Red Complex Periodontal Pathogens and Their Potential Role in Colorectal Carcinogenesis: A Narrative Review
Abstract
1. Introduction
2. Red Complex Periodontal Pathogens and Their Role in Colorectal Carcinoma
3. Methods
4. Results of the Available Literature
4.1. Porphyromonas gingivalis
4.2. Treponema denticola
4.3. Tannerella forsythia
5. Conclusions, Future Directions, and Clinical Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Periodontal disease |
WHO | World Health Organization |
CRC | Colorectal Carcinoma |
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. S1), S173–S182. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; WHO: Geneva, Switzerland, 2022.
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Idrissi Janati, A.; Karp, I.; Latulippe, J.F.; Charlebois, P.; Emami, E. Periodontal disease as a risk factor for sporadic colorectal cancer: Results from the COLDENT study. Cancer Causes Control 2022, 33, 463–472. [Google Scholar] [CrossRef]
- Kim, G.W.; Kim, Y.S.; Lee, S.H.; Park, S.G.; Kim, D.H.; Cho, J.Y.; Hahm, K.B.; Hong, S.P.; Yoo, J.H. Periodontitis is associated with an increased risk for proximal colorectal neoplasms. Sci. Rep. 2019, 9, 7528. [Google Scholar] [CrossRef]
- Momen-Heravi, F.; Babic, A.; Tworoger, S.S.; Zhang, L.; Wu, K.; Smith-Warner, S.A.; Ogino, S.; Chan, A.T.; Meyerhardt, J.; Giovannucci, E.; et al. Periodontal disease, tooth loss, and colorectal cancer risk: Results from the Nurses’ Health Study. Int. J. Cancer 2017, 140, 646–652. [Google Scholar] [CrossRef]
- Ren, H.G.; Luu, H.N.; Cai, H.; Xiang, Y.B.; Steinwandel, M.; Gao, Y.T.; Hargreaves, M.; Zheng, W.; Blot, W.J.; Long, J.R.; et al. Oral health and risk of colorectal cancer: Results from three cohort studies and a meta-analysis. Ann. Oncol. 2016, 27, 1329–1336. [Google Scholar] [CrossRef]
- Michaud, D.S.; Lu, J.; Peacock-Villada, A.Y.; Barber, J.R.; Joshu, C.E.; Prizment, A.E.; Beck, J.D.; Offenbacher, S.; Platz, E.A. Periodontal Disease Assessed Using Clinical Dental Measurements and Cancer Risk in the ARIC Study. J. Natl. Cancer Inst. 2018, 110, 843–854. [Google Scholar] [CrossRef]
- Hu, J.M.; Shen, C.J.; Chou, Y.C.; Hung, C.F.; Tian, Y.F.; You, S.L.; Chen, C.Y.; Hsu, C.H.; Hsiao, C.W.; Lin, C.Y.; et al. Risk of colorectal cancer in patients with periodontal disease severity: A nationwide, population-based cohort study. Int. J. Color. Dis. 2018, 33, 349–352. [Google Scholar] [CrossRef]
- Kim, E.H.; Nam, S.; Park, C.H.; Kim, Y.; Lee, M.; Ahn, J.B.; Shin, S.J.; Park, Y.R.; Jung, H.I.; Kim, B.I.; et al. Periodontal disease and cancer risk: A nationwide population-based cohort study. Front. Oncol. 2022, 12, 901098. [Google Scholar] [CrossRef]
- World Health Organization. Colorectal Cancer; WHO: Geneva, Switzerland, 2025.
