Advances in the Molecular Mechanisms of Pulmonary Fibrosis in Systemic Sclerosis: A Comprehensive Review
Abstract
1. Introduction
2. General Pathophysiology of ILD in SSc
2.1. Relationship Between Genetics and Fibrosis
- -
- Fibroproliferative lesions of small arteries and arterioles are accompanied by severe structural and functional alterations in endothelial cells.
- -
- Severe oxidative stress and elevated levels of reactive oxygen species (ROS).
- -
- Excessive and often progressive deposition of collagen and other extracellular matrix (ECM) macromolecules.
- -
- Alterations in cellular and humoral immunity with the production of numerous autoantibodies.
- -
- Cell transdifferentiation occurs with the phenotypic conversion of various cell types, such as resting fibroblasts, endothelial cells, epithelial cells, and adipocytes, into activated myofibroblasts.
- -
- Excessive production and release of various cytokines and growth factors with profibrotic and inflammatory effects.
- -
- Epigenetic alterations, including numerous changes mediated by non-coding RNA.
2.1.1. Genetic Factors
HLA Genes
Non-HLA Genes
2.1.2. Fibrosis
2.2. Differences from Other ILD
2.3. Role of Autoantibodies
3. Key Cells Involved
3.1. Alveolar and Interstitial Macrophages
3.2. Type I and II Pneumocytes
- -
- Type I pneumocytes: Large flat cells cover approximately 95% of the alveolar surface and facilitate gas diffusion. Injury to type I pneumocytes in ILD-SSc disrupts the alveolar-capillary barrier leading to increased permeability, exposure of the underlying basement membrane, and release of damage-associated molecular patterns. This injury initiates local inflammation and promotes the recruitment, differentiation, activation and proliferation of fibroblasts and myofibroblasts, contributing to the fibrotic cascade [72].
- -
- Type II pneumocytes: Cuboidal cells responsible for synthesizing and secreting pulmonary surfactant. They serve as progenitor cells that can proliferate and differentiate into type I pneumocytes. Histopathological studies show type II pneumocyte hyperplasia ILD-SSc lung biopsies [71]. In ILS-SSc, repeated injury and chronic inflammation drive type II pneumocytes to undergo aberrant activation and senescence. Senescent type II pneumocytes lose their regenerative capacity and secrete profibrotic mediators, such as TGF-β, which further stimulate fibroblast proliferation and myofibroblast differentiation, perpetuating fibrosis [73]. The loss of normal type II pneumocyte function impairs alveolar regeneration and shifts the microenvironment toward persistent extracellular matrix deposition [74].
3.3. Activated Fibroblasts and Myofibroblasts
3.4. T and B Lymphocytes
4. Signaling Pathways and Molecular Mediators
4.1. TGF-β (Transforming Growth Factor Beta)
4.2. PDGF (Platelet-Derived Growth Factor)
4.3. Proinflammatory Cytokines
- -
- IL-6: IL-6 is one of the most important proinflammatory cytokines in the early stages of fibrosis [91]. Three important mechanisms have been described thus far:
- -
- Activation of fibroblasts via STAT3: IL-6 promotes the activation of fibroblasts and their differentiation into myofibroblasts, mainly through the Janus Kinase JAK2/STAT3 signaling pathway. This pathway increases the production of type I collagen and other extracellular matrix components [92]. Inhibiting IL-6 or the STAT3 pathway reduces fibroblast proliferation, differentiation into myofibroblasts, and extracellular matrix production. This suggests a direct role in perpetuating fibrosis [93].
- -
- -
- B cell activation: IL-6 stimulates the maturation and activation of B cells, promoting the production of autoantibodies [95].
- -
- TNF-α (Tumor Necrosis Factor alpha): Serum levels of TNF-α are elevated in patients with SSc, particularly those with pulmonary fibrosis. Thise elevated TNF-α levels had been correlated with decreased lung capacity and the presence of fibrosis. In 1997 Hasegawa, M et al. demonstrated that serum TNF-α levels were elevated in patients with SSc and correlated with the presence of pulmonary fibrosis and with the decreased vital capacity of the patients [91]. This has also been demonstrated in animal models, with motheaten mutant mice exhibiting rapid progression of pulmonary fibrosis due to elevated levels of TNF-α in both serum and lungs [97]. Additionally, TNF-α induces IL-6 and CCL2 secretion by systemic sclerosis fibroblasts, thereby enhancing their activation and differentiation into myofibroblasts perpetuating inflammation and fibrosis [98]. In summary, TNF-α, IL-17, IL-6 and TGF-β form an interactive cytokine network which amplifies inflammation and regulates fibroblast activation and fibrogenesis. Within this network, TNF-α modulates IL-17 production and signaling, thereby potentiating the intensity of the inflammatory response and the dynamics of tissue remodeling together with IL-6 and TGF-β. The final outcome depends on the cellular context and the balance between the signaling pathways involved [99].
- -
- IL-1β: Promotes the expression of metalloproteinases (MMPs), which remodel the extracellular matrix. It also promotes the production of IL-6, IL-17, and TNF-α. However, it has been shown to have direct antifibrotic effects on fibroblasts, highlighting the complexity of its role in the pathogenesis of ILD-SSc [100,101].
- -
- IL-13: Although it is more associated with the Th2 axis, IL-13 directly stimulates collagen production by fibroblasts. Additionally, it plays a significant role in promoting the polarization of macrophages to the M2 phenotype [102].
- -
- IL-17: IL-17, especially IL-17A, plays a direct proinflammatory and pro-fibrotic role in the pathogenesis of ILD-SSc. It is primarily produced by Th17 cells, which are increased in circulation in SSc and correlate with disease activity and extent of fibrosis [103]. It also promotes the activation and proliferation of lung fibroblasts, leading to increased collagen and extracellular matrix production, stimulates other pro-fibrotic cytokines and mediators, such as TGF-β and connective tissue growth factor (CTGF) ending in further accelerating fibroblast activation and matrix deposition [104,105].
4.4. Endothelin-1 (ET-1)
4.5. WNT/β-Catenin
4.6. Hypoxia and HIF-1α (Hypoxia-Inducible Factor-1α)
Pathway | Key Mediators | Key Effects in Pulmonary Fibrosis | References |
---|---|---|---|
TGF-β | IL-1β, TNF-α, and IL-6, Smad2/3, angiotensin II, norepinefrine, ROS | Fibroblast activation and myofibroblast differentiation: increased collagen deposition, protease inhibition. Central role regulating other processes | [78,79,80,81,82,83,84,85] |
PDGF | PDGFR-α, PDGFR-β | Fibroblast proliferation and migration synergy with TGF-β | [86,87,88,89,90] |
PROINFLAMMATORY CYTOKINES | IL-6, IL-1β TNF-α IL-13 | STAT3-mediated fibroblast activation, Th17 differentiation, autoantibody production, M2 polarization | [91,92,93,94,95,96,97,98,99,100,101,102,103,104,105] |
ENDOTHELIN-1 (ET-1) | ET-1 ETS/ETB receptors | Vasoconstriction and vascular remodeling synergy with TGF-β | [106] |
WNT/β—CATENIN | β-catenin Wnt ligands | EMT-fibroblast proliferation; potentiates TGF-B-and. IL-5 | [95,107,108] |
HIPOXIA | HIF-1α | Activates profibrotic genes, such as COL1A1, fibronectin, and α-SMA; activates VEGF | [109,110,111] |
5. Epigenetics
- -
- Aberrant DNA methylation: Global hypomethylation of TCD4+ cells has been observed due to decreased DNA methyltransferase-1 (DNMT1) activity, which implies constant proinflammatory cell activation. At the other extreme, hypermethylation of the FOXP3 promoter has been observed [113]. FOXP3 is essential for the functioning and regulation of regulatory T cells (Tregs) and typically controls the expression of anti-inflammatory genes, such as IL-10 and TGF-β, while inhibiting the expression of proinflammatory genes in effector T cells. Due to this hypermethylation, there is an imbalance between Th17 and Treg cells, which allows for increased production of IL-17. Consequently, there is increased production of IL-6, TNF-α, and TGF-β by fibroblasts and myofibroblasts in the lungs. Taking all this into account, FOXP3 has become a diagnostic marker and a potential therapeutic target for restoring immune balance [114].
