Navigating the Hurdles of Intra-Articular AAV Gene Therapy
Abstract
1. Introduction
2. AAV Biology
3. Clinical Trials
4. Preclinical Targets
5. Barriers and Solutions in AAV Gene Therapy
5.1. Transduction Efficiency
- Potential Strategies:
5.2. AAV Toxicity and Safety Considerations
5.2.1. Integration
5.2.2. Off Target
5.2.3. Immunogenicity
- Potential Strategies:
5.3. Preexisting Immune Response in Joint
- Potential Strategies:
6. Future Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandigursky, S.; Silverman, G.J.; Mor, A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun. Rev. 2017, 16, 767–773. [Google Scholar] [CrossRef]
- Davis, J.M.; Matteson, E.L.; American College of Rheumatology; European League Against Rheumatism. My treatment approach to rheumatoid arthritis. Mayo Clin. Proc. 2012, 87, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Singh, J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther. 2011, 33, 679–707. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Padhan, P. An Overview of the Extraarticular Involvement in Rheumatoid Arthritis and its Management. J. Pharmacol. Pharmacother. 2017, 8, 81–86. [Google Scholar]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef]
- Shao, W.; Earley, L.F.; Chai, Z.; Chen, X.; Sun, J.; He, T.; Deng, M.; Hirsch, M.L.; Ting, J.; Samulski, R.J.; et al. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight 2018, 3, e120474. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef]
- Kuzmin, D.A.; Shutova, M.V.; Johnston, N.R.; Smith, O.P.; Fedorin, V.V.; Kukushkin, Y.S.; van der Loo, J.C.; Johnstone, E.C. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 2021, 20, 173–174. [Google Scholar] [CrossRef]
- Payne, K.; Lee, H.; Haleem, A.; Martins, C.; Yuan, Z.; Qiao, C.; Xiao, X.; Chu, C. Single intra-articular injection of adeno-associated virus results in stable and controllable in vivo transgene expression in normal rat knees. Osteoarthr. Cartil. 2011, 19, 1058–1065. [Google Scholar] [CrossRef]
- Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D. Gene Delivery to Joints by Intra-Articular Injection. Hum. Gene Ther. 2018, 29, 2–14. [Google Scholar] [CrossRef]
- Zavvar, M.; Assadiasl, S.; Soleimanifar, N.; Pakdel, F.D.; Abdolmohammadi, K.; Fatahi, Y.; Abdolmaleki, M.; Baghdadi, H.; Tayebi, L.; Nicknam, M.H. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. J. Cell. Physiol. 2019, 234, 16913–16924. [Google Scholar] [CrossRef]
- Oligino, T.; Ghivizzani, S.C.; Wolfe, D.; Lechman, E.R.; Krisky, D.; Mi, Z.; Evans, C.H.; Robbins, P.D.; Glorioso, J.C. Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Ther. 1999, 6, 1713–1720. [Google Scholar] [PubMed]
- Goodrich, L.R.; Grieger, J.C.; Phillips, J.N.; Khan, N.; Gray, S.J.; McIlwraith, C.W.; Samulski, R.J. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther. 2015, 22, 536–545. [Google Scholar] [CrossRef]
- Vrouwe, J.; Meulenberg, J.; Klarenbeek, N.; Navas-Cañete, A.; Reijnierse, M.; Ruiterkamp, G.; Bevaart, L.; Lamers, R.; Kloppenburg, M.; Nelissen, R.; et al. Administration of an adeno-associated viral vector expressing interferon-β in patients with inflammatory hand arthritis, results of a phase I/II study. Osteoarthr. Cartil. 2022, 30, 52–60. [Google Scholar] [CrossRef]
