacrylamide Copolymer |
| ACEI | Angiotensin-Converting Enzyme Inhibitors |
| ARB | Angiotensin Receptor Blocker |
| BNP | B-type Natriuretic Peptide |
| CMR | Cardiac Magnetic Resonance |
| HRV | Heart Rate Variability |
| BPV | Blood Pressure Variability |
| HMG-CoA | 3-Hydroxy-3-Methylglutaryl-Coenzyme A |
| NF-kB | Nuclear Factor Kappa B |
| ESC | European Society of Cardiology |
| SGLT2 | Sodium-Glucose Cotransporter-2 |
| PPAR | Peroxisome Proliferator-Activated Receptor |
| MI | Myocardial Infarction |
| PI3K-Akt | Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) |
| AT1 | Angiotensin II Receptor Type 1 |
| NFAT | Nuclear Factor of Activated T-cells |
References
- Bansal, N.; Adams, M.J.; Ganatra, S.; Colan, S.D.; Aggarwal, S.; Steiner, R.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Strategies to Prevent Anthracycline-Induced Cardiotoxicity in Cancer Survivors. Cardio-Oncology 2019, 5, 18. [Google Scholar] [CrossRef]
- Arcamone, F.; Animati, F.; Capranico, G.; Lombardi, P.; Pratesi, G.; Manzini, S.; Supino, R.; Zunino, F. New Developments in Antitumor Anthracyclines. Pharmacol. Ther. 1997, 76, 117–124. [Google Scholar] [CrossRef]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [PubMed]
- Lotrionte, M.; Biondi-Zoccai, G.; Abbate, A.; Lanzetta, G.; D’Ascenzo, F.; Malavasi, V.; Peruzzi, M.; Frati, G.; Palazzoni, G. Review and Meta-Analysis of Incidence and Clinical Predictors of Anthracycline Cardiotoxicity. Am. J. Cardiol. 2013, 112, 1980–1984. [Google Scholar] [CrossRef]
- Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin Cardiomyopathy. Cardiology 2010, 115, 155–162. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Angelis, A.D.; Cappetta, D.; Berrino, L.; Urbanek, K. Doxorubicin Cardiotoxicity: Multiple Targets and Translational Perspectives. In Cardiotoxicity; Tan, W., Ed.; InTech: Maharashtra, India, 2018; ISBN 978-1-78984-237-1. [Google Scholar]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-Induced Cardiotoxicity: An Update on the Molecular Mechanism and Novel Therapeutic Strategies for Effective Management. Biomed. Pharmacother. 2021, 139, 111708. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Cardinale, D.; Suter, T.; Plataniotis, G.; De Azambuja, E.; Sandri, M.T.; Criscitiello, C.; Goldhirsch, A.; Cipolla, C.; Roila, F. Cardiovascular Toxicity Induced by Chemotherapy, Targeted Agents and Radiotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 2012, 23, vii155–vii166. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Thompson, R.E.; Hare, J.M.; Hruban, R.H.; Clemetson, D.E.; Howard, D.L.; Baughman, K.L.; Kasper, E.K. Underlying Causes and Long-Term Survival in Patients with Initially Unexplained Cardiomyopathy. N. Engl. J. Med. 2000, 342, 1077–1084. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Nosengo, N. Can You Teach Old Drugs New Tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef]
- Nishiuchi, S.; Yagi, K.; Saito, H.; Zamami, Y.; Niimura, T.; Miyata, K.; Sakamoto, Y.; Fukunaga, K.; Ishida, S.; Hamano, H.; et al. Investigation of Drugs for the Prevention of Doxorubicin-Induced Cardiac Events Using Big Data Analysis. Eur. J. Pharmacol. 2022, 928, 175083. [Google Scholar] [CrossRef]
- Kosić, M.; Nešić, Z.; Glumac, S.; Vasić, M.; Pajović, V.; Savić, B.; Japundžić-Žigon, N. Paroxetine Mitigates Cardiac Remodelling by Doxorubicin and Increases Survival. Biomed. Pharmacother. 2022, 145, 112411. [Google Scholar] [CrossRef]
- Krebber, A.M.H.; Buffart, L.M.; Kleijn, G.; Riepma, I.C.; De Bree, R.; Leemans, C.R.; Becker, A.; Brug, J.; Van Straten, A.; Cuijpers, P.; et al. Prevalence of Depression in Cancer Patients: A Meta-analysis of Diagnostic Interviews and Self-report Instruments. Psycho-Oncology 2014, 23, 121–130. [Google Scholar] [CrossRef]
- Derogatis, L.R. The Prevalence of Psychiatric Disorders Among Cancer Patients. JAMA 1983, 249, 751. [Google Scholar] [CrossRef] [PubMed]
- Takemura, G.; Fujiwara, H. Doxorubicin-Induced Cardiomyopathy. Prog. Cardiovasc. Dis. 2007, 49, 330–352. [Google Scholar] [CrossRef]
- Corremans, R.; Adão, R.; De Keulenaer, G.W.; Leite-Moreira, A.F.; Brás-Silva, C. Update on Pathophysiology and Preventive Strategies of Anthracycline-induced Cardiotoxicity. Clin. Exp. Pharmacol. Physiol. 2019, 46, 204–215. [Google Scholar] [CrossRef]
- Octavia, Y.; Tocchetti, C.G.; Gabrielson, K.L.; Janssens, S.; Crijns, H.J.; Moens, A.L. Doxorubicin-Induced Cardiomyopathy: From Molecular Mechanisms to Therapeutic Strategies. J. Mol. Cell. Cardiol. 2012, 52, 1213–1225. [Google Scholar] [CrossRef]
- Lyu, Y.L.; Kerrigan, J.E.; Lin, C.-P.; Azarova, A.M.; Tsai, Y.-C.; Ban, Y.; Liu, L.F. Topoisomerase IIβ–Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Res. 2007, 67, 8839–8846. [Google Scholar] [CrossRef] [PubMed]
- Šimůnek, T.; Štěrba, M.; Popelová, O.; Adamcová, M.; Hrdina, R.; Geršl, V. Anthracycline-Induced Cardiotoxicity: Overview of Studies Examining the Roles of Oxidative Stress and Free Cellular Iron. Pharmacol. Rep. 2009, 61, 154–171. [Google Scholar] [CrossRef]
- Noichri, Y.; Chalghoum, A.; Chkioua, L.; Baudin, B.; Ernez, S.; Ferchichi, S.; Miled, A. Low Erythrocyte Catalase Enzyme Activity Is Correlated with High Serum Total Homocysteine Levels in Tunisian Patients with Acute Myocardial Infarction. Diagn. Pathol. 2013, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; McLaughlin, D.; Robinson, E.; Harvey, A.P.; Hookham, M.B.; Shah, A.M.; McDermott, B.J.; Grieve, D.J. Nox2 NADPH Oxidase Promotes Pathologic Cardiac Remodeling Associated with Doxorubicin Chemotherapy. Cancer Res. 2010, 70, 9287–9297. [Google Scholar] [CrossRef]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated with Doxorubicin-Induced Cardiotoxicity. Circulation 2005, 112, 3754–3762. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Rajesh, M.; Bátkai, S.; Kashiwaya, Y.; Haskó, G.; Liaudet, L.; Szabó, C.; Pacher, P. Role of Superoxide, Nitric Oxide, and Peroxynitrite in Doxorubicin-Induced Cell Death in Vivo and in Vitro. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1466–H1483. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.; Shi, W.; Fang, J.; Deng, H.; Cui, G. Potential Targets for Intervention against Doxorubicin-Induced Cardiotoxicity Based on Genetic Studies: A Systematic Review of the Literature. J. Mol. Cell. Cardiol. 2020, 138, 88–98. [Google Scholar] [CrossRef]