- -
- Histone modifications: These modifications further modulate chromatin accessibility, thereby influencing the transcription of genes involved in fibroblast activation, extracellular matrix production, profibrotic growth factors, and cytokine response [115,116]. Hyperacetylation of histone H4 and global hypomethylation in B cells from patients with SSc have been associated with cutaneous sclerosis and increased disease activity [117]. These histone modifications promote accessibility to the promotes of multiple key pathways. For example, they potentiate the TGF-β/Smad pathway and its interrelation with the Wnt/β-catenin pathway. They also facilitate the transcription of ET-1 and PDGF and consequently promote the production of proinflammatory cytokines, including IL-6, IL-1β, and TNF-α. Furthermore, they have the capacity to maintain continuous fibroblast activation through the HIF-1α pathway, allowing chromatin to be reconfigured toward hypoxic adaptation genes [109]. Notably, proinflammatory cytokines can trigger epigenetic changes and persistently activate the phenotypic transdifferentiation of pulmonary fibroblasts [118].
- -
- Non-coding RNAs (ncRNAs): There has been a growing interest in studying ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in recent years due to their important role in controlling various biological processes.
- -
- MicroRNAs (miRNAs): are small RNA molecules consisting of 22 nucleotides that regulate gene expression post-transcriptionally. They regulate key pathways responsible for fibroblast activation, extracellular matrix remodeling, and TGF-β signaling [119]. In lung fibroblasts, TGF-β alters the miRNA repertoire, driving the transition from fibroblast to myofibroblast [117]. TGF-β-induced miRNAs, such as miR-21-3p and miR-455-3p, then feed back into the TGF-β and Wnt pathways, promoting excessive ECM production. Conversely, the loss of antifibrotic miRNAs prevents proper inhibition of collagen production [120,121]. In ILD-SSc, miR-320a is decreased in both serum and lung. Its restoration has been shown to reduce collagen by targeting TGFBR2 and IGF1R, thereby integrating post-transcriptional control of the TGF-β/PI3K-AKT pathway in fibroblasts [122]. Additionally, studies on pulmonary fibrosis have demonstrated that miR-335-3p attenuates TGF-β activation by suppressing THBS1, a TGF-β activator. This leads to a reduction in fibrotic markers within the respiratory epithelium [123].
- -
- Long non-coding RNAs (lncRNAs): These molecules consist of more than 200 nucleotides and can regulate gene expression at the transcriptional and post-transcriptional levels [124]. They modulate the response to IL-1β in pulmonary fibroblasts through opposing mechanisms. For example, they regulate the response to IL-1β: IL7AS limits IL-6, while MIR3142HG (the precursor of miR-146a) enhances IL-8/CCL2. Dysfunction of MIR3142HG is associated with an altered inflammatory phenotype, connecting lncRNAs with the NF-κB/IL-1β/IL-6 axes [125].
6. New Perspectives and Emerging Therapies for the Treatment of ILD-SSc
- -
- Rituximab (RTX): RTX is a chimeric monoclonal antibody that targets CD20, a surface antigen expressed on pre-B and mature B lymphocytes. By binding to CD20, rituximab induces B-cell depletion through several mechanisms, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, and induction of apoptosis. RTX has been used in numerous clinical studies, including two RCTs for the treatment of both aggressive treatment-resistant and naïve ILD-SSc patients [127]. A few studies showed that RTX could increase FVC and DLCO in patients with SSc-ILD [128,129]. Bearing this in mind, rituximab has emerged as a potential first line treatment for patients with ILD-SSC [125].
- -
- Tocilizumab (TCZ): TCZ is an anti-interleukin 6 (IL6) receptor monoclonal antibody. TCZ inhibition of the IL-6 receptor decreasing myofibroblast activation and reduced M2 macrophage polarization, resulting in a portion of the demonstrated antifibrotic effects of TCZ in the setting of ILD-SSc [130]. In 2018, Denton CP et al. demonstrated that regarding the exact mechanism, the effect of IL-6Rα blockade on biological pathways dominated by TGFβ-related biology is striking and highlights the interaction between IL-6 and TGFβ. Hence, IL-6 and TGFβ may form a self-sustaining loop leading to fibrosis that could be interrupted by blockade of either or both cytokines [131]. These results have also positioned tocilizumab as a first-line treatment [126].
- -
- Nintedanib: Nintedanib is a tyrosine kinase inhibitor which has been shown to have antifibrotic and antiinflammatory effects in preclinical models of systemic sclerosis and ILD. In 2019 Distler, O. published the SENSCIS trial showing that the annual rate of decline of FVC in ILD-SSc patients was lower with nintedanib than with placebo. This paved the way for the use of antifibrotic drugs that were initially approved for idiopathic pulmonary fibrosis to be used in patients with ILD-SSc [132]. Currently guidelines recommend nintedanib as add on therapy to immunosuppressive treatment, but it may be reasonable to use it as a first line agent in patients with a predominantly fibrotic pattern and quiescent extra pulmonary disease, or patients who get recurrent infections on immunosuppressive therapy [126].
- -
- Nerandomilast: Nerandomilast is a preferential phosphodiesterase 4B (PDE4B) inhibitor currently undergoing phase III clinical trials for idiopathic pulmonary fibrosis and progressive fibrosing interstitial lung diseases [133]. Preclinical studies have demonstrated that nerandomilast exhibits anti-inflammatory and anti-fibrotic properties in both in vitro and in vivo models of pulmonary fibrosis [134]. Compared to the pan-PDE4 inhibitor roflumilast, nerandomilast is approximately 10 times more preferential for PDE4B than for PDE4D. Inhibition of PDE4 leads to increased intracellular cAMP levels, which can impact inflammatory and immune responses, but selecting the PDE4B isoform significantly reduces side effects [135]. Nerandomilast also significantly reduced the infiltration of CD3+ T lymphocytes and F4/80+ macrophages in fibrotic areas of the lung tissue in the bleomycin-induced ILD-SSC model mice. Furthermore, nerandomilast can greatly suppress the gene expression of inflammatory cytokines including TNF-α, IL-6, IL-13, TGF-β1, IL-1β, IL-17A, and IL-13. These findings suggest that nerandomilast can modulate macrophages and T lymphocytes and suppress the gene expression of inflammatory cytokines [133]. Further studies are needed to verify the efficacy of nintedanib in patients with ILD-SSC, but it is currently considered one of the most promising therapeutic options for this disease.