- Guo, Y.; Bao, Y.; Ma, M.; Yang, W. Identification of Key Candidate Genes and Pathways in Colorectal Cancer by Integrated Bioinformatical Analysis. Int. J. Mol. Sci. 2017, 18, 722. [Google Scholar] [CrossRef]
- Covani, U.; Marconcini, S.; Giacomelli, L.; Sivozhelevov, V.; Barone, A.; Nicolini, C. Bioinformatic prediction of leader genes in human periodontitis. J. Periodontol. 2008, 79, 1974–1983. [Google Scholar] [CrossRef]
- Di Spirito, F.; Toti, P.; Pilone, V.; Carinci, F.; Lauritano, D.; Sbordone, L. The Association between Periodontitis and Human Colorectal Cancer: Genetic and Pathogenic Linkage. Life 2020, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dubois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, H.R.; Dhamecha, D.; Jagwani, S.; Rao, M.; Jadhav, K.; Shaikh, S.; Puzhankara, L.; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control. Release 2019, 307, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis—A comprehensive review. J. Clin. Periodontol. 2017, 44 (Suppl. S18), S94–S105. [Google Scholar] [CrossRef]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef]
- Abed, J.; Maalouf, N.; Manson, A.L.; Earl, A.M.; Parhi, L.; Emgard, J.E.M.; Klutstein, M.; Tayeb, S.; Almogy, G.; Atlan, K.A.; et al. Colon Cancer-Associated Fusobacterium nucleatum May Originate From the Oral Cavity and Reach Colon Tumors via the Circulatory System. Front. Cell. Infect. Microbiol. 2020, 10, 400. [Google Scholar] [CrossRef]
- Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. J. Fam. Med. Prim. Care 2019, 8, 3480–3486. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D. Periodontal microbial ecology. Periodontology 2000 2005, 38, 135–187. [Google Scholar] [CrossRef]
- Berglundh, T.; Giannobile, W.V.; Lang, N.P.; Sanz, M. Lindhe’s Clinical Periodontology and Implant Dentistry; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; Volume 1. [Google Scholar]
- Socransky, S.S.; Haffajee, A.D. Dental biofilms: Difficult therapeutic targets. Periodontology 2000 2002, 28, 12–55. [Google Scholar] [CrossRef]
- Dragaš, A.Z. Oralna Bakteriologija; DZS: Ljubljana, Slovenia, 1996; p. 106. [Google Scholar]
- Stasiewicz, M.; Karpinski, T.M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. 2022, 86, 633–642. [Google Scholar] [CrossRef]
- Mu, W.; Jia, Y.; Chen, X.; Li, H.; Wang, Z.; Cheng, B. Intracellular Porphyromonas gingivalis Promotes the Proliferation of Colorectal Cancer Cells via the MAPK/ERK Signaling Pathway. Front. Cell. Infect. Microbiol. 2020, 10, 584798. [Google Scholar] [CrossRef] [PubMed]
- Doaa Adel-Khattab, S.G.; Domann, E.; Chakraborty, T.; Lochnit, G.; Meyle, J. Porphyromonas gingivalis induced up-regulation of PD-L1 in colon carcinoma cells. Mol. Oral. Microbiol. 2021, 36, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, Y.; Wen, L.; Mu, W.; Wu, X.; Liu, T.; Liu, X.; Fang, J.; Luan, Y.; Chen, P.; et al. Porphyromonas gingivalis Promotes Colorectal Carcinoma by Activating the Hematopoietic NLRP3 Inflammasome. Cancer Res. 2021, 81, 2745–2759, Correction in Cancer Res. 2022, 81, 2196. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Basabe, A.; Lattanzi, G.; Perillo, F.; Amoroso, C.; Baeri, A.; Farini, A.; Torrente, Y.; Penna, G.; Rescigno, M.; Ghidini, M.; et al. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024, 16, 2388801. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, R.; Zhang, Y.; Xiang, W.; Zhang, X.; Chen, F.; An, L.; Yuan, H.; Wen, F.; Xu, Y. Porphyromonas gingivalis induced UCHL3 to promote colon cancer progression. Am. J. Cancer Res. 2023, 13, 5981–5995. [Google Scholar]
- Motosugi, S.; Takahashi, N.; Mineo, S.; Sato, K.; Tsuzuno, T.; Aoki-Nonaka, Y.; Nakajima, N.; Takahashi, K.; Sato, H.; Miyazawa, H.; et al. Enrichment of Porphyromonas gingivalis in colonic mucosa-associated microbiota and its enhanced adhesion to epithelium in colorectal carcinogenesis: Insights from in vivo and clinical studies. PLoS ONE 2025, 20, e0320383. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Dai, K.; Liu, N.; Wang, J.; Lu, X.; Ma, J.; Zhang, M.; Xu, M.; Long, X.; et al. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis. J. Oral. Microbiol. 2022, 14, 2088936. [Google Scholar] [CrossRef]
- Kerdreux, M.; Edin, S.; Lowenmark, T.; Bronnec, V.; Lofgren-Burstrom, A.; Zingmark, C.; Ljuslinder, I.; Palmqvist, R.; Ling, A. Porphyromonas gingivalis in Colorectal Cancer and its Association to Patient Prognosis. J. Cancer 2023, 14, 1479–1485. [Google Scholar] [CrossRef]
- Nieminen, M.T.; Listyarifah, D.; Hagstrom, J.; Haglund, C.; Grenier, D.; Nordstrom, D.; Uitto, V.J.; Hernandez, M.; Yucel-Lindberg, T.; Tervahartiala, T.; et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br. J. Cancer 2018, 118, 428–434. [Google Scholar] [CrossRef]