- Wallace, K.B.; Sardão, V.A.; Oliveira, P.J. Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circ. Res. 2020, 126, 926–941. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Garnier, A.; Veksler, V. Energy Metabolism in Heart Failure. J. Physiol. 2004, 555, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Andrews, N.C. Balancing Acts. Cell 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Vedam, K.; Nishijima, Y.; Druhan, L.J.; Khan, M.; Moldovan, N.I.; Zweier, J.L.; Ilangovan, G. Role of Heat Shock Factor-1 Activation in the Doxorubicin-Induced Heart Failure in Mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1832–H1841. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Y.; Wang, G.; Ren, J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl. Sci. 2024, 9, 811–826. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Kalivendi, S.V.; Konorev, E.A.; Cunningham, S.; Vanamala, S.K.; Kaji, E.H.; Joseph, J.; Kalyanaraman, B. Doxorubicin Activates Nuclear Factor of Activated T-Lymphocytes and Fas Ligand Transcription: Role of Mitochondrial Reactive Oxygen Species and Calcium. Biochem. J. 2005, 389, 527–539. [Google Scholar] [CrossRef]
- Saeki, K.; Obi, I.; Ogiku, N.; Shigekawa, M.; Imagawa, T.; Matsumoto, T. Doxorubicin Directly Binds to the Cardiac-Type Ryanodine Receptor. Life Sci. 2002, 70, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Timm, K.N.; Tyler, D.J. The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovasc. Drugs Ther. 2020, 34, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Bien, S.; Riad, A.; Ritter, C.A.; Gratz, M.; Olshausen, F.; Westermann, D.; Grube, M.; Krieg, T.; Ciecholewski, S.; Felix, S.B.; et al. The Endothelin Receptor Blocker Bosentan Inhibits Doxorubicin-Induced Cardiomyopathy. Cancer Res. 2007, 67, 10428–10435. [Google Scholar] [CrossRef]
- Spallarossa, P.; Altieri, P.; Garibaldi, S.; Ghigliotti, G.; Barisione, C.; Manca, V.; Fabbi, P.; Ballestrero, A.; Brunelli, C.; Barsotti, A. Matrix Metalloproteinase-2 and -9 Are Induced Differently by Doxorubicin in H9c2 Cells: The Role of MAP Kinases and NAD(P)H Oxidase. Cardiovasc. Res. 2006, 69, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Patricelli, C.; Lehmann, P.; Oxford, J.T.; Pu, X. Doxorubicin-Induced Modulation of TGF-β Signaling Cascade in Mouse Fibroblasts: Insights into Cardiotoxicity Mechanisms. Sci. Rep. 2023, 13, 18944. [Google Scholar] [CrossRef]
- Song, L.; Qiu, Q.; Ju, F.; Zheng, C. Mechanisms of Doxorubicin-Induced Cardiac Inflammation and Fibrosis; Therapeutic Targets and Approaches. Arch. Biochem. Biophys. 2024, 761, 110140. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Du, W.W.; Wu, N.; Li, F.; Li, X.; Xie, Y.; Wang, S.; Yang, B.B. The Circular RNA circNlgnmediates Doxorubicin-Inducedcardiac Remodeling and Fibrosis. Mol. Ther.—Nucleic Acids 2022, 28, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, V.; Varzideh, F.; Wilson, S.; Kansakar, U.; Jankauskas, S.; Santulli, G. Doxorubicin-Induced Cardiotoxicity: A Comprehensive Update. J. Cardiovasc. Dev. Dis. 2025, 12, 207, Erratum in J. Cardiovasc. Dev. Dis. 2025, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-P.; Duan, L.; Zhao, Q.-R.; Lv, X.; Tian, N.-Y.; Yang, S.-L.; Dong, K. NLRP3 Inflammasome as a Therapeutic Target in Doxorubicin-Induced Cardiotoxicity: Role of Phytochemicals. Front. Pharmacol. 2025, 16, 1567312. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Li, H.; Wang, H.; Zhang, T.; Hutchinson, M.R.; Yin, H.; Wang, X. Small-Molecule Modulators of Toll-like Receptors. Acc. Chem. Res. 2020, 53, 1046–1055. [Google Scholar] [CrossRef]
- Levick, S.P.; Soto-Pantoja, D.R.; Bi, J.; Hundley, W.G.; Widiapradja, A.; Manteufel, E.J.; Bradshaw, T.W.; Meléndez, G.C. Doxorubicin-Induced Myocardial Fibrosis Involves the Neurokinin-1 Receptor and Direct Effects on Cardiac Fibroblasts. Heart Lung Circ. 2019, 28, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Yan, L.; Iwatsubo, K.; Vatner, D.E.; Vatner, S.F. Modulation of β-Adrenergic Receptor Signaling in Heart Failure and Longevity: Targeting Adenylyl Cyclase Type 5. Heart Fail. Rev. 2010, 15, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.W.; Giri, S.N. Effects of Chronic Administration of Doxorubicin on Myocardial Beta-Adrenergec Receptors. Life Sci. 1986, 39, 731–736. [Google Scholar] [CrossRef]
- Vasić, M.; Lončar-Turukalo, T.; Tasić, T.; Matić, M.; Glumac, S.; Bajić, D.; Popović, B.; Japundžić-Žigon, N. Cardiovascular Variability and β-ARs Gene Expression at Two Stages of Doxorubicin—Induced Cardiomyopathy. Toxicol. Appl. Pharmacol. 2019, 362, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Pajović, V.; Kovácsházi, C.; Kosić, M.; Vasić, M.; Đukić, L.; Brenner, G.B.; Giricz, Z.; Bajić, D.; Ferdinandy, P.; Japundžić-Žigon, N. Phenomapping for Classification of Doxorubicin-Induced Cardiomyopathy in Rats. Toxicol. Appl. Pharmacol. 2021, 423, 115579. [Google Scholar] [CrossRef]
- Merlet, N.; Piriou, N.; Rozec, B.; Grabherr, A.; Lauzier, B.; Trochu, J.-N.; Gauthier, C. Increased Beta2-Adrenoceptors in Doxorubicin-Induced Cardiomyopathy in Rat. PLoS ONE 2013, 8, e64711. [Google Scholar] [CrossRef]