- -
- Janus Kinase (JAK) inhibitors: Baricitinib is a JAK1/2 inhibitor that was initially approved for the treatment of adults with moderate-to-severe rheumatoid arthritis (RA) [136]. The study by Wang et al. experimentally investigated how the JAK2 pathway inhibitor baricitinib can influence pulmonary fibrosis associated with systemic sclerosis by interacting with TGF-β1 signaling. The results of the experiment show that baricitinib reduces fibrosis in the lungs and on the skin by lowering the levels of proinflammatory factors and the expression of key components of the TGF-β1 pathway, particularly TβRI/II receptors, in animal models and in cultured human pulmonary fibroblasts. The research demonstrates significant crosstalk between the JAK2 and TGF-β1 pathways. By blocking JAK2, baricitinib interrupts the pro-fibrotic signal activated by TGF-β1. This leads to a decrease in fibroblast activation and therefore in the progression of pulmonary fibrosis in systemic sclerosis. This positions baricitinib as a potential antifibrotic therapy for systemic sclerosis-associated interstitial lung disease (SSc-ILD), acting on central molecular mechanisms in the disease [137].
- -
- CAR-T19 therapy: T-cell (CAR-T19) therapy has emerged as a potential game-changer for autoimmune diseases, including SSc. CAR-T19 therapy selectively targets and depletes CD19+B cells, offering a more profound and potentially long-lasting immunomodulatory effect compared with conventional B-cell depletion therapies like RTX [138]. This approach may be particularly valuable for patients with aggressive disease phenotypes, where early intervention could prevent irreversible vasculafibrosis and organ dysfunction. Clinical improvements were accompanied by a shift to a naive B-cell phenotype, which was accompanied by reduction in autoantibody concentrations. These results support the concept that restoration of immune homoeostasis might affect the disease course in systemic sclerosis [139,140]. Although these results are promising, further studies are needed to confirm the long-term effectiveness and safety of the treatment.
- -
- Bispecific antibodies (bsAbs): Preclinical models have explored bsAbs designed to engage T cells for selective depletion of autoreactive B cells (eg, CD3/CD19 or CD3/CD20 constructs), which may offer deeper and more durable immune modulation than conventional B-cell depletion alone [141]. Additionally, bispecific constructs targeting fibroblast activation protein (FAP) on pathogenic myofibroblasts have shown potential to directly reduce tissue fibrosis. While clinical application in SSc is still at an early stage, bsAbs represent an exciting frontier for future trials [140].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perelas, A.; Arrossi, A.V.; Highland, K.B. Pulmonary manifestations of systemic sclerosis and mixed connective tissue disease. Clin. Chest Med. 2019, 40, 501–518. [Google Scholar] [CrossRef]
- Volkmann, E.R.; Andréasson, K.; Smith, V. Systemic sclerosis. Lancet 2023, 401, 304–318. [Google Scholar] [CrossRef]
- Bairkdar, M.; Rossides, M.; Westerlind, H.; Hesselstrand, R.; Arkema, E.V.; Holmqvist, M. Incidence and prevalence of systemic sclerosis globally: A comprehensive systematic review and meta-analysis. Rheumatology 2021, 60, 3121–3133. [Google Scholar] [CrossRef]
- Aspe Unanue, L.; González Hermosa, M.R.; Gardeazabal García, J. Esclerodermia (esclerosis sistémica). Piel 2010, 25, 252–266. [Google Scholar] [CrossRef]
- Calle Botero, E.; Abril, A. Compromiso intersticial pulmonar en la esclerosis sistémica. Rev. Colomb. Reumatol. 2020, 27, 36–43. [Google Scholar] [CrossRef]
- Smith, V.; Beeckman, S.; Herrick, A.L.; Decuman, S.; Deschepper, E.; De Keyser, F.; Distler, O.; Foeldvari, I.; Ingegnoli, F.; Müller-Ladner, U.; et al. An EULAR study group pilot study on reliability of simple capillaroscopic definitions to describe capillary morphology in rheumatic diseases. Rheumatology 2016, 55, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Bruni, C.; Cuomo, G.; Delle Sedie, A.; Gargani, L.; Gutierrez, M.; Lepri, G.; Ruaro, B.; Santiago, T.; Suliman, Y.; et al. The role of ultrasound in systemic sclerosis: On the cutting edge to foster clinical and research advancement. J. Scleroderma Relat. Disord. 2021, 6, 123–132. [Google Scholar] [CrossRef]
- Gigante, A.; Rossi Fanelli, F.; Lucci, S.; Barilaro, G.; Quarta, S.; Barbano, B.; Giovannetti, A.; Amoroso, A.; Rosato, E. Lung ultrasound in systemic sclerosis: Correlation with high-resolution computed tomography, pulmonary function tests and clinical variables of disease. Intern. Emerg. Med. 2016, 11, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.A.; Mendoza, F.A.; Piera-Velazquez, S. A review of recent studies on the pathogenesis of Systemic Sclerosis: Focus on fibrosis pathways. Front. Immunol. 2025, 16, 1551911. [Google Scholar] [CrossRef]
- Farina, A.; Peruzzi, G.; Lacconi, V.; Lenna, S.; Quarta, S.; Rosato, E.; Vestri, A.R.; York, M.; Dreyfus, D.H.; Faggioni, A.; et al. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res. Ther. 2017, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Bossini-Castillo, L.; Martín, J.-E.; Díaz-Gallo, L.M.; Rueda, B.; Martín, J. Genética de la esclerodermia. Reumatol. Clin. 2010, 6, 12–15. [Google Scholar] [CrossRef]
- Tsou, P.-S.; Sawalha, A.H. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J. Autoimmun. 2017, 83, 73–94. [Google Scholar] [CrossRef]
- Arnett, F.C.; Gourh, P.; Shete, S.; Ahn, C.W.; Honey, R.E.; Agarwal, S.K.; Tan, F.K.; McNearney, T.; Fischbach, M.; Fritzler, M.J.; et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: Analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann. Rheum. Dis. 2010, 69, 822–827, Erratum in Ann. Rheum. Dis. 2011, 70, 880. [Google Scholar] [CrossRef] [PubMed]
- Beretta, L.; Rueda, B.; Marchini, M.; Santaniello, A.; Simeon, C.P.; Fonollosa, V.; Caronni, M.; Rios-Fernandez, R.; Carreira, P.; Rodriguez-Rodriguez, L.; et al. Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology 2012, 51, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ciccacci, C.; Conigliaro, P.; Perricone, C.; Rufini, S.; Triggianese, P.; Politi, C.; Novelli, G.; Perricone, R.; Borgiani, P. Polymorphisms in STAT-4, IL-10, PSORS1C1, PTPN2 and MIR146A genes are associated differently with prognostic factors in Italian patients affected by rheumatoid arthritis: SNPs Associated with Prognostic Factors in RA. Clin. Exp. Immunol. 2016, 186, 157–163. [Google Scholar] [CrossRef]
