Synthesis of Resorcinol and Chlorophenol from Irradiation of 1,3-Dichlorobenzene in a Water Ice Environment by Low-Energy Electrons
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeschke, P. Manufacturing approaches of new halogenated agrochemicals. Eur. J. Org. Chem. 2022, 2022, e202101413. [Google Scholar] [CrossRef]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joeger, A.C.; Boeckler, F.K. Principle and application of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2012, 56, 1363–1388. [Google Scholar] [CrossRef] [PubMed]
- Kampes, R.; Zechel, S.; Hager, M.D.; Schubert, U.S. Halogen bonding in polymer science: Towards new smart material. Chem. Sci. 2022, 12, 9275–9286. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Notardonato, I.; Rosade, A.; Ianiri, G.; Avino, P. Halogenated volatile compounds in water samples and inorganic elements levels in Ores for characterizing a high anthropogenic polluted area in the northern Latium region (Italy). Int. J. Environ. Res. Public Health 2021, 18, 1628. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wei, Y.; Tian, J.; Chen, L. Adsorbable organic halogens in contaminated water environment: A review of sources and removal technologies. J. Clean. Prod. 2021, 283, 124645. [Google Scholar] [CrossRef]
- Lin, Q.; Kang, W.; Lin, S.; Yu, Y.; An, T. Atmospheric halogenated hydrocarbons emitted from a flame retardant production base and influence on one formation potential and risks. Hygiene Environ. Health Adv. 2023, 8, 100070. [Google Scholar] [CrossRef]
- Guerrero, P.A.; Corsi, R.L. Emission of p-dichlorobenzene and naphthalene from consumer products. J. Air Waste Manag. Association 2012, 62, 1075–1084. [Google Scholar] [CrossRef]
- Lin, H.; Ji, D.-W.; Mei, Y.-K.; Liu, Y.; Liu, C.-H.; Wang, X.-Y.; Chen, Q.-A. Repurposing of halogenated organic pollutants via alkyl bromide catalyzed transfer chlorination. Nat. Chem. 2024, 16, 1505–1514. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Cui, Y.-Y.; Zhang, Y.; Yang, C.-X. Synthesis of reusable and renewable microporous organic networks for the removal of halogenated contaminants. J. Hazard. Mater. 2022, 424, 127485. [Google Scholar] [CrossRef]
- Miyoshi, K.; Alfafara, C.G.; Matsumura, M. Dechlorination of organohalogen compounds by an electrolytic cation supply system. J. Electroanal. Chem. 2024, 568, 293–300. [Google Scholar] [CrossRef]
- Long, Y.; Jin, Z.; Li, L.; Zhang, M.; Hu, L.; Shen, D.; Ruan, J. Dechlorination of chlorotoluene rectification residual liquid (CRRL) by using Williamson ester synthesis (WES) method. Environ. Sci. Pollut. Res. 2020, 27, 14198–14206. [Google Scholar] [CrossRef] [PubMed]
- Boparai, H.K.; Al-Sharnouby, O.; O’Carroll, D.M. Catalytic dichlorination of 1,2-DCA in nano-Cu0-boronhydride system: Effect of Cu0/Cun+ ratio, surface poisoning and regeneration of Cu0. Sci. Rep. 2023, 13, 11883. [Google Scholar] [CrossRef] [PubMed]
- 5 × 104 Electrons Per Deposited MeV; ICRU, Rep. 31; International Commission on Radiation Units and Measurements: Washington, DC, USA, 1979.