- van Helvoort, E.M.; van der Heijden, E.; van Roon, J.A.G.; Eijkelkamp, N.; Mastbergen, S.C. The Role of Interleukin-4 and Interleukin-10 in Osteoarthritic Joint Disease: A Systematic Narrative Review. Cartilage 2022, 13, 19476035221098167. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Wu, R.; Fialkow, L.B.; Bromberg, J.S.; McDuffie, M.; Naji, A.; Nadler, J.L. Suppression of Autoimmune Diabetes by Viral IL-10 Gene Transfer. J. Immunol. 2002, 168, 6479–6485. [Google Scholar] [CrossRef]
- van Holten, J.; Plater-Zyberk, C.; Tak, P.P. Interferon-beta for treatment of rheumatoid arthritis? Arthritis Res. 2002, 4, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, J.; Feng, S.L.; Wang, F.; Miao, M.Z.; Wu, E.Y.; Wallet, S.; Loeser, R.; Li, C. Intra-articular delivery of AAV vectors encoding PD-L1 attenuates joint inflammation and tissue damage in a mouse model of rheumatoid arthritis. Front. Immunol. 2023, 14, 1116084. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Akhtar, S.; Porter, R.M.; Önnerfjord, P.; Bajpayee, A.G. Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res. Ther. 2019, 21, 238. [Google Scholar] [CrossRef]
- Gabay, C. Cytokine inhibitors in the treatment of rheumatoid arthritis. Expert Opin. Biol. Ther. 2002, 2, 135–149. [Google Scholar] [CrossRef]
- Robert, M.; Miossec, P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front. Med. 2019, 5, 364. [Google Scholar] [CrossRef] [PubMed]
- Beringer, A.; Miossec, P. Systemic effects of IL-17 in inflammatory arthritis. Nat. Rev. Rheumatol. 2019, 15, 491–501. [Google Scholar] [CrossRef]
- Alghasham, A.; Rasheed, Z. Therapeutic targets for rheumatoid arthritis: Progress and promises. Autoimmunity 2013, 47, 77–94. [Google Scholar] [CrossRef]
- Isaacs, J.D. Therapeutic T-cell manipulation in rheumatoid arthritis: Past, present and future. Rheumatology 2008, 47, 1461–1468. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, D.; Wang, R.; Wu, M.; Zhu, L.; Peng, W.; Tu, H.; Deng, X.; Zhu, H.; Zhang, Z.; et al. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv. 2021, 28, 2447–2459. [Google Scholar] [CrossRef]
- Khan, S.; Greenberg, J.D.; Bhardwaj, N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 566–571. [Google Scholar] [CrossRef]
- O’cAllaghan, J.; Delaney, C.; O’cOnnor, M.; van Batenburg-Sherwood, J.; Schicht, M.; Lütjen-Drecoll, E.; Hudson, N.; Ni Dhubhghaill, S.; Humphries, P.; Stanley, C.; et al. Matrix metalloproteinase-3 (MMP-3)–mediated gene therapy for glaucoma. Sci. Adv. 2023, 9, eadf6537. [Google Scholar] [CrossRef]
- Mixon, A.; Bahar-Moni, A.S.; Faisal, T.R. Mechanical characterization of articular cartilage degraded combinedly with MMP-1 and MMP-9. J. Mech. Behav. Biomed. Mater. 2022, 129, 105131. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Wezel, A.; Madry, H.; Cucchiarini, M. rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in situ. J. Transl. Med. 2013, 11, 211. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, J.; Zhao, S.; Wu, J.; Jin, Y.; Yu, L.; Wu, N.; Wu, Z.; Wang, Y.; Lin, M. ADAMTS5 in Osteoarthritis: Biological Functions, Regulatory Network, and Potential Targeting Therapies. Front. Mol. Biosci. 2021, 8, 703110. [Google Scholar] [CrossRef] [PubMed]
- Guenther, C.M.; Brun, M.J.; Bennett, A.D.; Ho, M.L.; Chen, W.; Zhu, B.; Lam, M.; Yamagami, M.; Kwon, S.; Bhattacharya, N.; et al. Protease-Activatable Adeno-Associated Virus Vector for Gene Delivery to Damaged Heart Tissue. Mol. Ther. 2019, 27, 611–622. [Google Scholar] [CrossRef]