- Ciccacci Cinzia Perricone, C.; Ceccarelli, F.; Rufini, S.; Di Fusco, D.; Alessandri, C.; Spinelli, F.R.; Cipriano, E.; Novelli, G.; Valesini, G.; Borgiani, P.; et al. A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS ONE 2014, 9, e111991. [Google Scholar] [CrossRef]
- Hughes, T.; Coit, P.; Adler, A.; Yilmaz, V.; Aksu, K.; Düzgün, N.; Keser, G.; Cefle, A.; Yazici, A.; Ergen, A.; et al. Identification of multiple independent susceptibility loci in the HLA region in Behçet’s disease. Nat. Genet. 2013, 45, 319–324. [Google Scholar] [CrossRef]
- Hu, B.; Phan, S.H. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2016, 108, 57–64. [Google Scholar] [CrossRef]
- Gridley, T. Notch signaling in vascular development and physiology. Development 2007, 134, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, C.; Chen, G.; Li, X.; Li, J.; Wan, Q.; Xu, Y. Notch signaling molecules activate TGF-β in rat mesangial cells under high glucose conditions. J. Diabetes Res. 2013, 2013, 979702. [Google Scholar] [CrossRef]
- Aoyagi-Ikeda, K.; Maeno, T.; Matsui, H.; Ueno, M.; Hara, K.; Aoki, Y.; Aoki, F.; Shimizu, T.; Doi, H.; Kawai-Kowase, K.; et al. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am. J. Respir. Cell Mol. Biol. 2011, 45, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, N.; Sivasithamparam, N.D.; Devaraj, H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie 2014, 107 Pt B, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.G.; Niessen, K.; Kulic, I.; Raouf, A.; Eaves, C.; Pollet, I.; Karsan, A. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J. Exp. Med. 2007, 204, 2935–2948. [Google Scholar] [CrossRef]
- Kang, J.; Kim, E.; Kim, W.; Seong, K.M.; Youn, H.; Kim, J.W.; Kim, J.; Youn, B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J. Biol. Chem. 2013, 288, 27343–27357. [Google Scholar] [CrossRef]
- Zaravinos, A. The regulatory role of MicroRNAs in EMT and cancer. J. Oncol. 2015, 2015, 865816. [Google Scholar] [CrossRef]
- Engelsvold, D.H.; Utheim, T.P.; Olstad, O.K.; Gonzalez, P.; Eidet, J.R.; Lyberg, T.; Trøseid, A.-M.S.; Dartt, D.A.; Raeder, S. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium. Exp. Eye Res. 2013, 115, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ahn, Y.-H.; Gibbons, D.L.; Zang, Y.; Lin, W.; Thilaganathan, N.; Alvarez, C.A.; Moreira, D.C.; Creighton, C.J.; Gregory, P.A.; et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J. Clin. Investig. 2011, 121, 1373–1385. [Google Scholar] [CrossRef]
- Brabletz, S.; Bajdak, K.; Meidhof, S.; Burk, U.; Niedermann, G.; Firat, E.; Wellner, U.; Dimmler, A.; Faller, G.; Schubert, J.; et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells: ZEB1 activates Notch signalling. EMBO J. 2011, 30, 770–782. [Google Scholar] [CrossRef]
- Gorlova, O.; Martin, J.-E.; Rueda, B.; Koeleman, B.P.C.; Ying, J.; Teruel, M.; Diaz-Gallo, L.-M.; Broen, J.C.; Vonk, M.C.; Simeon, C.P.; et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 2011, 7, e1002178, Correction in PLoS Genet. 2011, 7, 10.1371. [Google Scholar] [CrossRef]
- Rueda, B.; Broen, J.; Simeon, C.; Hesselstrand, R.; Diaz, B.; Suárez, H.; Ortego-Centeno, N.; Riemekasten, G.; Fonollosa, V.; Vonk, M.C.; et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet. 2009, 18, 2071–2077. [Google Scholar] [CrossRef]
- Dieudé, P.; Guedj, M.; Wipff, J.; Ruiz, B.; Hachulla, E.; Diot, E.; Granel, B.; Sibilia, J.; Tiev, K.; Mouthon, L.; et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009, 60, 2472–2479. [Google Scholar] [CrossRef]
- Wu, M.; Assassi, S. The role of type 1 interferon in systemic sclerosis. Front. Immunol. 2013, 4, 266. [Google Scholar] [CrossRef]
- Avouac, J.; Fürnrohr, B.G.; Tomcik, M.; Palumbo, K.; Zerr, P.; Horn, A.; Dees, C.; Akhmetshina, A.; Beyer, C.; Distler, O.; et al. Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum. 2011, 63, 800–809. [Google Scholar] [CrossRef]
- Hua, X.; Hongbing, R.; Juan, X.; Jizan, L.; Beibei, Y. Dysregulation of TNF-induced protein 3 and CCAAT/enhancer-binding protein β in alveolar macrophages: Implications for systemic sclerosis-associated interstitial lung disease. Int. J. Rheum. Dis. 2024, 27, e15174. [Google Scholar] [CrossRef]
- Shamilov, R.; Aneskievich, B.J. TNIP1 in autoimmune diseases: Regulation of toll-like receptor signaling. J. Immunol. Res. 2018, 2018, 3491269. [Google Scholar] [CrossRef] [PubMed]
- Elhai, M.; Avouac, J.; Hoffmann-Vold, A.M.; Ruzehaji, N.; Amiar, O.; Ruiz, B.; Brahiti, H.; Ponsoye, M.; Fréchet, M.; Burgevin, A.; et al. OX40L blockade protects against inflammation-driven fibrosis. Proc. Natl. Acad. Sci. USA 2016, 113, E3901–E3910. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Watford, W.T.; Salomon, R.; Hofmann, S.R.; Pien, G.C.; Morinobu, A.; Gadina, M.; O’Shea, J.J.; Biron, C.A. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 2002, 297, 2063–2066. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Saad, M.; Dieudé, P.; Avouac, J.; Distler, J.H.W.; Amouyel, P.; Matucci-Cerinic, M.; Riemekasten, G.; Airo, P.; Melchers, I.; et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 2011, 7, e1002091. [Google Scholar] [CrossRef]
- Martin, J.-E.; Assassi, S.; Diaz-Gallo, L.-M.; Broen, J.C.; Simeon, C.P.; Castellvi, I.; Vicente-Rabaneda, E.; Fonollosa, V.; Ortego-Centeno, N.; González-Gay, M.A.; et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum. Mol. Genet. 2013, 22, 4021–4029. [Google Scholar] [CrossRef]
- Martin, J.-E.; Broen, J.C.; Carmona, F.D.; Teruel, M.; Simeon, C.P.; Vonk, M.C.; van ’t Slot, R.; Rodriguez-Rodriguez, L.; Vicente, E.; Fonollosa, V.; et al. Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum. Mol. Genet. 2012, 21, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Zhang, S.; Oldham, I.; Naeger, L.; Hoey, T.; Kaplan, M.H. STAT4 requires the N-terminal domain for efficient phosphorylation. J. Biol. Chem. 2003, 278, 32471–32477. [Google Scholar] [CrossRef]
- Korman, B.D.; Kastner, D.L.; Gregersen, P.K.; Remmers, E.F. STAT4: Genetics, mechanisms, and implications for autoimmunity. Curr. Allergy Asthma Rep. 2008, 8, 398–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, P.; Yang, Y.; Guo, X.; Hei, N.; Lai, S.; Assassi, S.; Liu, M.; Tan, F.; Zhou, X. Identification of an association of TNFAIP3 polymorphisms with matrix metalloproteinase expression in fibroblasts in an integrative study of systemic sclerosis-associated genetic and environmental factors: Tnfaip3polymorphisms and mmp expression in fibroblasts. Arthritis Rheumatol. 2016, 68, 749–760. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kuwana, M. Pathogenesis of vasculopathy in systemic sclerosis and its contribution to fibrosis. Curr. Opin. Rheumatol. 2023, 35, 309–316. [Google Scholar] [CrossRef]