- Fajardo, G.; Zhao, M.; Powers, J.; Bernstein, D. Differential Cardiotoxic/Cardioprotective Effects of β-Adrenergic Receptor Subtypes in Myocytes and Fibroblasts in Doxorubicin Cardiomyopathy. J. Mol. Cell. Cardiol. 2006, 40, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.-Z.; Zheng, M.; Koch, W.J.; Lefkowitz, R.J.; Kobilka, B.K.; Xiao, R.-P. Dual Modulation of Cell Survival and Cell Death by β2-Adrenergic Signaling in Adult Mouse Cardiac Myocytes. Proc. Natl. Acad. Sci. USA 2001, 98, 1607–1612. [Google Scholar] [CrossRef]
- Moore, C.A.C.; Milano, S.K.; Benovic, J.L. Regulation of Receptor Trafficking by GRKs and Arrestins. Annu. Rev. Physiol. 2007, 69, 451–482. [Google Scholar] [CrossRef]
- Schlegel, P.; Reinkober, J.; Meinhardt, E.; Tscheschner, H.; Gao, E.; Schumacher, S.M.; Yuan, A.; Backs, J.; Most, P.; Wieland, T.; et al. G Protein-Coupled Receptor Kinase 2 Promotes Cardiac Hypertrophy. PLoS ONE 2017, 12, e0182110. [Google Scholar] [CrossRef]
- Ferreira, A.; Cunha-Oliveira, T.; Simões, R.F.; Carvalho, F.S.; Burgeiro, A.; Nordgren, K.; Wallace, K.B.; Oliveira, P.J. Altered Mitochondrial Epigenetics Associated with Subchronic Doxorubicin Cardiotoxicity. Toxicology 2017, 390, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Armant, D.; Brenner, C. Epigenetics: Definition, Mechanisms and Clinical Perspective. Semin. Reprod. Med. 2009, 27, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M. Epigenetics: Interaction of DNA Methylation and Chromatin. Gene 2001, 278, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.; Itahana, Y.; Mendenhall, I.H.; Low, D.; Soh, E.X.Y.; Guo, A.K.; Chionh, Y.T.; Wang, L.-F.; Itahana, K. ABCB1 Protects Bat Cells from DNA Damage Induced by Genotoxic Compounds. Nat. Commun. 2019, 10, 2820. [Google Scholar] [CrossRef]
- Kumari, H.; Huang, W.-H.; Chan, M.W.Y. Review on the Role of Epigenetic Modifications in Doxorubicin-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2020, 7, 56. [Google Scholar] [CrossRef]
- Ruggeri, C.; Gioffré, S.; Achilli, F.; Colombo, G.I.; D’Alessandra, Y. Role of microRNAs in Doxorubicin-Induced Cardiotoxicity: An Overview of Preclinical Models and Cancer Patients. Heart Fail. Rev. 2018, 23, 109–122. [Google Scholar] [CrossRef]
- Leask, A. Getting to the Heart of the Matter: New Insights Into Cardiac Fibrosis. Circ. Res. 2015, 116, 1269–1276. [Google Scholar] [CrossRef]
- Zhan, H.; Aizawa, K.; Sun, J.; Tomida, S.; Otsu, K.; Conway, S.J.; Mckinnon, P.J.; Manabe, I.; Komuro, I.; Miyagawa, K.; et al. Ataxia Telangiectasia Mutated in Cardiac Fibroblasts Regulates Doxorubicin-Induced Cardiotoxicity. Cardiovasc. Res. 2016, 110, 85–95. [Google Scholar] [CrossRef]
- De Angelis, A.; Piegari, E.; Cappetta, D.; Marino, L.; Filippelli, A.; Berrino, L.; Ferreira-Martins, J.; Zheng, H.; Hosoda, T.; Rota, M.; et al. Anthracycline Cardiomyopathy Is Mediated by Depletion of the Cardiac Stem Cell Pool and Is Rescued by Restoration of Progenitor Cell Function. Circulation 2010, 121, 276–292. [Google Scholar] [CrossRef]
- Kalivendi, S.V.; Kotamraju, S.; Zhao, H.; Joseph, J.; Kalyanaraman, B. Doxorubicin-Induced Apoptosis Is Associated with Increased Transcription of Endothelial Nitric-Oxide Synthase. J. Biol. Chem. 2001, 276, 47266–47276. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.; Carvalho, J.L.; Campos, A.C.D.A.; Gomes, D.A.; De Goes, A.M.; Melo, M.M. Doxorubicin Has in Vivo Toxicological Effects on Ex Vivo Cultured Mesenchymal Stem Cells. Toxicol. Lett. 2014, 224, 380–386. [Google Scholar] [CrossRef]
- Todaro, M.C.; Oreto, L.; Qamar, R.; Paterick, T.E.; Carerj, S.; Khandheria, B.K. Cardioncology: State of the Heart. Int. J. Cardiol. 2013, 168, 680–687. [Google Scholar] [CrossRef]
- Armenian, S.H.; Hudson, M.M.; Mulder, R.L.; Chen, M.H.; Constine, L.S.; Dwyer, M.; Nathan, P.C.; Tissing, W.J.E.; Shankar, S.; Sieswerda, E.; et al. Recommendations for Cardiomyopathy Surveillance for Survivors of Childhood Cancer: A Report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015, 16, e123–e136. [Google Scholar] [CrossRef]
- Swain, S.M.; Whaley, F.S.; Ewer, M.S. Congestive Heart Failure in Patients Treated with Doxorubicin: A Retrospective Analysis of Three Trials. Cancer 2003, 97, 2869–2879. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.; Orive, G. Advances in Understanding the Role of P-Gp in Doxorubicin Resistance: Molecular Pathways, Therapeutic Strategies, and Prospects. Drug Discov. Today 2022, 27, 436–455. [Google Scholar] [CrossRef] [PubMed]
- Pippa, L.F.; Oliveira, M.L.D.; Rocha, A.; De Andrade, J.M.; Lanchote, V.L. Total, Renal and Hepatic Clearances of Doxorubicin and Formation Clearance of Doxorubicinol in Patients with Breast Cancer: Estimation of Doxorubicin Hepatic Extraction Ratio. J. Pharm. Biomed. Anal. 2020, 185, 113231. [Google Scholar] [CrossRef]
- Ito-Hagiwara, K.; Hagiwara, J.; Endo, Y.; Becker, L.B.; Hayashida, K. Cardioprotective Strategies against Doxorubicin-Induced Cardiotoxicity: A Review from Standard Therapies to Emerging Mitochondrial Transplantation. Biomed. Pharmacother. 2025, 189, 118315. [Google Scholar] [CrossRef]
- Saito, K.; Takahata, T.; Nakagawa, J.; Chen, Y.; Saito, K.; Kamata, K.; Tachita, T.; Yamashita, S.; Ueno, K.; Sato, A.; et al. Influence of Polymorphisms in Pharmacokinetics-Related Genes on the Areas Under the Plasma Concentration-Time Curves of Doxorubicin and Doxorubicinol in Patients with Diffuse Large B-Cell Lymphoma Receiving CHOP Therapy. Eur. J. Drug Metab. Pharmacokinet. 2025, 50, 219–227. [Google Scholar] [CrossRef]
- Ebaid, N.F.; Abdelkawy, K.S.; Shehata, M.A.; Salem, H.F.; Magdy, G.; Hussein, R.R.S.; Elbarbry, F. Effects of Pharmacogenetics on Pharmacokinetics and Toxicity of Doxorubicin in Egyptian Breast Cancer Patients. Xenobiotica 2024, 54, 160–170. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, B.; Prasad, C.; Chauhan, S.; Kumar, M. Emerging Research and Future Directions on Doxorubicin: A Snapshot. Asian Pac. J. Cancer Prev. 2025, 26, 5–15. [Google Scholar] [CrossRef]