- Mary, B.; Maurya, S.; Arumugam, S.; Kumar, V.; Jayandharan, G.R. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes. FEBS J. 2019, 286, 4964–4981. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, B.; Mah, C.S.; Govindasamy, L.; Agbandje-McKenna, M.; Cooper, M.; Herzog, R.W.; Zolotukhin, I.; Warrington, K.H., Jr.; Aken, K.A.W.-V.; et al. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl. Acad. Sci. USA 2008, 105, 7827–7832, Erratum in Proc. Natl. Acad. Sci. USA 2008, 105, 11032. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Feng, S.L.; Herrschaft, L.; Samulski, R.J.; Li, C. Rationally engineered novel AAV capsids for intra-articular gene delivery. Mol. Ther.-Methods Clin. Dev. 2024, 32, 101211. [Google Scholar] [CrossRef]
- Asuri, P.; A Bartel, M.; Vazin, T.; Jang, J.-H.; Wong, T.B.; Schaffer, D.V. Directed Evolution of Adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells. Mol. Ther. 2012, 20, 329–338. [Google Scholar] [CrossRef]
- Tabebordbar, M.; Lagerborg, K.A.; Stanton, A.; King, E.M.; Ye, S.; Tellez, L.; Krunnfusz, A.; Tavakoli, S.; Widrick, J.J.; Messemer, K.A.; et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021, 184, 4919–4938.e22. [Google Scholar] [CrossRef] [PubMed]
- Presnyak, V.; Alhusaini, N.; Chen, Y.-H.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R.; et al. Codon Optimality Is a Major Determinant of mRNA Stability. Cell 2015, 160, 1111–1124. [Google Scholar] [CrossRef]
- Liu, C.-F.; Samsa, W.E.; Zhou, G.; Lefebvre, V. Transcriptional control of chondrocyte specification and differentiation. Semin. Cell Dev. Biol. 2017, 62, 34–49. [Google Scholar] [CrossRef]
- McCarty, D.M. Self-complementary AAV Vectors; Advances and Applications. Mol. Ther. 2008, 16, 1648–1656. [Google Scholar] [CrossRef]
- Nigar, S.; Shimosato, T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front. Nutr. 2019, 6, 140. [Google Scholar] [CrossRef]
- Yan, Z.; Zak, R.; Zhang, Y.; Engelhardt, J.F. Inverted Terminal Repeat Sequences Are Important for Intermolecular Recombination and Circularization of Adeno-Associated Virus Genomes. J. Virol. 2005, 79, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Narwade, N.; Patel, S.; Alam, A.; Chattopadhyay, S.; Mittal, S.; Kulkarni, A. Mapping of scaffold/matrix attachment regions in human genome: A data mining exercise. Nucleic Acids Res. 2019, 47, 7247–7261. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Uchibori, R.; Iwata-Okada, M.; Takahashi, M.; Nomoto, T.; Nonaka-Sarukawa, M.; Ito, T.; Liu, Y.; Mizukami, H.; Kume, A.; et al. A Histone Deacetylase Inhibitor Enhances Recombinant Adeno-associated Virus-Mediated Gene Expression in Tumor Cells. Mol. Ther. 2006, 13, 738–746. [Google Scholar] [CrossRef]
- Okada, T.; Takeda, S. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy. Pharmaceuticals 2013, 6, 813–836. [Google Scholar] [CrossRef]
- Maihöfer, J.; Madry, H.; Rey-Rico, A.; Venkatesan, J.K.; Goebel, L.; Schmitt, G.; Speicher-Mentges, S.; Cai, X.; Meng, W.; Zurakowski, D.; et al. Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo. Adv. Mater. 2021, 33, 2008451. [Google Scholar] [CrossRef]
- Hanlon, K.S.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Volak, A.; Spirig, S.E.; Muller, A.; Sousa, A.A.; Tsai, S.Q.; Bengtsson, N.E.; et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 2019, 10, 4439. [Google Scholar] [CrossRef] [PubMed]