- Croft, M.; Duan, W.; Choi, H.; Eun, S.-Y.; Madireddi, S.; Mehta, A. TNF superfamily in inflammatory disease: Translating basic insights. Trends Immunol. 2012, 33, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Wallis, D.D.; Tan, F.K.; Kielty, C.M.; Kimball, M.D.; Arnett, F.C.; Milewicz, D.M. Abnormalities in fibrillin 1-containing microfibrils in dermal fibroblast cultures from patients with systemic sclerosis (scleroderma). Arthritis Rheum. 2001, 44, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, S.E.; Li, Q.; Evangelista-Leite, D.; Ren, X.; Reinhardt, D.P.; Frey, B.L.; Ott, H.C. Fibrillin-2 and Tenascin-C bridge the age gap in lung epithelial regeneration. Biomaterials 2017, 140, 212–219. [Google Scholar] [CrossRef]
- van Loon, K.; Yemelyanenko-Lyalenko, J.; Margadant, C.; Griffioen, A.W.; Huijbers, E.J.M. Role of fibrillin-2 in the control of TGF-β activation in tumor angiogenesis and connective tissue disorders. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188354. [Google Scholar] [CrossRef]
- Hoyles, R.K.; Derrett-Smith, E.C.; Khan, K.; Shiwen, X.; Howat, S.L.; Wells, A.U.; Abraham, D.J.; Denton, C.P. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor β receptor. Am. J. Respir. Crit. Care Med. 2011, 183, 249–261. [Google Scholar] [CrossRef]
- De Lorenzis, E.; Wasson, C.W.; Del Galdo, F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. J. Scleroderma Relat. Disord. 2024, 9, 7–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Chen, Q.; Guan, T.; Lin, N.; Xu, D.; Lu, L.; Dai, Q.; Song, X. Scorpion venom polypeptide inhibits pulmonary epithelial-mesenchymal transition in systemic sclerosis-interstitial lung disease model mice by intervening TGF-β1/Smad signaling pathway. Evid.-Based Complement. Altern. Med. ECAM 2022, 2022, 6557486. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.A.; Piera-Velazquez, S.; Farber, J.L.; Feghali-Bostwick, C.; Jiménez, S.A. Endothelial cells expressing endothelial and mesenchymal cell gene products in lung tissue from patients with systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2016, 68, 210–217. [Google Scholar] [CrossRef]
- Veeraraghavan, S.; Nicholson, A.G.; Wells, A.U. Lung fibrosis: New classifications and therapy. Curr. Opin. Rheumatol. 2001, 13, 500–504. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Katzenstein, A.L.; Fiorelli, R.F. Nonspecific interstitial pneumonia/fibrosis. Histologic features and clinical significance. Am. J. Surg. Pathol. 1994, 18, 136–147. [Google Scholar] [CrossRef]
- Silva Fernández, L.; Muñoz Carreño, P.; Sanz Sanz, J.; Andreu Sánchez, J.L. Neumopatía intersticial en la esclerosis sistémica. Semin. Fund. Esp. Reumatol. 2006, 7, 151–164. [Google Scholar] [CrossRef]
- Cavazzana, I.; Vojinovic, T.; Airo’, P.; Fredi, M.; Ceribelli, A.; Pedretti, E.; Lazzaroni, M.G.; Garrafa, E.; Franceschini, F. Systemic sclerosis-specific antibodies: Novel and classical biomarkers. Clin. Rev. Allergy Immunol. 2023, 64, 412–430. [Google Scholar] [CrossRef]
- Ho, K.T.; Reveille, J.D. The clinical relevance of autoantibodies in scleroderma. Arthritis Res. Ther. 2003, 5, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Czömpöly, T.; Simon, D.; Czirják, L.; Németh, P. Anti-topoisomerase I autoantibodies in systemic sclerosis. Autoimmun. Rev. 2009, 8, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, Z.E.; Woodhead, F.; Lu, H.; Shaddick, G.; Bunn, C.C.; Denton, C.P.; Abraham, D.J.; du Bois, R.M.; Lewis, M.; Wells, A.U.; et al. Brief report: Anti-eukaryotic initiation factor 2B autoantibodies are associated with interstitial lung disease in patients with systemic sclerosis: ANTI-eIF2B in systemic sclerosis. Arthritis Rheumatol. 2016, 68, 2778–2783. [Google Scholar] [CrossRef]
- Wielosz, E.; Dryglewska, M.; Majdan, M. The prevalence and significance of anti-PM/Scl antibodies in systemic sclerosis. Ann. Agric. Environ. Med. AAEM 2021, 28, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Mitri, G.M.; Lucas, M.; Fertig, N.; Steen, V.D.; Medsger, T.A., Jr. A comparison between anti-Th/To- and anticentromere antibody-positive systemic sclerosis patients with limited cutaneous involvement. Arthritis Rheum. 2003, 48, 203–209. [Google Scholar] [CrossRef]
- Benyamine, A.; Bertin, D.; Resseguier, N.; Heim, X.; Bermudez, J.; Launay, D.; Dubucquoi, S.; Hij, A.; Farge, D.; Lescoat, A.; et al. Quantification of antifibrillarin (anti-U3 RNP) antibodies: A new insight for patients with systemic sclerosis. Diagnostics 2021, 11, 1064. [Google Scholar] [CrossRef]
- Fertig, N.; Domsic, R.T.; Rodriguez-Reyna, T.; Kuwana, M.; Lucas, M.; Medsger, T.A., Jr.; Feghali-Bostwick, C.A. Anti-U11/U12 RNP antibodies in systemic sclerosis: A new serologic marker associated with pulmonary fibrosis. Arthritis Rheum. 2009, 61, 958–965. [Google Scholar] [CrossRef]
- Callejas-Moraga, E.L.; Guillén-Del-Castillo, A.; Perurena-Prieto, J.; Sanz-Martínez, M.T.; Fonollosa-Pla, V.; Lorite-Gomez, K.; Severino, A.; Bellocchi, C.; Beretta, L.; Mahler, M.; et al. Anti-RNPC-3 antibody predicts poor prognosis in patients with interstitial lung disease associated to systemic sclerosis. Rheumatology 2021, 61, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.W.; Hong, Y.J.; Cha, H.J.; Moon, J.D.; Pyo, J.Y.; Lee, S.-W.; Park, Y.-B.; Park, C.H.; Song, J.J. A retrospective analysis of the relationship between anti-cyclic citrullinated peptide antibody and interstitial lung disease in systemic sclerosis. Sci. Rep. 2022, 12, 19253. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.L.; Boin, F.; Wolters, P.J.; Bingham, C.O.; Shah, A.A.; Greider, C.; Casciola-Rosen, L.; Rosen, A. Autoantibodies targeting telomere-associated proteins in systemic sclerosis. Ann. Rheum. Dis. 2021, 80, 912–919. [Google Scholar] [CrossRef]
- Lescoat, A.; Lecureur, V.; Varga, J. Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: Recent insights and therapeutic implications. Curr. Opin. Rheumatol. 2021, 33, 463–470. [Google Scholar] [CrossRef]
- Le Tallec, E.; Bellamri, N.; Lelong, M.; Morzadec, C.; Frenger, Q.; Ballerie, A.; Cazalets, C.; Lescoat, A.; Gros, F.; Lecureur, V. Efferocytosis dysfunction in CXCL4-induced M4 macrophages: Phenotypic insights in systemic sclerosis in vitro and in vivo. Front. Immunol. 2024, 15, 1468821. [Google Scholar] [CrossRef]
- Lee, S.-C.; Huang, C.-H.; Oyang, Y.-J.; Huang, H.-C.; Juan, H.-F. Macrophages as determinants and regulators of systemic sclerosis-related interstitial lung disease. J. Transl. Med. 2024, 22, 600. [Google Scholar] [CrossRef]
- Kia’i, N.; Bajaj, T. Epithelium. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541061/ (accessed on 5 October 2025).