- Legha, S.S.; Benjamin, R.S.; Mackay, B.; Ewer, M.; Wallace, S.; Valdivieso, M.; Rasmussen, S.L.; Blumenschein, G.R.; Freireich, E.J. Reduction of Doxorubicin Cardiotoxicity by Prolonged Continuous Intravenous Infusion. Ann. Intern. Med. 1982, 96, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Bayles, C.E.; Hale, D.E.; Konieczny, A.; Anderson, V.D.; Richardson, C.R.; Brown, K.V.; Nguyen, J.T.; Hecht, J.; Schwartz, N.; Kharel, M.K.; et al. Upcycling the Anthracyclines: New Mechanisms of Action, Toxicology, and Pharmacology. Toxicol. Appl. Pharmacol. 2023, 459, 116362. [Google Scholar] [CrossRef] [PubMed]
- Salvatorelli, E.; Menna, P.; Paz, O.G.; Chello, M.; Covino, E.; Singer, J.W.; Minotti, G. The Novel Anthracenedione, Pixantrone, Lacks Redox Activity and Inhibits Doxorubicinol Formation in Human Myocardium: Insight to Explain the Cardiac Safety of Pixantrone in Doxorubicin-Treated Patients. J. Pharmacol. Exp. Ther. 2013, 344, 467–478. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Artyukhov, A.A.; Nechaeva, A.M.; Shtilman, M.I.; Chistyakov, E.M.; Svistunova, A.Y.; Bagrov, D.V.; Kuskov, A.N.; Docea, A.O.; Tsatsakis, A.M.; Gurevich, L.; et al. Nanoaggregates of Biphilic Carboxyl-Containing Copolymers as Carriers for Ionically Bound Doxorubicin. Materials 2022, 15, 7136. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, N.A.; Noronha, M.A.; Câmara, M.C.C.; Kurnik, I.S.; Feng, C.; Araujo, V.H.S.; Santos, J.H.P.M.; Feitosa, V.; Molino, J.V.D.; Rangel-Yagui, C.O.; et al. Doxorubicin Nanoformulations on Therapy against Cancer: An Overview from the Last 10 Years. Biomater. Adv. 2022, 133, 112623. [Google Scholar] [CrossRef]
- Hu, C.-M.; Zhang, L. Therapeutic Nanoparticles to Combat Cancer Drug Resistance. Curr. Drug Metab. 2009, 10, 836–841. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, F.; Mishra, R.K.; Khan, R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J. Med. Chem. 2019, 62, 10475–10496. [Google Scholar] [CrossRef]
- Cheah, H.Y.; Šarenac, O.; Arroyo, J.J.; Vasić, M.; Lozić, M.; Glumac, S.; Hoe, S.Z.; Hindmarch, C.C.T.; Murphy, D.; Kiew, L.V.; et al. Hemodynamic Effects of HPMA Copolymer Based Doxorubicin Conjugate: A Randomized Controlled and Comparative Spectral Study in Conscious Rats. Nanotoxicology 2017, 11, 210–222. [Google Scholar] [CrossRef]
- Cheah, H.Y.; Kiew, L.V.; Lee, H.B.; Japundžić-Žigon, N.; Vicent, M.J.; Hoe, S.Z.; Chung, L.Y. Preclinical Safety Assessments of Nano-sized Constructs on Cardiovascular System Toxicity: A Case for Telemetry. J. Appl. Toxicol. 2017, 37, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Skubitz, K.M.; Blaes, A.H.; Konety, S.H.; Francis, G.S. Cardiac Safety Profile of Patients Receiving High Cumulative Doses of Pegylated-Liposomal Doxorubicin: Use of Left Ventricular Ejection Fraction Is of Unproven Value. Cancer Chemother. Pharmacol. 2017, 80, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, F.; Zhao, Y.; Zheng, X. Pegylated Liposomal Doxorubicin-Related Palmar-Plantar Erythrodysesthesia: A Literature Review of Pharmaceutical and Clinical Aspects. Eur. J. Hosp. Pharm. 2021, 28, 124–128. [Google Scholar] [CrossRef]
- Bhagat, A.; Kleinerman, E.S. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. In Current Advances in Osteosarcoma; Kleinerman, E.S., Gorlick, R., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1257, pp. 181–192. ISBN 978-3-030-43031-3. [Google Scholar]
- Lipshultz, S.E.; Cochran, T.R.; Franco, V.I.; Miller, T.L. Treatment-Related Cardiotoxicity in Survivors of Childhood Cancer. Nat. Rev. Clin. Oncol. 2013, 10, 697–710. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Herman, E.H. Anthracycline Cardiotoxicity: The Importance of Horizontally Integrating Pre-Clinical and Clinical Research. Cardiovasc. Res. 2018, 114, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-Induced Cardiomyopathy. J. Am. Coll. Cardiol. 2010, 55, 213–220. [Google Scholar] [CrossRef]
- Jain, D.; Russell, R.R.; Schwartz, R.G.; Panjrath, G.S.; Aronow, W. Cardiac Complications of Cancer Therapy: Pathophysiology, Identification, Prevention, Treatment, and Future Directions. Curr. Cardiol. Rep. 2017, 19, 36. [Google Scholar] [CrossRef]
- Guideline Committee of the Japanese Society of Echocardiography; Onishi, T.; Fukuda, Y.; Miyazaki, S.; Yamada, H.; Tanaka, H.; Sakamoto, J.; Daimon, M.; Izumi, C.; Nonaka, A.; et al. Practical Guidance for Echocardiography for Cancer Therapeutics-Related Cardiac Dysfunction. J. Echocardiogr. 2021, 19, 1–20. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Yeh, E.T.H. Prevention of Anthracycline-Induced Cardiotoxicity. J. Am. Coll. Cardiol. 2014, 64, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Colan, S.D.; Lipshultz, S.E.; Sallan, S.E. Balancing the Oncologic Effectiveness versus the Cardiotoxicity of Anthracycline Chemotherapy in Childhood Cancer. Prog. Pediatr. Cardiol. 2014, 36, 7–10. [Google Scholar] [CrossRef]
- Japundžić-Žigon, N.; Šarenac, O.; Lozić, M.; Vasić, M.; Tasić, T.; Bajić, D.; Kanjuh, V.; Murphy, D. Sudden Death: Neurogenic Causes, Prediction and Prevention. Eur. J. Prev. Cardiol. 2018, 25, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Biasillo, G.; Cipolla, C.M.; Cardinale, D. Cardio-Oncology: Gaps in Knowledge, Goals, Advances, and Educational Efforts. Curr. Oncol. Rep. 2017, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Chaiyakunapruk, N.; Lee, S.W.H. Candidate Gene Association Studies of Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 39. [Google Scholar] [CrossRef]
- Jiang, R.; Lou, L.; Shi, W.; Chen, Y.; Fu, Z.; Liu, S.; Sok, T.; Li, Z.; Zhang, X.; Yang, J. Statins in Mitigating Anticancer Treatment-Related Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 10177. [Google Scholar] [CrossRef]
- German, C.A.; Liao, J.K. Understanding the Molecular Mechanisms of Statin Pleiotropic Effects. Arch. Toxicol. 2023, 97, 1529–1545. [Google Scholar] [CrossRef]