- Greig, J.A.; Martins, K.M.; Breton, C.; Lamontagne, R.J.; Zhu, Y.; He, Z.; White, J.; Zhu, J.-X.; Chichester, J.A.; Zheng, Q.; et al. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat. Biotechnol. 2023, 42, 1232–1242. [Google Scholar] [CrossRef]
- Penaud-Budloo, M.; Le Guiner, C.; Nowrouzi, A.; Toromanoff, A.; ChérEl, Y.; Chenuaud, P.; Schmidt, M.; von Kalle, C.; Rolling, F.; Moullier, P.; et al. Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle. J. Virol. 2008, 82, 7875–7885. [Google Scholar] [CrossRef]
- Riyad, J.M.; Weber, T. Intracellular trafficking of adeno-associated virus (AAV) vectors: Challenges and future directions. Gene Ther. 2021, 28, 683–696, Erratum in Gene Ther. 2021, 28, 771. [Google Scholar] [CrossRef]
- Russell, D.W. AAV Vectors, Insertional Mutagenesis, and Cancer. Mol. Ther. 2007, 15, 1740–1743. [Google Scholar] [CrossRef]
- Batty, P.; Mo, A.M.; Hurlbut, D.; Ishida, J.; Yates, B.; Brown, C.; Harpell, L.M.; Hough, C.; Pender, A.; Rimmer, E.K.; et al. Long-term follow-up of liver-directed, adeno-associated vector-mediated gene therapy in the canine model of hemophilia A. Blood 2022, 140, 2672–2683. [Google Scholar] [CrossRef] [PubMed]
- Keeler, G.D.; Markusic, D.M.; Hoffman, B.E. Liver induced transgene tolerance with AAV vectors. Cell. Immunol. 2019, 342, 103728. [Google Scholar] [CrossRef]
- Ho, A.; Orton, R.; Tayler, R.; Asamaphan, P.; Herder, V.; Davis, C.; Tong, L.; Smollett, K.; Manali, M.; Allan, J.; et al. Adeno-associated virus 2 infection in children with non-A–E hepatitis. Nature 2023, 617, 555–563. [Google Scholar] [CrossRef]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef]
- Wu, T.-L.; Li, H.; Faust, S.M.; Chi, E.; Zhou, S.; Wright, F.; A High, K.; Ertl, H.C. CD8+ T Cell Recognition of Epitopes Within the Capsid of Adeno-associated Virus 8–based Gene Transfer Vectors Depends on Vectors’ Genome. Mol. Ther. 2014, 22, 42–51. [Google Scholar] [CrossRef]
- Muhuri, M.; Maeda, Y.; Ma, H.; Ram, S.; Fitzgerald, K.A.; Tai, P.W.L.; Gao, G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J. Clin. Investig. 2021, 131, e143780. [Google Scholar] [CrossRef]
- Blaney Davidson, E.N.; van de Loo, F.A.J.; van den Berg, W.B.; van der Kraan, P.M. How to build an inducible cartilage-specific transgenic mouse. Arthritis Res. Ther. 2014, 16, 210. [Google Scholar] [CrossRef]
- Bennett, V.D.; Adams, S.L. Identification of a cartilage-specific promoter within intron 2 of the chick alpha 2(I) collagen gene. J. Biol. Chem. 1990, 265, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, C.; Ashe, H.L. CRISPR-Cas9 strategies to insert MS2 stem-loops into endogenous loci in Drosophila embryos. STAR Protoc. 2021, 2, 100380. [Google Scholar] [CrossRef]
- Qiao, C.; Yuan, Z.; Li, J.; He, B.; Zheng, H.; Mayer, C.; Xiao, X. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2010, 18, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.; Adriaansen, J.; Vervoordeldonk, M.J.B.M.; Gould, D.; Chernajovsky, Y.; Bigey, P.; Bloquel, C.; Scherman, D.; Tak, P.P.; Jorgensen, C.; et al. Inflammation-inducible anti-TNF gene expression mediated by intra-articular injection of serotype 5 adeno-associated virus reduces arthritis. J. Gene Med. 2007, 9, 596–604. [Google Scholar] [CrossRef]
- Watanabe, S.; Imagawa, T.; Boivin, G.P.; Gao, G.; Wilson, J.M.; Hirsch, R. Adeno-Associated Virus Mediates Long-Term Gene Transfer and Delivery of Chondroprotective IL-4 to Murine Synovium. Mol. Ther. 2000, 2, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; Alsalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Ren, Y.; Gao, P.; Xu, W.; Xie, X.; Diao, Y. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes. Virol. J. 2023, 20, 2. [Google Scholar] [CrossRef]