- Kasper, M.; Barth, K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci. Rep. 2017, 37, BSR20171301. [Google Scholar] [CrossRef]
- McDougall, J.; Smith, J.F. The development of the human type II pneumocyte. J. Pathol. 1975, 115, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Barkauskas, C.E.; Cronce, M.J.; Rackley, C.R.; Bowie, E.J.; Keene, D.R.; Stripp, B.R.; Randell, S.H.; Noble, P.W.; Hogan, B.L.M. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 2013, 123, 3025–3036. [Google Scholar] [CrossRef]
- Valenzi, E.; Bulik, M.; Tabib, T.; Morse, C.; Sembrat, J.; Trejo Bittar, H.; Rojas, M.; Lafyatis, R. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 2019, 78, 1379–1387. [Google Scholar] [CrossRef]
- Sakkas, L.I.; Chikanza, I.C.; Platsoucas, C.D. Mechanisms of Disease: The role of immune cells in the pathogenesis of systemic sclerosis. Nat. Clin. Pract. Rheumatol. 2006, 2, 679–685. [Google Scholar] [CrossRef]
- Thoreau, B.; Chaigne, B.; Mouthon, L. Role of B-cell in the pathogenesis of systemic sclerosis. Front. Immunol. 2022, 13, 933468. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Transforming growth factor–β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef]
- Campbell, S.E.; Katwa, L.C. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J. Mol. Cell. Cardiol. 1997, 29, 1947–1958. [Google Scholar] [CrossRef]
- Klingberg, F.; Hinz, B.; White, E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2013, 229, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Meran, S.; Thomas, D.W.; Stephens, P.; Enoch, S.; Martin, J.; Steadman, R.; Phillips, A.O. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J. Biol. Chem. 2008, 283, 6530–6545. [Google Scholar] [CrossRef] [PubMed]
- Schiller, M.; Javelaud, D.; Mauviel, A. TGF-beta-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing. J. Dermatol. Sci. 2004, 35, 83–92. [Google Scholar] [CrossRef]
- Schafer, S.; Viswanathan, S.; Widjaja, A.A.; Lim, W.W.; Moreno-Moral, A.; DeLaughter, D.M.; Ng, B.; Patone, G.; Chow, K.; Khin, E.; et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 2017, 552, 110–115. [Google Scholar] [CrossRef]
- Mori, T.; Kawara, S.; Shinozaki, M.; Hayashi, N.; Kakinuma, T.; Igarashi, A.; Takigawa, M.; Nakanishi, T.; Takehara, K. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J. Cell. Physiol. 1999, 181, 153–159. [Google Scholar] [CrossRef]
- Accornero, F.; van Berlo, J.H.; Correll, R.N.; Elrod, J.W.; Sargent, M.A.; York, A.; Rabinowitz, J.E.; Leask, A.; Molkentin, J.D. Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling. Mol. Cell. Biol. 2015, 35, 2154–2164. [Google Scholar] [CrossRef]
- Ludwicka, A.; Ohba, T.; Trojanowska, M.; Yamakage, A.; Strange, C.; Smith, E.A.; Leroy, E.C.; Sutherland, S.; Silver, R.M. Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J. Rheumatol. 1995, 22, 1876–1883. [Google Scholar]
- Homma, S.; Nagaoka, I.; Abe, H.; Takahashi, K.; Seyama, K.; Nukiwa, T.; Kira, S. Localization of platelet-derived growth factor and insulin-like growth factor I in the fibrotic lung. Am. J. Respir. Crit. Care Med. 1995, 152, 2084–2089. [Google Scholar] [CrossRef]
- Yamakage, A.; Kikuchi, K.; Smith, E.A.; LeRoy, E.C.; Trojanowska, M. Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J. Exp. Med. 1992, 175, 1227–1234. [Google Scholar] [CrossRef]
- O’Reilly, S.; Ciechomska, M.; Cant, R.; van Laar, J.M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J. Biol. Chem. 2014, 289, 9952–9960. [Google Scholar] [CrossRef] [PubMed]
- Paolini, C.; Agarbati, S.; Benfaremo, D.; Mozzicafreddo, M.; Svegliati, S.; Moroncini, G. PDGF/PDGFR: A possible molecular target in Scleroderma fibrosis. Int. J. Mol. Sci. 2022, 23, 3904. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, J.; Yin, Y.; Li, K.; Zhang, C.; Zheng, Y. The role of IL-6 in fibrotic diseases: Molecular and cellular mechanisms. Int. J. Biol. Sci. 2022, 18, 5405–5414. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tan, J.; Wang, Y.; Luan, R.; Ding, D.; Yue, M.; Zhao, M.; Xue, Q.; Yang, J. Blocking IL-6 down-regulates PD-L1 expression and mitigates pulmonary fibrosis by inhibiting the STAT3 signaling pathway. Cell. Signal. 2025, 135, 112019. [Google Scholar] [CrossRef]
- Dong, C. Genetic controls of Th17 cell differentiation and plasticity. Exp. Mol. Med. 2011, 43, 1–6. [Google Scholar] [CrossRef]
- Dong, C. Differentiation and function of pro-inflammatory Th17 cells. Microbes Infect. 2009, 11, 584–588. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Wang, L.; Feng, T.; Elson, C.O.; Niyongere, S.A.; Lee, S.J.; Reynolds, S.L.; Weaver, C.T.; Roarty, K.; Serra, R.; et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J. Immunol. 2009, 183, 97–105. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: Association with pulmonary fibrosis. J. Rheumatol. 1997, 24, 663–665. [Google Scholar] [PubMed]
- Thrall, R.S.; Vogel, S.N.; Evans, R.; Shultz, L.D. Role of tumor necrosis factor-alpha in the spontaneous development of pulmonary fibrosis in viable motheaten mutant mice. Am. J. Pathol. 1997, 151, 1303–1310. [Google Scholar]
- Beringer, A.; Thiam, N.; Molle, J.; Bartosch, B.; Miossec, P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways: IL-17 and TNF-α trigger liver inflammation. Clin. Exp. Immunol. 2018, 193, 221–233. [Google Scholar] [CrossRef]
- Barlo, N.P.; van Moorsel, C.H.M.; Korthagen, N.M.; Heron, M.; Rijkers, G.T.; Ruven, H.J.T.; van den Bosch, J.M.M.; Grutters, J.C. Genetic variability in the IL1RN gene and the balance between interleukin (IL)-1 receptor agonist and IL-1β in idiopathic pulmonary fibrosis: IL-1 receptor antagonist in IPF. Clin. Exp. Immunol. 2011, 166, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 2016, 38, 517–534. [Google Scholar] [CrossRef]
