Crosstalk Between Allergic Inflammation and Autophagy
Abstract
1. Introduction
2. Autophagic Processes
3. Autophagy and Allergic Asthma
4. Mechanisms of Autophagy-Mediated Allergic Inflammation
5. Autophagy Inhibits Allergic Inflammation
6. Impaired Autophagy in Allergic Inflammation
7. Mitophagy and Allergic Inflammation
8. Discussion and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, T.; Dong, Y.A.; Zhang, J. Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential. Allergol. Immunopathol. 2025, 53, 167–180. [Google Scholar] [CrossRef]
- New, J.; Thomas, S.M. Autophagy-dependent secretion: Mechanism, factors secreted, and disease implications. Autophagy 2019, 15, 1682–1693. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Autophagy is involved in allergic rhinitis by inducing airway remodeling. Int. Forum Allergy Rhinol. 2019, 9, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ligan, C.; Huang, S.; Chen, Y.; Li, M.; Cao, Y.; Zhao, W.; Zhao, S. Mitochondrial activity related genes of mast cells identify poor prognosis and metastasis of ovarian cancer. Immunobiology 2024, 229, 152831. [Google Scholar] [CrossRef] [PubMed]
- Levra, S.; Rosani, U.; Gnemmi, I.; Brun, P.; Leonardi, A.; Carriero, V.; Bertolini, F.; Balbi, B.; Profita, M.; Ricciardolo, F.L.M.; et al. Impaired autophagy in the lower airways and lung parenchyma in stable COPD. ERJ Open Res. 2023, 9, 00423–02023. [Google Scholar] [CrossRef] [PubMed]
- Nazarko, T.Y. Autophagy of Glycogen Is Non-Selective in Komagataella phaffii. Autophagy Rep. 2024, 3, 2382659. [Google Scholar] [CrossRef]
- Han, P.; Wang, H.; Chen, Y.; Ge, Y.; Xu, H.; Ren, H.; Meng, Y. The role of lipophagy in liver cancer: Mechanisms and targeted therapeutic interventions. Front. Cell Dev. Biol. 2025, 13, 1562542. [Google Scholar] [CrossRef]
- Park, K.S.; Jeon, I.S.; Hong, J.T.; Yang, B.; Choi, J.K. Regulation of intracellular proliferation of Salmonella typhimurium by CD63. Genes Genomics 2025, 47, 973–982. [Google Scholar] [CrossRef]
- Reggiori, F.; Molinari, M. ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol. Rev. 2022, 102, 1393–1448. [Google Scholar] [CrossRef]
- Li, J.; Wang, W. Mechanisms and Functions of Pexophagy in Mammalian Cells. Cells 2021, 10, 1094. [Google Scholar] [CrossRef]
- Lamark, T.; Johansen, T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 2012, 736905. [Google Scholar] [CrossRef]
- Beese, C.J.; Brynjólfsdóttir, S.H.; Frankel, L.B. Selective Autophagy of the Protein Homeostasis Machinery: Ribophagy, Proteaphagy and ER-Phagy. Front. Cell Dev. Biol. 2020, 7, 373. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, X.; Yang, S.; Li, X.; Huang, M.; Wei, S.; Liu, J.; He, G.; Zheng, H.; Yang, L.; et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022, 13, 132. [Google Scholar] [CrossRef]
- Li, W.; He, P.; Huang, Y.; Li, Y.F.; Lu, J.; Li, M.; Kurihara, H.; Luo, Z.; Meng, T.; Onishi, M.; et al. Selective autophagy of intracellular organelles: Recent research advances. Theranostics 2021, 11, 222–256. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.L.; Chen, S.; Noda, K.; Li, Y.; Tsai, C.Y.; Omori, H.; Kato, Y.; Zhang, Z.; Chen, B.; Tokuda, K.; et al. Evidence that mitochondria in macrophages are destroyed by microautophagy. Nat. Commun. 2025, 16, 8123. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Campos, M.; Minniti, A.N.; Hormazabal, J.; Núñez, G.; Lagos, C.F.; Perez-Acle, T.; Aldunate, R.; Alfaro, I.E. KFERQ-selective protein autophagy in Caenorhabditis elegans depends on LMP-1. PLoS ONE 2025, 20, e0330339. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zuo, Q.; Li, X.; Liu, Y.; Gan, L.; Wang, L.; Rao, Y.; Pan, R.; Dong, J. p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation. Inflammation 2025, 48, 2772–2782. [Google Scholar] [CrossRef]
- Sun, B.; Huang, H.; An, R.; Wei, B.; Yue, X. Bioinformatics analysis and preliminary validation of autophagy-related genes in asthma disease. Sci. Rep. 2025, 15, 21475. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Chai, J.; Yang, J.; Dai, L.; Yang, Y.; Zhang, Y.; Jin, Y.; Wang, C.; Yan, G. Ginsenoside Rh1 Alleviates Allergic Rhinitis by Mediating Mitochondrial Autophagy via Activation of the AMPK/ULK1/FUNDC1 Pathway. Food Sci. Nutr. 2025, 13, e70464. [Google Scholar] [CrossRef]
- Cui, L.; Li, T.; Zhang, J.; Shen, Y.; Cao, J. STAT1-IFITM3 promotes autophagy in epithelial cells to control Cryptosporidium parvum infection. Life Sci. Alliance 2025, 8, e202503200. [Google Scholar] [CrossRef]
- Guo, J.; Peng, L.; Zeng, J.; Zhang, M.; Xu, F.; Zhang, X.; Wei, Q. Paeoniflorin suppresses allergic and inflammatory responses by promoting autophagy in rats with urticaria. Exp. Ther. Med. 2021, 21, 590. [Google Scholar] [CrossRef]