- Lund Haheim, L.; Thelle, D.S.; Ronningen, K.S.; Olsen, I.; Schwarze, P.E. Low level of antibodies to the oral bacterium Tannerella forsythia predicts bladder cancers and Treponema denticola predicts colon and bladder cancers: A prospective cohort study. PLoS ONE 2022, 17, e0272148. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Virulence mechanisms of Tannerella forsythia. Periodontology 2000 2010, 54, 106–116. [Google Scholar] [CrossRef]
- Malinowski, B.; Wesierska, A.; Zalewska, K.; Sokolowska, M.M.; Bursiewicz, W.; Socha, M.; Ozorowski, M.; Pawlak-Osinska, K.; Wicinski, M. The role of Tannerella forsythia and Porphyromonas gingivalis in the pathogenesis of esophageal cancer. Infect. Agents Cancer 2019, 14, 3. [Google Scholar] [CrossRef]
- Khor, B.; Snow, M.; Herrman, E.; Ray, N.; Mansukhani, K.; Patel, K.A.; Said-Al-Naief, N.; Maier, T.; Machida, C.A. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021, 9, 496. [Google Scholar] [CrossRef]
- Wilson, M. Microbial Inhabitants of Humans; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hajishengallis, G. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontol. 2000 2022, 89, 9–18. [Google Scholar] [CrossRef]
Study | Population | Periodontal Status | Key Findings |
---|---|---|---|
Population-based case–control study [4] | Residents of Montreal Island or Laval, aged 40–80; 348 CRC patients and 310 controls | self-reported (questionnaire) | The CRC in persons with a positive history of PD was 1.45 times higher than in those with a negative history of PD. |
Cross-sectional, retrospective study [5] | Patients who received colonoscopy as a part of routine health check-ups; 2504 patients enrolled; CHA Bundang Medical Center, Korea | Dental examination | Prevalence of proximal neoplasma was higher in the PD group (25%) vs. the control group (12.3%). Parodontitis was not an overall risk factor; however, it was associated with an increased risk for proximal colon neoplasms. |
NHS-prospective cohort study [6] | 77,443 female nurses aged 30–55 (18 years follow-up), from 11 states in the US | Self-reported (history of periodontal disease and number of natural teeth) | Women with fewer teeth, possibly moderate or severe periodontal disease, might be at a modestly increased risk of developing CRC. |
3 cohort studies; case/control [7] | 825 case/control (SMHS/SWHS) and 238/2258 (SCCS) * | Questioner (number of teeth) | Tooth loss was not associated with increased risk of CRC. |
Prospective cohort study [8] | 7466 participants in the Atherosclerosis Risk in Communities study cohort; age 44–66 years from Jackson, Mississippi, Washington County, Maryland; Minneapolis, Minnesota; and Forsyth County, North Carolina | Periodontal examination | An increased risk of total cancer was observed for severe periodontitis. |
Nationwide retrospective cohort study [9] | A total of approximately 106,487 individuals with newly diagnosed PD and 106,487 age-matched and sex-matched patients without PD from 2000 to 2002 were identified from Taiwan’s National Health Insurance Research Database (NHIRD). | They relied on administrative/insurance data (diagnosis codes + visit frequency) to infer the presence and severity of periodontal disease. | The incidence of CRC was significantly higher in patients with PD than in those without PD. |
A population-based, retrospective cohort study [10] | The Korean National Health Insurance Cohort Database was obtained between January 2003 and December 2015; it included 713,201 individuals without a history of cancer who were followed up to 10 years | They relied on administrative/insurance data (diagnosis codes + visit frequency) to infer the presence and severity of periodontal disease. | The cumulative incidence of cancer in the periodontitis group was 2.2 times higher than that in the control group. The periodontitis group had an increased risk of total cancer compared to the control group. |
Gene | Main Function/Biological Process | Putative Pathogenic Mechanism in the Linkage |
---|---|---|
CTNNB1 | Cell signaling (Wnt pathway), cell growth, and adhesion | Cell cycle dysregulation: abnormal proliferation, transformation in the colon; disturbed tissue homeostasis in the periodontium. |
FOS | Transcription factor; forms AP-1 with JUN; regulates proliferation and differentiation | Cell cycle regulation promotes proliferation and may also contribute to inflammation via AP-1-mediated transcription. |
JUN | Part of the AP-1 transcription factor (with FOS); regulates genes in proliferation, apoptosis, and differentiation. | Cell cycle dysregulation promotes proliferative and inflammatory signaling. |