- Passalacqua, G.; Mincarini, M.; Colombo, D.; Troisi, G.; Ferrari, M.; Bagnasco, D.; Balbi, F.; Riccio, A.; Canonica, G.W. IL-13 and idiopathic pulmonary fibrosis: Possible links and new therapeutic strategies. Pulm. Pharmacol. Ther. 2017, 45, 95–100. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Xing, X.; Wan, L.; Li, M. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res. Ther. 2014, 16, R4. [Google Scholar] [CrossRef]
- Radstake, T.; van Bon, L.; Broen, J.; Hussiani, A.; Hesselstrand, R.; Wuttge, D.; Deng, Y.; Simms, R.; Lubberts, E.; Lafyatis, R.F. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes different SSc clinical phenotypes. Clin. Immunol. 2009, 131, S124–S125. [Google Scholar] [CrossRef]
- Rodríguez-Reyna, T.S.; Furuzawa-Carballeda, J.; Cabiedes, J.; Fajardo-Hermosillo, L.D.; Martínez-Reyes, C.; Díaz-Zamudio, M.; Llorente, L. Th17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: A cross-sectional study. Rheumatol. Int. 2012, 32, 2653–2660. [Google Scholar] [CrossRef]
- Abraham, D.J.; Vancheeswaran, R.; Dashwood, M.R.; Rajkumar, V.S.; Pantelides, P.; Xu, S.W.; du Bois, R.M.; Black, C.M. Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease. Am. J. Pathol. 1997, 151, 831–841. [Google Scholar] [PubMed]
- Leask, A. The role of endothelin-1 signaling in the fibrosis observed in systemic sclerosis. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2011, 63, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, V.; Balsara, N.; Wilhelm, J.; Günther, A.; Königshoff, M. WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2013, 49, 96–104. [Google Scholar] [CrossRef]
- Lam, A.P.; Flozak, A.S.; Russell, S.; Wei, J.; Jain, M.; Mutlu, G.M.; Budinger, G.R.; Feghali-Bostwick, C.A.; Varga, J.; Gottardi, C.J. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am. J. Respir. Cell Mol. Biol. 2011, 45, 915–922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beyer, C.; Schett, G.; Gay, S.; Distler, O.; Distler, J.H.W. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 2009, 11, 220. [Google Scholar] [CrossRef]
- Ueno, M.; Maeno, T.; Nomura, M.; Aoyagi-Ikeda, K.; Matsui, H.; Hara, K.; Tanaka, T.; Iso, T.; Suga, T.; Kurabayashi, M. Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L740–L752. [Google Scholar] [CrossRef] [PubMed]
- Bagni, G.; Biancalana, E.; Chiara, E.; Costanzo, I.; Malandrino, D.; Lastraioli, E.; Palmerini, M.; Silvestri, E.; Urban, M.L.; Emmi, G. Epigenetics in autoimmune diseases: Unraveling the hidden regulators of immune dysregulation. Autoimmun. Rev. 2025, 24, 103784. [Google Scholar] [CrossRef]
- Almanzar, G.; Klein, M.; Schmalzing, M.; Hilligardt, D.; El Hajj, N.; Kneitz, H.; Wild, V.; Rosenwald, A.; Benoit, S.; Hamm, H.; et al. Disease manifestation and inflammatory activity as modulators of Th17/Treg balance and RORC/FoxP3 methylation in systemic sclerosis. Int. Arch. Allergy Immunol. 2016, 171, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Hsieh, S.-C.; Wu, T.-H.; Li, K.-J.; Shen, C.-Y.; Liao, H.-T.; Wu, C.-H.; Kuo, Y.-M.; Lu, C.-S.; Yu, C.-L. Pathogenic roles of autoantibodies and aberrant epigenetic regulation of immune and connective tissue cells in the tissue fibrosis of patients with systemic sclerosis. Int. J. Mol. Sci. 2020, 21, 3069. [Google Scholar] [CrossRef]
- Dees, C.; Pötter, S.; Zhang, Y.; Bergmann, C.; Zhou, X.; Luber, M.; Wohlfahrt, T.; Karouzakis, E.; Ramming, A.; Gelse, K.; et al. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J. Clin. Investig. 2020, 130, 2347–2363. [Google Scholar] [CrossRef]
- Papazoglou, A.; Huang, M.; Bulik, M.; Lafyatis, A.; Tabib, T.; Morse, C.; Sembrat, J.; Rojas, M.; Valenzi, E.; Lafyatis, R. Epigenetic regulation of profibrotic macrophages in systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2022, 74, 2003–2014. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Luo, Y.; Yin, Y.; Wang, Q.; Li, Y.; Kanekura, T.; Wang, J.; Liang, G.; Zhao, M.; et al. Aberrant histone modification in peripheral blood B cells from patients with systemic sclerosis. Clin. Immunol. 2013, 149, 46–54. [Google Scholar] [CrossRef]
- Bergmann, C.; Distler, J.H.W. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 2017, 9, 463–477. [Google Scholar] [CrossRef]
- Yang, C.; Zheng, S.-D.; Wu, H.-J.; Chen, S.-J. Regulatory mechanisms of the molecular pathways in fibrosis induced by MicroRNAs. Chin. Med. J. 2016, 129, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Role of MicroRNAs in TGF-β signaling pathway-mediated pulmonary fibrosis. Int. J. Mol. Sci. 2017, 18, 2527. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Wen, D.; Wang, J. Noncoding RNAs: Master Regulator of Fibroblast to Myofibroblast Transition in Fibrosis. Int. J. Mol. Sci. 2023, 24, 1801. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, J.; Hu, C.; Zhou, J.; Xu, D.; Hou, Y.; Wu, C.; Zhao, J.; Li, M.; Zeng, X.; et al. MicroRNA-320a: An important regulator in the fibrotic process in interstitial lung disease of systemic sclerosis. Arthritis Res. Ther. 2021, 23, 21. [Google Scholar] [CrossRef]
- Han, D.-H.; Shin, M.K.; Sung, J.-S.; Kim, M. miR-335-3p attenuates transforming growth factor beta 1-induced fibrosis by suppressing Thrombospondin 1. PLoS ONE 2024, 19, e0311594. [Google Scholar] [CrossRef] [PubMed]
- Oo, J.A.; Brandes, R.P.; Leisegang, M.S. Long non-coding RNAs: Novel regulators of cellular physiology and function. Pflügers Arch. Eur. J. Physiol. 2022, 474, 191–204. [Google Scholar] [CrossRef]
- Hadjicharalambous, M.R.; Roux, B.T.; Feghali-Bostwick, C.A.; Murray, L.A.; Clarke, D.L.; Lindsay, M.A. Long non-coding RNAs are central regulators of the IL-1β-induced inflammatory response in normal and idiopathic pulmonary lung fibroblasts. Front. Immunol. 2018, 9, 2906. [Google Scholar] [CrossRef]
- Bautista-Sanchez, R.; Khanna, D. Systemic sclerosis-associated interstitial lung disease: How to manage in 2024? Rheumatol. Immunol. Res. 2024, 5, 157–165. [Google Scholar] [CrossRef]