- Haendeler, J.; Hoffmann, J.; Zeiher, A.M.; Dimmeler, S. Antioxidant Effects of Statins via S-Nitrosylation and Activation of Thioredoxin in Endothelial Cells: A Novel Vasculoprotective Function of Statins. Circulation 2004, 110, 856–861. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Huang, K.-C.; Chou, Y.-H.; Hsieh, P.-F.; Lin, K.-H.; Lin, W.-W. The Role of Rho-Associated Kinase in Differential Regulation by Statins of Interleukin-1β- and Lipopolysaccharide-Mediated Nuclear Factor κB Activation and Inducible Nitric-Oxide Synthase Gene Expression in Vascular Smooth Muscle Cells. Mol. Pharmacol. 2006, 69, 960–967. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, J.; Tong, Q.; Lin, Q.; Qian, L.; Park, Y.; Zheng, Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2016, 17, 2001. [Google Scholar] [CrossRef]
- Sun, W.; Lee, T.-S.; Zhu, M.; Gu, C.; Wang, Y.; Zhu, Y.; Shyy, J.Y.-J. Statins Activate AMP-Activated Protein Kinase In Vitro and In Vivo. Circulation 2006, 114, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Feleszko, W.; Mlynarczuk, I.; Balkowiec-Iskra, E.Z.; Czajka, A.; Switaj, T.; Stoklosa, T.; Giermasz, A.; Jakóbisiak, M. Lovastatin Potentiates Antitumor Activity and Attenuates Cardiotoxicity of Doxorubicin in Three Tumor Models in Mice. Clin. Cancer Res. 2000, 6, 2044–2052. [Google Scholar]
- Huelsenbeck, S.C.; Schorr, A.; Roos, W.P.; Huelsenbeck, J.; Henninger, C.; Kaina, B.; Fritz, G. Rac1 Protein Signaling Is Required for DNA Damage Response Stimulated by Topoisomerase II Poisons. J. Biol. Chem. 2012, 287, 38590–38599. [Google Scholar] [CrossRef]
- Gao, G.; Jiang, S.; Ge, L.; Zhang, S.; Zhai, C.; Chen, W.; Sui, S. Atorvastatin Improves Doxorubicin-Induced Cardiac Dysfunction by Modulating Hsp70, Akt, and MAPK Signaling Pathways. J. Cardiovasc. Pharmacol. 2019, 73, 223–231. [Google Scholar] [CrossRef]
- Seicean, S.; Seicean, A.; Plana, J.C.; Budd, G.T.; Marwick, T.H. Effect of Statin Therapy on the Risk for Incident Heart Failure in Patients with Breast Cancer Receiving Anthracycline Chemotherapy. J. Am. Coll. Cardiol. 2012, 60, 2384–2390. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Potekhina, A.; Arefieva, T.; Filatova, A.; Ageev, F.; Belyavskiy, E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int. J. Mol. Sci. 2024, 25, 4958. [Google Scholar] [CrossRef]
- Sun, M.-L.; Dong, J.-M.; Liu, C.; Li, P.; Zhang, C.; Zhen, J.; Chen, W. Metformin-Mediated Protection against Doxorubicin-Induced Cardiotoxicity. Biomed. Pharmacother. 2024, 180, 117535. [Google Scholar] [CrossRef]
- LaMoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Nicol, A.T.; DelPozzo, J.; Wei, J.; Singh, M.; Nguyen, T.; Kobayashi, S.; Liang, Q. Demystifying the Relationship Between Metformin, AMPK, and Doxorubicin Cardiotoxicity. Front. Cardiovasc. Med. 2022, 9, 839644. [Google Scholar] [CrossRef] [PubMed]
- Eurich, D.T.; McAlister, F.A.; Blackburn, D.F.; Majumdar, S.R.; Tsuyuki, R.T.; Varney, J.; Johnson, J.A. Benefits and Harms of Antidiabetic Agents in Patients with Diabetes and Heart Failure: Systematic Review. BMJ 2007, 335, 497. [Google Scholar] [CrossRef] [PubMed]
- Nesti, L.; Natali, A. Metformin Effects on the Heart and the Cardiovascular System: A Review of Experimental and Clinical Data. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 657–669. [Google Scholar] [CrossRef]
- Sun, M.-L.; Chen, W.; Wang, X.-H. Reliability of Metformin’s Protective Effects against Doxorubicin-Induced Cardiotoxicity: A Meta-Analysis of Animal Studies. Front. Pharmacol. 2024, 15, 1435866. [Google Scholar] [CrossRef]
- Tsimihodimos, V.; Filippas-Ntekouan, S.; Elisaf, M. SGLT1 Inhibition: Pros and Cons. Eur. J. Pharmacol. 2018, 838, 153–156. [Google Scholar] [CrossRef]
- Goje, I.-D.; Goje, G.-I.; Ordodi, V.L.; Ciobotaru, V.G.; Ivan, V.S.; Buzaș, R.; Tunea, O.; Bojin, F.; Lighezan, D.-F. Doxorubicin-Induced Cardiotoxicity and the Emerging Role of SGLT2 Inhibitors: From Glycemic Control to Cardio-Oncology. Pharmaceuticals 2025, 18, 681. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Thomson, S.C. Targeting Renal Glucose Reabsorption to Treat Hyperglycaemia: The Pleiotropic Effects of SGLT2 Inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chen, Y.-T.; Wallace, C.G.; Chen, K.-H.; Cheng, B.-C.; Sung, P.-H.; Li, Y.-C.; Ko, S.-F.; Chang, H.-W.; Yip, H.-K. Early Administration of Empagliflozin Preserved Heart Function in Cardiorenal Syndrome in Rat. Biomed. Pharmacother. 2019, 109, 658–670. [Google Scholar] [CrossRef]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 Inhibitor Empagliflozin Improves Myocardial Strain, Reduces Cardiac Fibrosis and pro-Inflammatory Cytokines in Non-Diabetic Mice Treated with Doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Hsieh, P.-L.; Chu, P.-M.; Cheng, H.-C.; Huang, Y.-T.; Chou, W.-C.; Tsai, K.-L.; Chan, S.-H. Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int. J. Mol. Sci. 2022, 23, 10146. [Google Scholar] [CrossRef]
- Pabel, S.; Hamdani, N.; Luedde, M.; Sossalla, S. SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? Curr. Heart Fail. Rep. 2021, 18, 315–328. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Gongora, C.A.; Drobni, Z.D.; Quinaglia Araujo Costa Silva, T.; Zafar, A.; Gong, J.; Zlotoff, D.A.; Gilman, H.K.; Hartmann, S.E.; Sama, S.; Nikolaidou, S.; et al. Sodium-Glucose Co-Transporter-2 Inhibitors and Cardiac Outcomes Among Patients Treated with Anthracyclines. JACC Heart Fail. 2022, 10, 559–567. [Google Scholar] [CrossRef]
- Henson, B.D.; Bale-Neary, C.A.; Mecaskey, R.; Gbujie, O.; Zhan, M.; Rao, K.; Carbone, S. Sodium–Glucose Cotransporter 2 Inhibitors, Malnutrition, Cachexia, and Survival in Patients with Heart Failure with a History of Anthracycline Treatment. J. Cardiovasc. Pharmacol. 2024, 84, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Rangwala, S.M.; Lazar, M.A. Peroxisome Proliferator-Activated Receptor γ in Diabetes and Metabolism. Trends Pharmacol. Sci. 2004, 25, 331–336. [Google Scholar] [CrossRef]