- Bernadi, M.; Mustafa, J.; Neaton, J.B.; Louie, S.G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 2015, 6, 7044. [Google Scholar]
- Petitpas, G.; Rollier, J.D.; Darmon, A.; Gonzalez-Ahuilar, J.; Metkemeijer, R.; Fulcheri, L. Review: A comparative study of non-thermal plasma assisted reforming technologies. Int. J. Hydrogen Energy 2007, 32, 2848–2867. [Google Scholar] [CrossRef]
- Zhang, W.; Huanhuan, L.; van Shie, M.M.C.H.; Hagedon, P.-L.; Alcade, M.; Denkova, A.G.; Djznzshcilli, K.; Holmann, F. Nuclear water and biocatalysis: A sustainable liaison? ACS Catal. 2020, 10, 14195–14200. [Google Scholar] [CrossRef]
- Glüven, O. Radiation assisted synthesis of polymer-based nanomaterials. Appl. Sci. 2021, 11, 7913. [Google Scholar] [CrossRef]
- Naumkin, F.Y.; Polanyi, J.C.; Rodgers, D.; Hofer, W.A. Fisher, Electron induced attachment of chlorinated benzenes to Si(100)x1. Surf. Sci. 2003, 547, 324334. [Google Scholar] [CrossRef]
- Boerigter, C.; Campana, R.; Morabito, M.; Linic, S. Evidence and implication of direct charge excitation as the dominant mechanism in plasmon mediated photocatalysis. Nat. Commun. 2016, 7, 10545. [Google Scholar] [CrossRef]
- Paulmier, T.; Fulcheri, L. Use of non-thermal for hydrocarbon reforming. Chem. Eng. J. 2005, 106, 59–71. [Google Scholar] [CrossRef]
- Zhu, R.; Mao, Y.; Jiang, L.; Chen, J. Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chem. Eng. J. 2015, 279, 463–471. [Google Scholar] [CrossRef]
- Guerin, T.F. Ex-situ bioremediation of chlorobenzenes in soil. J. Hazard. Mat. 2008, 154, 9–20. [Google Scholar] [CrossRef] [PubMed]
- NIST Database. Available online: https://webbook.nist.gov/cgi/inchi/InChI%3D1S/C6H4Cl2/c7-5-2-1-3-6(8)4-5/h1-4H (accessed on 14 January 2025).
- Chipoco Haro, D.A.; Gonzales Matushita, L.M.; Kong, M.J.; Rodriguez-Reyes, J.C.F. Temperature programmed reaction of aromatic compounds on Au(111) and on a model gold catalyst. J. Phys. Chem. C 2022, 126, 20364–20374. [Google Scholar] [CrossRef]
- Zhou, X.-L.; White, J.M. Photon- and electron-induced chemistry on chlorobenzene on Ag(111). J. Chem. Phys. 1990, 95, 5612–5621. [Google Scholar] [CrossRef]
- Liu, R. Adsorption and dissociation of H2O on Au(111) surface: A DFT study. Comput. Theor. Chem. 2013, 1019, 141–145. [Google Scholar] [CrossRef]
- Haines, B.M.; Gland, J.L. Deep oxidation of chlorobenzene on the Pt(111) surface. Surf. Sci. 2008, 602, 1892–1897. [Google Scholar] [CrossRef]
- Thiam, G.; Charlieux, F.; Mignon, P.; Rabilloud, F.; Abdoul-Carime, H. Decomposition of carbon tetrachloride on gold surfaces: Potential application to the hepatotoxicity treatment. J. Phys. Chem. C 2020, 124, 20874–20880. [Google Scholar] [CrossRef]
- Peköz, R.; Johnston, K.; Donadio, D. Adsorption of dichlorobenzene on Au and Pt stepped surfaces using van der Waals density functional theory. J. Phys. Chem. C 2012, 116, 20409–20416. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, H.; He, P.; Wang, D. Catalytic dichlorination of p-dichlorobenzene over Pd/Fe catalysts. Chemosphere 2005, 58, 1135–1140. [Google Scholar] [CrossRef]
- Hayakawa, S.; Matsubara, H.; Kawamura, Y.; Iwamoto, K. Definitive evidence for the existence of isomeric chlorophenyl radicals (C6H4Cl⦁) from charge inversion mass spectrometry and DFT Calculations. Int. J. Mass. Spectrom. 2007, 262, 220–231. [Google Scholar] [CrossRef]
- Mardyukov, A.; Sanchez-Garcia, E.; Crespo-Otero, R.; Sander, W. Interaction and reaction of the phenyl radical with water: A source of OH radicals. Angew. Chem. Int. Ed. 2009, 48, 4804–4807. [Google Scholar] [CrossRef]
- Collings, M.P.; Anderson, M.A.; Chen, R.; Dever, J.W.; Viti, S.; Williams, D.A.; McCoustra, M.R.S. A laboratory survey of the thermal desorption of astrophysically relevant molecules. MNRAS 2004, 354, 1133–1140. [Google Scholar] [CrossRef]