GRB2 | Adaptor protein in signaling (e.g., binding EGFR, etc.) | Cell signaling dysregulation leading to abnormal proliferation and possibly impaired tissue repair. |
PIK3CA | Catalytic subunit of PI3K; cell proliferation and survival | Cell cycle dysregulation, which can enhance the survival of cells, may possibly contribute to malignancy in the colon. |
PIK3R1 | Regulatory subunit of PI3K; controls PI3K activity/signaling | Cell signaling dysregulation influences proliferation, possibly inflammation. |
IL6 | Cytokine: an immunoinflammatory mediator | Immuno-inflammatory response: sustained inflammation, systemic effects that may favor the tumor environment. |
IL1B | Pro-inflammatory cytokine | Immuno-inflammatory response: persistent inflammation, possibly promoting DNA damage, cell proliferation, and tumorigenesis. |
IL4 | Cytokine modulates immune response (Th2) | Immuno-inflammatory modulation: imbalance may favor tumor-promoting inflammation or immune suppression. |
IL10 | Anti-inflammatory cytokine; regulates immune suppression | Immuno-inflammatory response: when anti-inflammatory regulation fails, inflammation becomes chronic, aiding carcinogenesis. |
RELA | Transcription factor; major part of NF-κB complex; regulates pro-inflammatory genes. | Immuno-inflammatory response: drives expression of cytokines, etc.; links inflammation and possibly proliferation signals. |
CBL | E3 ubiquitin ligase; modulates proteasomal degradation of proteins; impacts signaling and NF-κB | Immuno-inflammatory response; possibly via dysregulation of protein turnover, NF-κB activation. |
Red Complex Bacteria | Virulence Factor | Mechanism of Action | Local Effect in CRC | Known Systemic Effect |
---|---|---|---|---|
Porphyromonas gingivalis | Peptidoglycan [27] | Upregulation of PD-L1 via NOD1/2–RIP2–MAPK signaling [27], impairing iNKT cell cytotoxicity through upregulation of CHI3L1 [29]. | Tumor immune evasion | Cancer progression, drug resistance, and metastasis |
Porphyromonas gingivalis | Strain-specific fimbriae and gingipains [31] | Reduced microbial diversity; an increased Bacteroidetes-to-Firmicutes ratio [32]., The gut microbiome changed, favoring Erysipelotrichaceae [28] disruption of the mucosal barrier and epithelial colonization [31]. | Changes in the gut microbiota | Progression of CRC |
Porphyromonas gingivalis | NLRP3 expression within the hematopoietic compartment [28] | Increased inflammatory cells; mRNA levels of TNF-α, IRF-1, and IFN-γ significantly increased [32]. Increase accumulation of the infiltrating myeloid cell line [28]. Increase levels of TNFα, IL6 in IL1β [28]. | Intestinal inflammation/pro-inflammatory microenvironment | Promotes systemic inflammation |
Porphyromonas gingivalis | gingipain [26] | Activation of MAPK/ERK signaling pathways [26]. Upregulation of UCHL3; GNG12-activated NF-κB signal pathway [30]. | Promoting CRC Cell proliferation | Tumor progression, metastasis |
Treponema denticola | Td-CTLP | Activated proMMP-8 and proMMP-9, fragmented TIMP-1 and TIMP-2, α-1-AC, and C1q, and enhanced the MMP–8–mediated degradation of type I and II collagens in vitro; detected as granular deposits within the cytoplasm of epithelial cells in tumors [34]. | Pro-inflammatory and tissue-destructive environment | Tumor progression |
Tanarella forsythia * | Induction of IL-1β, IL-6, and TNF-α; activation of the TLR/NF-κB signaling pathways [37]. | Chronic inflammation | ||
Tanarella forsythia * | In combination with Porphyromonas gingivalis | Overexpression of GLUT1/GLUT4 through TNF-α and ROS signaling [37]. | Fueling the growth and survival of the tumor | Tumor progression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potocnik Rebersak, U.; Schara, R. Red Complex Periodontal Pathogens and Their Potential Role in Colorectal Carcinogenesis: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 10012. https://doi.org/10.3390/ijms262010012
Potocnik Rebersak U, Schara R. Red Complex Periodontal Pathogens and Their Potential Role in Colorectal Carcinogenesis: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(20):10012. https://doi.org/10.3390/ijms262010012
Chicago/Turabian StylePotocnik Rebersak, Ursa, and Rok Schara. 2025. "Red Complex Periodontal Pathogens and Their Potential Role in Colorectal Carcinogenesis: A Narrative Review" International Journal of Molecular Sciences 26, no. 20: 10012. https://doi.org/10.3390/ijms262010012
APA StylePotocnik Rebersak, U., & Schara, R. (2025). Red Complex Periodontal Pathogens and Their Potential Role in Colorectal Carcinogenesis: A Narrative Review. International Journal of Molecular Sciences, 26(20), 10012. https://doi.org/10.3390/ijms262010012