- Lang, A.; Neuhaus, J.; Pfeiffenberger, M.; Schröder, E.; Ponomarev, I.; Weber, Y.; Gaber, T.; Schmidt, M.F.G. Optimization of a nonviral transfection system to evaluate Cox-2 controlled interleukin-4 expression for osteoarthritis gene therapy in vitro. J. Gene Med. 2014, 16, 352–363. [Google Scholar] [CrossRef]
- Broeren, M.G.; de Vries, M.; Bennink, M.B.; Arntz, O.J.; Blom, A.B.; Koenders, M.I.; van Lent, P.L.; van der Kraan, P.M.; Berg, W.B.v.D.; van de Loo, F.A. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis. Hum. Gene Ther. 2016, 27, 244–254. [Google Scholar] [CrossRef]
- Ortved, K.; Wagner, B.; Calcedo, R.; Wilson, J.; Schaefer, D.; Nixon, A. Humoral and Cell-Mediated Immune Response, and Growth Factor Synthesis After Direct Intraarticular Injection of rAAV2-IGF-I and rAAV5-IGF-I in the Equine Middle Carpal Joint. Hum. Gene Ther. 2015, 26, 161–171. [Google Scholar] [CrossRef]
- Perez, B.A.; Shutterly, A.; Chan, Y.K.; Byrne, B.J.; Corti, M. Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sci. 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Abdul, T.Y.; Hawse, G.P.; Smith, J.; Sellon, J.L.; Abdel, M.P.; Wells, J.W.; Coenen, M.J.; Evans, C.H.; De La Vega, R.E. Prevalence of AAV2.5 neutralizing antibodies in synovial fluid and serum of patients with osteoarthritis. Gene Ther. 2022, 30, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.H.; Levescot, A.; Nelson-Maney, N.; Blaustein, R.B.; Winden, K.D.; Morris, A.; Wactor, A.; Balu, S.; Grieshaber-Bouyer, R.; Wei, K.; et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 2021, 37, 109902. [Google Scholar] [CrossRef]
- Holoshttz, J.; Strober, S.; Koning, F.; Coligan, J.E.; De Bruyn, J. Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 1989, 339, 226–229. [Google Scholar] [CrossRef]
- Kruzik, A.; Fetahagic, D.; Hartlieb, B.; Dorn, S.; Koppensteiner, H.; Horling, F.M.; Scheiflinger, F.; Reipert, B.M.; de la Rosa, M. Prevalence of Anti-Adeno-Associated Virus Immune Responses in International Cohorts of Healthy Donors. Mol. Ther. Methods Clin. Dev. 2019, 14, 126–133. [Google Scholar] [CrossRef]
- Ertl, H.C.J. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front. Immunol. 2021, 12, 666666. [Google Scholar] [CrossRef]
- Ronzitti, G.; Gross, D.-A.; Mingozzi, F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front. Immunol. 2020, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- Van Der Velden, W.J.F.M.; Choi, G.; De Witte, M.A.; Van Der Meer, A.; De Haan, A.F.J.; Blijlevens, N.M.A.; Huls, G.; Kuball, J.; van Drop, S. Anti-thymocyte globulin with CsA and MMF as GVHD prophylaxis in nonmyeloablative HLA-mismatched allogeneic HCT. Bone Marrow Transpl. 2021, 56, 2651–2655. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.P.; Shannon, O.; Björck, L. IdeS: A Bacterial Proteolytic Enzyme with Therapeutic Potential. PLoS ONE 2008, 3, e1692. [Google Scholar] [CrossRef] [PubMed]
- Mingozzi, F.; Anguela, X.M.; Pavani, G.; Chen, Y.; Davidson, R.J.; Hui, D.J.; Yazicioglu, M.; Elkouby, L.; Hinderer, C.J.; Faella, A.; et al. Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys. Sci. Transl. Med. 2013, 5, 194ra92. [Google Scholar] [CrossRef]