- Lee, A.F.; Carr, P.; Wilso, K. Direct observation of extremely low temperature catalytic dehydrochlorination of 1,1,1-trichloroethane over platinum. J. Phys. Chem. B. 2004, 108, 14811–14814. [Google Scholar] [CrossRef]
- Illenberger, E.; Momigny, J. Gaseous Molecular Ions: An Introduction to Elementary Processes Induced by Ionization; Baümgartel, H., Franck, E.U., Grünbein, W., Eds.; Steinkopff Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Pan, X.; Bass, A.D.; Jay-Gerin, J.P.; Sanche, L. A mechanism for the production of hydrogen peroxide and the hydroperoxyl radical on icy satellites by low energy electrons. Icarus 2003, 172, 521–525. [Google Scholar] [CrossRef]
- Pan, X.; Abdoul-Carime, H.; Cloutier, P.; Bass, A.D.; Sanche, L. D-, O- and OD- desorption induced by low-energy (0–20 eV) electron impact on amorphous D2O films. Radiat. Phys. Chem. 2005, 72, 193–199. [Google Scholar] [CrossRef]
- Yuan, J.; Hu, L.; Gao, W.; Yang, L.; Qian, L.; Han, L.; Chen, M. Remediation of 1,2-dichlorobenzene contaminated soil activated by persulfate using green synthesized nanoscale zero valent iron: Activation mechanism and degradation pathways. J. Soils Sediments 2022, 22, 1135–1144. [Google Scholar] [CrossRef]
- Mahmoodi-Darian, M.; Mauracher, A.; Aleem, A.; Denifl, S.; Rittenschober, B.; Bacher, A.; Probst, M.; Märk, T.D.; Scheier, P. Temperature Effects on the Dissociative Electron Attachment to Dichlorobenzene Isomers. J. Phys. Chem. A 2009, 113, 14923–14929. [Google Scholar] [CrossRef]
- Abdoul-Carime, H.; de Miranda, E.G.F.; do Varella, M.N. Low energy (0–9 eV) electron interaction with gas phase 1,3-dichlorobenzene: An experimental and theoretical study. Phys. Scr. 2024, 99, 125401. [Google Scholar] [CrossRef]
- Optiz, A.; Scherge, M.; Ahmed, S.I.-U.; Schaefer, J.A. A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques. J. Appl. Phys. 2007, 101, 064310. [Google Scholar] [CrossRef]
- Singh, S.; Naghma, R.; Kaur, J.; Antony, B. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds. J. Chem. Phys. 2016, 145, 034309. [Google Scholar] [CrossRef]
- Abdoul-Carime, H.; Thiam, G.; Rabilloud, F.; Charlieux, F.; Kopyra, J. Chemistry in acetonitrile-water films induced by slow (< 15 eV) electrons: Application to the earth and space chemistry. ACS Earth Space Chem. 2022, 6, 1126–1132. [Google Scholar]
- Leclerc, G.; Goulet, T.; Cloutier, P.; Jay-Gerin, J.-P.; Sanche, L. Low-energy (0–10 eV) electron transmission spectra of multilayer tryptophan films. J. Phys. Chem. A 1987, 91, 4999–5001. [Google Scholar] [CrossRef]
- Sanche, L. Transmission of 0–15 eV monoenergetic electrons through thin-film molecular solids. J. Phys. Chem. 1979, 71, 4860–4882. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoul-Carime, H.; Kopyra, J. Synthesis of Resorcinol and Chlorophenol from Irradiation of 1,3-Dichlorobenzene in a Water Ice Environment by Low-Energy Electrons. Int. J. Mol. Sci. 2025, 26, 688. https://doi.org/10.3390/ijms26020688
Abdoul-Carime H, Kopyra J. Synthesis of Resorcinol and Chlorophenol from Irradiation of 1,3-Dichlorobenzene in a Water Ice Environment by Low-Energy Electrons. International Journal of Molecular Sciences. 2025; 26(2):688. https://doi.org/10.3390/ijms26020688
Chicago/Turabian StyleAbdoul-Carime, Hassan, and Janina Kopyra. 2025. "Synthesis of Resorcinol and Chlorophenol from Irradiation of 1,3-Dichlorobenzene in a Water Ice Environment by Low-Energy Electrons" International Journal of Molecular Sciences 26, no. 2: 688. https://doi.org/10.3390/ijms26020688
APA StyleAbdoul-Carime, H., & Kopyra, J. (2025). Synthesis of Resorcinol and Chlorophenol from Irradiation of 1,3-Dichlorobenzene in a Water Ice Environment by Low-Energy Electrons. International Journal of Molecular Sciences, 26(2), 688. https://doi.org/10.3390/ijms26020688