- Lago, R.M.; Singh, P.P.; Nesto, R.W. Congestive Heart Failure and Cardiovascular Death in Patients with Prediabetes and Type 2 Diabetes given Thiazolidinediones: A Meta-Analysis of Randomised Clinical Trials. Lancet 2007, 370, 1129–1136. [Google Scholar] [CrossRef]
- Shiomi, T.; Tsutsui, H.; Hayashidani, S.; Suematsu, N.; Ikeuchi, M.; Wen, J.; Ishibashi, M.; Kubota, T.; Egashira, K.; Takeshita, A. Pioglitazone, a Peroxisome Proliferator–Activated Receptor-γ Agonist, Attenuates Left Ventricular Remodeling and Failure After Experimental Myocardial Infarction. Circulation 2002, 106, 3126–3132. [Google Scholar] [CrossRef]
- Liao, H.-W.; Saver, J.L.; Wu, Y.-L.; Chen, T.-H.; Lee, M.; Ovbiagele, B. Pioglitazone and Cardiovascular Outcomes in Patients with Insulin Resistance, Pre-Diabetes and Type 2 Diabetes: A Systematic Review and Meta-Analysis. BMJ Open 2017, 7, e013927. [Google Scholar] [CrossRef]
- Ochodnicky, P.; Mesarosova, L.; Cernecka, H.; Klimas, J.; Krenek, P.; Goris, M.; Van Dokkum, R.P.E.; Henning, R.H.; Kyselovic, J. Pioglitazone, a PPARγ Agonist, Provides Comparable Protection to Angiotensin Converting Enzyme Inhibitor Ramipril against Adriamycin Nephropathy in Rat. Eur. J. Pharmacol. 2014, 730, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Furihata, T.; Maekawa, S.; Takada, S.; Kakutani, N.; Nambu, H.; Shirakawa, R.; Yokota, T.; Kinugawa, S. Premedication with Pioglitazone Prevents Doxorubicin-Induced Left Ventricular Dysfunction in Mice. BMC Pharmacol. Toxicol. 2021, 22, 27. [Google Scholar] [CrossRef]
- Balakumar, P.; Rohilla, A.; Mahadevan, N. Pleiotropic Actions of Fenofibrate on the Heart. Pharmacol. Res. 2011, 63, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.E.; Kaplon, R.E.; Lucking, S.M.S.; Russell-Nowlan, M.J.; Eckel, R.H.; Seals, D.R. Fenofibrate Improves Vascular Endothelial Function by Reducing Oxidative Stress While Increasing Endothelial Nitric Oxide Synthase in Healthy Normolipidemic Older Adults. Hypertension 2012, 60, 1517–1523. [Google Scholar] [CrossRef]
- Yin, W.-H.; Chen, J.-W.; Chen, Y.-H.; Lin, S.-J. Fenofibrate Modulates HO-1 and Ameliorates Endothelial Expression of Cell Adhesion Molecules in Systolic Heart Failure. Acta Cardiol. Sin. 2013, 29, 251–260. [Google Scholar]
- Jen, H.-L.; Liu, P.-L.; Chen, Y.-H.; Yin, W.-H.; Chen, J.-W.; Lin, S.-J. Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor-κ B and Adiponectin. Mediat. Inflamm. 2016, 2016, 5609121. [Google Scholar] [CrossRef]
- Huang, W.-P.; Yin, W.-H.; Chen, J.-S.; Huang, P.-H.; Chen, J.-W.; Lin, S.-J. Fenofibrate Attenuates Doxorubicin-Induced Cardiac Dysfunction in Mice via Activating the eNOS/EPC Pathway. Sci. Rep. 2021, 11, 1159. [Google Scholar] [CrossRef]
- Dewidar, H.K.; Ghannam, A.A.; Mostafa, T.M. Fenofibrate Attenuates Doxorubicin-Induced Cardiotoxicity in Patients with Breast Cancer: A Randomized Controlled Trial. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Singh, S.; Khanna, D.; Kalra, S. Minocycline and Doxycycline: More Than Antibiotics. Curr. Mol. Pharmacol. 2021, 14, 1046–1065. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Naderi, Y.; Khosraviani, S.; Nasiri, S.; Hajiaghaei, F.; Aali, E.; Jamialahmadi, T.; Banach, M.; Sahebkar, A. Cardioprotective Effects of Minocycline against Doxorubicin-Induced Cardiotoxicity. Biomed. Pharmacother. 2023, 158, 114055. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Manalo, D.J.; Wei, G.; Rodriguez, E.R.; Fox-Talbot, K.; Lu, H.; Zweier, J.L.; Semenza, G.L. Hearts from Rodents Exposed to Intermittent Hypoxia or Erythropoietin Are Protected Against Ischemia-Reperfusion Injury. Circulation 2003, 108, 79–85. [Google Scholar] [CrossRef]
- Moon, C.; Krawczyk, M.; Ahn, D.; Ahmet, I.; Paik, D.; Lakatta, E.G.; Talan, M.I. Erythropoietin Reduces Myocardial Infarction and Left Ventricular Functional Decline after Coronary Artery Ligation in Rats. Proc. Natl. Acad. Sci. USA 2003, 100, 11612–11617. [Google Scholar] [CrossRef]
- Gobe, G.C. Use of High-Dose Erythropoietin for Repair after Injury: A Comparison of Outcomes in Heart and Kidney. J. Nephropathol. 2013, 2, 154–165. [Google Scholar] [CrossRef]
- Li, L.; Takemura, G.; Li, Y.; Miyata, S.; Esaki, M.; Okada, H.; Kanamori, H.; Khai, N.C.; Maruyama, R.; Ogino, A.; et al. Preventive Effect of Erythropoietin on Cardiac Dysfunction in Doxorubicin-Induced Cardiomyopathy. Circulation 2006, 113, 535–543. [Google Scholar] [CrossRef]
- Cui, L.; Guo, J.; Zhang, Q.; Yin, J.; Li, J.; Zhou, W.; Zhang, T.; Yuan, H.; Zhao, J.; Zhang, L.; et al. Erythropoietin Activates SIRT1 to Protect Human Cardiomyocytes against Doxorubicin-Induced Mitochondrial Dysfunction and Toxicity. Toxicol. Lett. 2017, 275, 28–38. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Wang, P.; Xu, M. Erythropoietin Modulates Imbalance of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Doxorubicin-Induced Cardiotoxicity. Heart Lung Circ. 2014, 23, 772–777. [Google Scholar] [CrossRef]
- Kim, K.-H.; Oudit, G.Y.; Backx, P.H. Erythropoietin Protects against Doxorubicin-Induced Cardiomyopathy via a Phosphatidylinositol 3-Kinase-Dependent Pathway. J. Pharmacol. Exp. Ther. 2008, 324, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Keresteš, V.; Kubeš, J.; Applová, L.; Kollárová, P.; Lenčová-Popelová, O.; Melnikova, I.; Karabanovich, G.; Khazeem, M.M.; Bavlovič-Piskáčková, H.; Štěrbová-Kovaříková, P.; et al. Exploring the Effects of Topoisomerase II Inhibitor XK469 on Anthracycline Cardiotoxicity and DNA Damage. Toxicol. Sci. 2024, 198, 288–302. [Google Scholar] [CrossRef]