- Leaderer, D.; Cashman, S.M.; Kumar-Singh, R. Adeno-associated virus mediated delivery of an engineered protein that combines the complement inhibitory properties of CD46, CD55 and CD59: SACT and DTAC inhibit activation of complement. J. Gene Med. 2015, 17, 101–115. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017, 2, 17023. Available online: http://www.nature.com/articles/sigtrans201723 (accessed on 26 July 2021). [CrossRef] [PubMed]
- Cao, O.; Dobrzynski, E.; Wang, L.; Nayak, S.; Mingle, B.; Terhorst, C.; Herzog, R.W. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 2007, 110, 1132–1140. [Google Scholar] [CrossRef]
- Mingozzi, F.; High, K.A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013, 122, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Li, S.; Bird, A.; Koeberl, D.D. Hydrostatic isolated limb perfusion with adeno-associated virus vectors enhances correction of skeletal muscle in Pompe disease. Gene Ther. 2010, 17, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
| AAV Serotype | Gene of Interest | Indication | Location/Joints | Sponsor | Trial Number | Dose (vg) | Patients (n) |
|---|---|---|---|---|---|---|---|
| AAV5.2 | ICM-203 | OA | Knee | ICM Co., Ltd. (Tokyo, Japan) | NCT05454566 | 6 × 1012–6 × 1013 | 18 |
| AAV5.2 | ICM-203 | OA | Knee | ICM Biotech Australia Pty Ltd. (Melbourne, Australia) | NCT04875754 | 6 × 1012–6 × 1013 | 16 |
| AAV5 | sTNFR1 | RA | Wrist | Arthrogen (Amsterdam, The Netherlands) | NCT03445715 | 2.4 × 1012–2.4 × 1013 | 15 |
| AAV5 | sTNFR1 | RA and OA | Finger joints | Arthrogen | NCT02727764 | 0.6 × 1012–1.2 × 1013 | 12 |
| AAV2.5 | IL-1Ra | OA | Knee | Mayo Clinic (Rochester, NY, USA) | NCT02790723 | 1 × 1011–1 × 1013 | 9 |
| AAV2 | TNFR | RA | Peripheral joints | Targeted Genetics Corporation (Seattle, WA, USA) | NCT00617032 | 1 × 1010–1 × 1011 | 15 |
| AAV2 | TNFR | Various arthritis | Peripheral joints | Targeted Genetics Corporation | NCT00126724 | 1 × 1011–1 × 1013 | 120 |
| Barriers | Description | Potential Strategies |
|---|---|---|
| Limited transduction efficiency | Low expression in joint tissue due to poor tropism, restricted cell range, and low percentage of transduced cells. |
|
| Integration | Insertional mutagenesis. |
|
| Off-target distribution | Escape of AAV from joint into bloodstream and unintended transduction in liver or other tissues. |
|
| Immunogenicity | Activation of innate and adaptive immune responses to capsid and/or transgene. |
|
| Preexisting neutralizing antibodies (Nabs) | High prevalence in human serum and synovial fluid can reduce or block transduction. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Thornton, O.; Feng, S.; Li, C. Navigating the Hurdles of Intra-Articular AAV Gene Therapy. Int. J. Mol. Sci. 2025, 26, 10123. https://doi.org/10.3390/ijms262010123
Li W, Thornton O, Feng S, Li C. Navigating the Hurdles of Intra-Articular AAV Gene Therapy. International Journal of Molecular Sciences. 2025; 26(20):10123. https://doi.org/10.3390/ijms262010123
Chicago/Turabian StyleLi, Wenjun, Owen Thornton, Susi Feng, and Chengwen Li. 2025. "Navigating the Hurdles of Intra-Articular AAV Gene Therapy" International Journal of Molecular Sciences 26, no. 20: 10123. https://doi.org/10.3390/ijms262010123
APA StyleLi, W., Thornton, O., Feng, S., & Li, C. (2025). Navigating the Hurdles of Intra-Articular AAV Gene Therapy. International Journal of Molecular Sciences, 26(20), 10123. https://doi.org/10.3390/ijms262010123