- Goswami, R.P.; Ray, A.; Chatterjee, M.; Mukherjee, A.; Sircar, G.; Ghosh, P. Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: A systematic review and meta-analysis. Rheumatology 2021, 60, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Daoussis, D.; Liossis, S.N.; Tsamandas, A.C.; Kalogeropoulou, C.; Kazantzi, A.; Sirinian, C.; Karampetsou, M.; Yiannopoulos, G.; Andonopoulos, A.P. Experience with rituximab in scleroderma: Results from a 1-year, proof-of-principle study. Rheumatology 2010, 49, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Daoussis, D.; Melissaropoulos, K.; Sakellaropoulos, G.; Antonopoulos, I.; Markatseli, T.E.; Simopoulou, T.; Georgiou, P.; Andonopoulos, A.P.; Drosos, A.A.; Sakkas, L.; et al. A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis- associated interstitial lung disease. Semin. Arthritis Rheum. 2017, 46, 625–631. [Google Scholar] [CrossRef]
- Muruganandam, M.; Ariza-Hutchinson, A.; Patel, R.A.; Sibbitt, W.L., Jr. Biomarkers in the pathogenesis, diagnosis, and treatment of systemic sclerosis. J. Inflamm. Res. 2023, 16, 4633–4660. [Google Scholar] [CrossRef]
- Denton, C.P.; Ong, V.H.; Xu, S.; Chen-Harris, H.; Modrusan, Z.; Lafyatis, R.; Khanna, D.; Jahreis, A.; Siegel, J.; Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1362–1371. [Google Scholar] [CrossRef]
- Distler, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Z.; Li, X.; Li, W.; Yang, Z.; Jiao, R.; Wang, Q.; Meng, L.; Zhang, T.; Liu, J.; et al. Nerandomilast Improves Bleomycin-Induced Systemic Sclerosis-Associated Interstitial Lung Disease in Mice by Regulating the TGF-β1 Pathway. Inflammation 2025, 48, 1760–1774. [Google Scholar] [CrossRef]
- Herrmann, F.E.; Hesslinger, C.; Wollin, L.; Nickolaus, P. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front. Pharmacol. 2022, 13, 838449, Erratum in Front. Pharmacol. 2023, 14, 1219760. [Google Scholar] [CrossRef] [PubMed]
- Calverley, P.M.; Rabe, K.F.; Goehring, U.M.; Kristiansen, S.; Fabbri, L.M.; Martinez, F.J. Roflumilast in symptomatic chronic obstructive pulmonary disease: Two randomised clinical trials. Lancet 2009, 374, 685–694. [Google Scholar] [CrossRef]
- Jorgensen, S.C.; Tse, C.L.; Burry, L.; Dresser, L.D. Baricitinib: A review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy 2020, 40, 843–856. [Google Scholar] [CrossRef]
- Wang, D.; Wei, Y.; Xu, L.; Zhang, J. Crosstalk between the JAK2 and TGF-β1 signaling pathways in scleroderma-related interstitial lung disease targeted by baricitinib. Adv. Rheumatol. 2023, 63, 22. [Google Scholar] [CrossRef]
- Tur, C.; Eckstein, M.; Velden, J.; Rauber, S.; Bergmann, C.; Auth, J.; Bucci, L.; Corte, G.; Hagen, M.; Wirsching, A.; et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 2025, 84, 106–114. [Google Scholar] [CrossRef]
- Sieiro Santos, C.; Del Galdo, F. New horizons in systemic sclerosis treatment: Advances and emerging therapies in 2025. RMD Open 2025, 11, e005776. [Google Scholar] [CrossRef]
- Auth, J.; Müller, F.; Völkl, S.; Bayerl, N.; Distler, J.H.W.; Tur, C.; Raimondo, M.G.; Chenguiti Fakhouri, S.; Atzinger, A.; Coppers, B.; et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: A case series. Lancet Rheumatol. 2025, 7, e83–e93. [Google Scholar] [CrossRef]
- Zhao, Q. Bispecific antibodies for autoimmune and inflammatory diseases: Clinical progress to date. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2020, 34, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, K.M.; Distler, O.; Gheorghiu, A.-M.; Moor, C.C.; Vikse, J.; Bizymi, N.; Galetti, I.; Brown, G.; Bargagli, E.; Allanore, Y.; et al. ERS/EULAR clinical practice guidelines for connective tissue diseases associated interstitial lung disease. Ann. Rheum. Dis. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
Antibody | Frequency | Clinical | References |
---|---|---|---|
Anticentromere (ACA) | 20–30% | lcSSc, esophageal disease, PAH, digital ischemia (‘protection’ against pulmonary fibrosis) | [4,58] |
Anti-topoisomerase I (Anti-Scl-70) | 15–20% (40% dcSSc, 15% lcSSc) | dcSSc, ILD. Worse prognosis | [4,59] |
Anti-PM-Scl | 3% | Mutually exclusive with ACA. 50% of patients with polymyositis/SSc overlap | [4,61] |
Anti-Th/To | 2–5% | lcSSc, small joints, ILD, PAH | [4,62] |
Anti-U3-RNP (fibrillarin) | 4% | Myositis, PAH, renal disease. Mutually exclusive with ACA and Anti-Scl-70 | [4,63] |
Anti-U1-RNP | 8% | lcSSc, SLE, overlap with MCTD. Poor prognosis | [4,64] |
Anti-RNPC3 | 4.3% | lcSSc, ILD, gastrointestinal involvement, cancer. Poor prognosis | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcolea, M.P.I.; Starita Fajardo, G.; Peña Rodríguez, M.; Lucena López, D.; Suárez Carantoña, C.; López Paraja, M.; García de Vicente, A.; Viteri-Noël, A.; González García, A. Advances in the Molecular Mechanisms of Pulmonary Fibrosis in Systemic Sclerosis: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 10103. https://doi.org/10.3390/ijms262010103
Alcolea MPI, Starita Fajardo G, Peña Rodríguez M, Lucena López D, Suárez Carantoña C, López Paraja M, García de Vicente A, Viteri-Noël A, González García A. Advances in the Molecular Mechanisms of Pulmonary Fibrosis in Systemic Sclerosis: A Comprehensive Review. International Journal of Molecular Sciences. 2025; 26(20):10103. https://doi.org/10.3390/ijms262010103
Chicago/Turabian StyleAlcolea, María Pilar Iranzo, Grisell Starita Fajardo, Mercedes Peña Rodríguez, David Lucena López, Cecilia Suárez Carantoña, María López Paraja, Ana García de Vicente, Adrián Viteri-Noël, and Andrés González García. 2025. "Advances in the Molecular Mechanisms of Pulmonary Fibrosis in Systemic Sclerosis: A Comprehensive Review" International Journal of Molecular Sciences 26, no. 20: 10103. https://doi.org/10.3390/ijms262010103
APA StyleAlcolea, M. P. I., Starita Fajardo, G., Peña Rodríguez, M., Lucena López, D., Suárez Carantoña, C., López Paraja, M., García de Vicente, A., Viteri-Noël, A., & González García, A. (2025). Advances in the Molecular Mechanisms of Pulmonary Fibrosis in Systemic Sclerosis: A Comprehensive Review. International Journal of Molecular Sciences, 26(20), 10103. https://doi.org/10.3390/ijms262010103