- Kubeš, J.; Karabanovich, G.; Cong, A.T.Q.; Melnikova, I.; Lenčová, O.; Kollárová, P.; Bavlovič Piskáčková, H.; Keresteš, V.; Applová, L.; Arrouye, L.C.M.; et al. Topobexin Targets the Topoisomerase II ATPase Domain for Beta Isoform-Selective Inhibition and Anthracycline Cardioprotection. Nat. Commun. 2025, 16, 4928. [Google Scholar] [CrossRef]
- Saroj, N.; Dholaniya, P.S.; Alvi, S.B.; Sridharan, D.; Soni, N.; Ashraf, S.A.; Choudhry, A.; Ashraf, Y.A.; Mikula, S.K.; Singla, D.K.; et al. SiRNA-Mediated Knockdown of TOP2B Protects hiPSC-Derived Cardiomyocytes from Doxorubicin-Induced Toxicity. Life Sci. 2025, 371, 123595. [Google Scholar] [CrossRef] [PubMed]
- Biswal, N.; Harish, R.; Roshan, M.; Samudrala, S.; Jiao, X.; Pestell, R.G.; Ashton, A.W. Role of GPCR Signaling in Anthracycline-Induced Cardiotoxicity. Cells 2025, 14, 169. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Chua, C.C.; Ma, Y.-S.; Youngberg, G.A.; Hamdy, R.; Chua, B.H.L. Melatonin as an Effective Protector against Doxorubicin-Induced Cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H254–H263. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.A.; Albuali, W.H.; Al-Mulhim, A.S.; Jresat, I. Cardioprotective Effect of Cannabidiol in Rats Exposed to Doxorubicin Toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 347–357. [Google Scholar] [CrossRef]
- Hao, E.; Mukhopadhyay, P.; Cao, Z.; Erdélyi, K.; Holovac, E.; Liaudet, L.; Lee, W.-S.; Haskó, G.; Mechoulam, R.; Pacher, P. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis. Mol. Med. 2015, 21, 38–45. [Google Scholar] [CrossRef]
- Harada, N.; Arahori, Y.; Okuyama, M.; Luis, P.B.; Joseph, A.I.; Kitakaze, T.; Goshima, N.; Schneider, C.; Inui, H.; Yamaji, R. Curcumin Activates G Protein-Coupled Receptor 97 (GPR97) in a Manner Different from Glucocorticoid. Biochem. Biophys. Res. Commun. 2022, 595, 41–46. [Google Scholar] [CrossRef]
- Gao, T.; Yang, P.; Fu, D.; Liu, M.; Deng, X.; Shao, M.; Liao, J.; Jiang, H.; Li, X. The Protective Effect of Allicin on Myocardial Ischemia-Reperfusion by Inhibition of Ca2+ Overload-Induced Cardiomyocyte Apoptosis via the PI3K/GRK2/PLC-γ/IP3R Signaling Pathway. Aging 2021, 13, 19643–19656. [Google Scholar] [CrossRef] [PubMed]
- Koss-Mikołajczyk, I.; Todorovic, V.; Sobajic, S.; Mahajna, J.; Gerić, M.; Tur, J.A.; Bartoszek, A. Natural Products Counteracting Cardiotoxicity during Cancer Chemotherapy: The Special Case of Doxorubicin, a Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 10037. [Google Scholar] [CrossRef] [PubMed]
- Jalševac, F.; Terra, X.; Rodríguez-Gallego, E.; Beltran-Debón, R.; Blay, M.T.; Pinent, M.; Ardévol, A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front. Endocrinol. 2022, 13, 854718. [Google Scholar] [CrossRef] [PubMed]
- Hamada, J.; Baasanjav, A.; Ono, N.; Murata, K.; Kako, K.; Ishida, J.; Fukamizu, A. Possible Involvement of Downregulation of the Apelin-APJ System in Doxorubicin-Induced Cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H931–H941. [Google Scholar] [CrossRef]
- Chatfield, K.C.; Sparagna, G.C.; Chau, S.; Phillips, E.K.; Ambardekar, A.V.; Aftab, M.; Mitchell, M.B.; Sucharov, C.C.; Miyamoto, S.D.; Stauffer, B.L. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl. Sci. 2019, 4, 147–157. [Google Scholar] [CrossRef]
- Enevoldsen, F.C.; Sahana, J.; Wehland, M.; Grimm, D.; Infanger, M.; Krüger, M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J. Clin. Med. 2020, 9, 824. [Google Scholar] [CrossRef]
- Dantas, D.; Pereira, A.G.; Fujimori, A.S.S.; Ribeiro, A.P.D.; De Almeida Silva, C.C.V.; Monte, M.G.; Corrêa, C.R.; Fernandes, A.A.; Bazan, S.G.Z.; Azevedo, P.S.; et al. Doxycycline Attenuates Doxorubicin-Induced Cardiotoxicity by Improving Myocardial Energy Metabolism in Rats. J. Cardiovasc. Dev. Dis. 2022, 9, 254. [Google Scholar] [CrossRef]
- Beard, N.; Hanna, A.; Wei-LaPierre, L.; Tylock, K.; Willemse, H.; Dulhunty, A.; Dirksen, R. Doxorubicin Alters Cardiomyocyte Calcium Regulation and Stimulates Mitochondrial Superoxide Flash Production. Biophys. J. 2015, 108, 265a. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Chan, M.; Bhatti, H.; Halton, M.; Grassi, L.; Johansen, C.; Meader, N. Prevalence of Depression, Anxiety, and Adjustment Disorder in Oncological, Haematological, and Palliative-Care Settings: A Meta-Analysis of 94 Interview-Based Studies. Lancet Oncol. 2011, 12, 160–174. [Google Scholar] [CrossRef]
- Thal, D.M.; Homan, K.T.; Chen, J.; Wu, E.K.; Hinkle, P.M.; Huang, Z.M.; Chuprun, J.K.; Song, J.; Gao, E.; Cheung, J.Y.; et al. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility. ACS Chem. Biol. 2012, 7, 1830–1839. [Google Scholar] [CrossRef]
- Bourin, M.; Chue, P.; Guillon, Y. Paroxetine: A Review. CNS Drug Rev. 2001, 7, 25–47. [Google Scholar] [CrossRef]
- Cho, Y.-W.; Kim, E.-J.; Nyiramana, M.M.; Shin, E.-J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.-W.; Kim, H.J.; Han, J.; et al. Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca2+-and P38 MAP Kinase-Dependent ROS Generation. Cancers 2019, 11, 64. [Google Scholar] [CrossRef]
- Ojero-Senard, A.; Benevent, J.; Bondon-Guitton, E.; Durrieu, G.; Chebane, L.; Araujo, M.; Montastruc, F.; Montastruc, J.-L. A Comparative Study of QT Prolongation with Serotonin Reuptake Inhibitors. Psychopharmacology 2017, 234, 3075–3081. [Google Scholar] [CrossRef]
- Jasiak, N.M.; Bostwick, J.R. Risk of QT/QTc Prolongation Among Newer Non-SSRI Antidepressants. Ann. Pharmacother. 2014, 48, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Plijter, I.S.; Verkerk, A.O.; Wilders, R. The Antidepressant Paroxetine Reduces the Cardiac Sodium Current. Int. J. Mol. Sci. 2023, 24, 1904. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, T.; McCormack, D.; Tadrous, M.; Juurlink, D.N.; Gomes, T. The Risk of Ventricular Dysrhythmia or Sudden Death in Patients Receiving Serotonin Reuptake Inhibitors with Methadone: A Population-Based Study. Front. Pharmacol. 2022, 13, 861953. [Google Scholar] [CrossRef]
- Shen, Y.; Brown, C.E.; Li, X.; Zhang, P.; McGee, S.R.; Spina, S.C.; Loret De Mola, J.R.; Fiddler, J.L.; Wu, H.; Liu, Q. Selective Serotonin Reuptake Inhibitors Induce Cardiac Toxicity through Dysfunction of Mitochondria and Sarcomeres. Commun. Biol. 2025, 8, 736. [Google Scholar] [CrossRef]
- Bérard, A.; Iessa, N.; Chaabane, S.; Muanda, F.T.; Boukhris, T.; Zhao, J. The Risk of Major Cardiac Malformations Associated with Paroxetine Use during the First Trimester of Pregnancy: A Systematic Review and Meta-analysis. Br. J. Clin. Pharmacol. 2016, 81, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Song, F.; Gu, J.; Wu, L.; Wu, W.; Ji, G. Paroxetine Induced Larva Zebrafish Cardiotoxicity through Inflammation Response. Ecotoxicol. Environ. Saf. 2023, 260, 115096. [Google Scholar] [CrossRef] [PubMed]
- Alonazi, A.S.; Almodawah, S.; Aldigi, R.; Bin Dayel, A.; Alamin, M.; Almotairi, A.R.; El-Tohamy, M.F.; Alharbi, H.; Ali, R.; Alshammari, T.K.; et al. Potential Cardioprotective Effect of Paroxetine against Ventricular Remodeling in an Animal Model of Myocardial Infarction: A Comparative Study. BMC Pharmacol. Toxicol. 2024, 25, 99. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, M.; Wen, G.; Huang, Y.; Wu, J.; Peng, L.; Jiang, W.; Yuan, H.; Lu, Y.; Cai, J. Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. J. Am. Heart Assoc. 2021, 10, e016364. [Google Scholar] [CrossRef] [PubMed]
- Waddingham, M.T.; Tsuchimochi, H.; Sonobe, T.; Sequeira, V.; Nayeem, M.J.; Shirai, M.; Pearson, J.T.; Ogo, T. The Selective Serotonin Reuptake Inhibitor Paroxetine Improves Right Ventricular Systolic Function in Experimental Pulmonary Hypertension. J. Mol. Cell. Cardiol. Plus 2024, 8, 100072. [Google Scholar] [CrossRef]
- Gatto, C.; Rusciano, M.R.; Visco, V.; Ciccarelli, M. GRK2 and Mitochondrial Dynamics in Cardiovascular Health and Disease. Int. J. Mol. Sci. 2025, 26, 2299. [Google Scholar] [CrossRef]
- Xu, H.; Meng, L.; Long, H.; Shi, Y.; Liu, Y.; Wang, L.; Liu, D. Paroxetine and Mortality in Heart Failure: A Retrospective Cohort Study. Front. Cardiovasc. Med. 2022, 8, 794584. [Google Scholar] [CrossRef]
- Fan, Q.; Chen, M.; Zuo, L.; Shang, X.; Huang, M.Z.; Ciccarelli, M.; Raake, P.; Brinks, H.; Chuprun, K.J.; Dorn, G.W.; et al. Myocardial Ablation of G Protein–Coupled Receptor Kinase 2 (GRK2) Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway. PLoS ONE 2013, 8, e66234. [Google Scholar] [CrossRef]
- Theccanat, T.; Philip, J.L.; Razzaque, A.M.; Ludmer, N.; Li, J.; Xu, X.; Akhter, S.A. Regulation of Cellular Oxidative Stress and Apoptosis by G Protein-Coupled Receptor Kinase-2; The Role of NADPH Oxidase 4. Cell. Signal. 2016, 28, 190–203. [Google Scholar] [CrossRef]
- Lassen, T.R.; Nielsen, J.M.; Johnsen, J.; Ringgaard, S.; Bøtker, H.E.; Kristiansen, S.B. Effect of Paroxetine on Left Ventricular Remodeling in an in Vivo Rat Model of Myocardial Infarction. Basic Res. Cardiol. 2017, 112, 26. [Google Scholar] [CrossRef]


| Candidate Drug/Class | Primary Mechanism(s) of Action in DIC | Preclinical Evidence | Clinical Evidence | References |
|---|---|---|---|---|
| Statins | ↓ ROS (NOX-1 inhibition, ↑ antioxidant enzymes), ↓ NF-κB inflammation, ↓ fibrosis, AMPK activation, ↑ eNOS | Strong, multiple animal and cellular models | Retrospective studies (↓ HF incidence in breast cancer patients); ESC guidelines recommend in high-risk patients | [98,99,100,101,102,103,104,105,106,107,108,109] |
| Metformin | AMPK activation, ↓ oxidative stress, ↑ mitochondrial function, normalization of autophagy | Robust in vitro and in vivo | Limited; one terminated phase II trial (NCT02472353) | [110,111,112,113,114,115] |
| SGLT2 inhibitors (dapagliflozin, empagliflozin, canagliflozin) | ↓ inflammation (↓ NF-κB), ↓ oxidative stress, ↑ autophagy, improved energy metabolism (↑ ketone use), preserved microstructure | Strong preclinical data | Large HF trials (non-DIC); early observational data in cancer patients | [116,117,118,119,120,121,122,123,124,125] |
| Pioglitazone | PPAR-γ activation, ↓ inflammation, ↓ fibrosis, improved LV function | Positive in mouse models of DIC and MI | Limited; CVD trials outside oncology | [126,127,128,129,130,131] |
| Fibrates (fenofibrate) | PPAR-α activation, ↓ oxidative stress, ↑ eNOS, angiogenesis, ↓ BNP/pro-BNP, ↑ endothelial progenitors | Strong in mouse DIC models | RCT in breast cancer: safe, ↓ DIC incidence, improved EF | [132,133,134,135,136,137] |
| Minocycline | ↑ antioxidant enzymes, ↓ lipid peroxidation, ↓ cytokines, ↓ apoptosis, protection against structural damage | Robust in vitro and in vivo | Very limited | [138,139,140] |
| Erythropoietin | ↑ mitochondrial biogenesis, PI3K-Akt activation, ↓ remodeling/fibrosis | Consistent preclinical | Limited; some supportive observations | [141,142,143,144,145,146,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosić, M.; Pajović, V.; Jovanović, M.; Japundžić-Žigon, N. Drug Repositioning in Doxorubicin-Induced Cardiotoxicity Protection. Int. J. Mol. Sci. 2025, 26, 10130. https://doi.org/10.3390/ijms262010130
Kosić M, Pajović V, Jovanović M, Japundžić-Žigon N. Drug Repositioning in Doxorubicin-Induced Cardiotoxicity Protection. International Journal of Molecular Sciences. 2025; 26(20):10130. https://doi.org/10.3390/ijms262010130
Chicago/Turabian StyleKosić, Marija, Vladislav Pajović, Mirjana Jovanović, and Nina Japundžić-Žigon. 2025. "Drug Repositioning in Doxorubicin-Induced Cardiotoxicity Protection" International Journal of Molecular Sciences 26, no. 20: 10130. https://doi.org/10.3390/ijms262010130
APA StyleKosić, M., Pajović, V., Jovanović, M., & Japundžić-Žigon, N. (2025). Drug Repositioning in Doxorubicin-Induced Cardiotoxicity Protection. International Journal of Molecular Sciences, 26(20), 10130. https://doi.org/10.3390/ijms262010130