- Korolchuk, V.I.; Mansilla, A.; Menzies, F.M.; Rubinsztein, D.C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 2009, 33, 517–527. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Q.; Wu, J.; Zhou, P.; Zhao, M.; Song, J. DSS1 inhibits autophagy to activate epithelial-mesenchymal transition in a pro-metastatic niche of renal cell carcinoma. Nat. Commun. 2025, 16, 6769. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Jia, X.; Yang, Q.; Du, Y. AMPK/mTOR/ULK1 Pathway Participates in Autophagy Induction by Curcumin in Colorectal Adenoma Mouse Model. Drug Dev. Res. 2025, 86, e70115. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, X.; Zhu, Z.; Wang, W.; Wen, W.; Li, X. Increased ROS levels activate AMPK-ULK1-mediated mitophagy to promote pseudorabies virus replication. Vet. Res. 2025, 56, 156. [Google Scholar] [CrossRef]
- Senapati, P.K.; Mahapatra, K.K.; Singh, A.; Bhutia, S.K. mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189342. [Google Scholar] [CrossRef]
- Kudrna, K.M.; Vilches, L.F.; Eilers, E.M.; Maurya, S.K.; Brody, S.L.; Horani, A.; Bailey, K.L.; Wyatt, T.A.; Dickinson, J.D. MTOR signaling regulates the development of airway mucous cell metaplasia associated with severe asthma. JCI Insight 2025, 10, e187904. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Lin, Y.; Chen, H.; Yang, Z.; Zha, J.; Jiang, X.; Han, Z.; Wang, K. Mechanisms of autophagy and their implications in dermatological disorders. Front. Immunol. 2024, 15, 1486627. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.; Fairlie, W.D.; Lee, E.F. BECLIN1: Protein Structure, Function and Regulation. Cells 2021, 10, 1522. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Feng, Y.D.; Zhang, Y.X.; Gao, X.; Liu, J.J.; Liu, S.; Wu, G.Q. IL-10 alleviates ulcerative colitis by regulating mitochondrial function through reducing ISG15 expression. Cell Signal 2025, 134, 111932. [Google Scholar]
- Sapkota, A.; Park, E.J.; Kim, Y.J.; Heo, J.B.; Nguyen, T.Q.; Heo, B.E.; Kim, J.K.; Lee, S.H.; Kim, S.I.; Choi, Y.J.; et al. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed. Pharmacother. 2024, 179, 117313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, B.; Zhao, Y.; Zhu, X.; Wang, B.; Yang, L.; Feng, R.; Teng, Q. Deubiquitinase TRIM44 Promotes Autophagy-Mediated Chemoresistance in Diffuse Large B Cell Lymphoma. Hematol. Oncol. 2025, 43, e70119. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Jiang, X.; Liu, G.; Xu, S.; He, J.; He, X.; Xiao, T.; Wang, L.; Xiao, L.; et al. Emerging mechanisms and implications of m6A in CVDs: Potential applications of natural products. Front. Cardiovasc. Med. 2025, 12, 1559064. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.L.; Borges da Silva, H. You are what you eat: Autophagy guides CD8+ T cell function through metabolism. Immunometabolism 2025, 7, e00064. [Google Scholar] [CrossRef]
- Peddaboina, C.; Iannucci, J.; Tobin, R.P.; Shapiro, L.A.; Newell Rogers, M.K. Autophagy Differentially Influences Toll-like Receptor 9 and B Cell-Receptor-Mediated B Cell Expansion, Expression of Major Histocompatibility Class II Proteins, and Antigenic Peptide Presentation. Int. J. Mol. Sci. 2025, 26, 6054. [Google Scholar] [CrossRef]
- Klute, S.; Nchioua, R.; Cordsmeier, A.; Vishwakarma, J.; Koepke, L.; Alshammary, H.; Jung, C.; Hirschenberger, M.; Hoenigsperger, H.; Fischer, J.R.; et al. Mutation T9I in Envelope confers autophagy resistance to SARS-CoV-2 Omicron. iScience 2025, 28, 112974. [Google Scholar] [CrossRef]
- Hamelmann, E.; Oshiba, A.; Paluh, J.; Bradley, K.; Loader, J.; Potter, T.A.; Larsen, G.L.; Gelfand, E.W. Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J. Exp. Med. 1996, 183, 1719–1729. [Google Scholar] [CrossRef]
- Lan, F.; Li, J.; Miao, W.; Sun, F.; Duan, S.; Song, Y.; Yao, J.; Wang, X.; Wang, C.; Liu, X.; et al. GZMK-expressing CD8+ T cells promote recurrent airway inflammatory diseases. Nature 2025, 638, 490–498, Correction in Nature 2025, 638, E45. [Google Scholar] [CrossRef]
- He, Y.Q.; Qiao, Y.L.; Xu, S.; Jiao, W.E.; Yang, R.; Kong, Y.G.; Tao, Z.Z.; Chen, S.M. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance. Int. Immunopharmacol. 2022, 106, 108611. [Google Scholar] [CrossRef]
- Han, N.R.; Ko, S.G.; Moon, P.D.; Park, H.J. Chloroquine attenuates thymic stromal lymphopoietin production via suppressing caspase-1 signaling in mast cells. Biomed. Pharmacother. 2021, 141, 111835. [Google Scholar] [CrossRef]
- Ahmad, E.S.; Diab, S.M.; Behiry, E.G.; Bassyoni, S.E.B.E.S.E.; Ishak, S.R.; Ramadan, A. Autophagy-related 5 gene mRNA expression and ATG5 rs510432 polymorphism in children with bronchial asthma. Pediatr. Pulmonol. 2022, 57, 2659–2664. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Z.; Liu, X. Angiotensin-(1–7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma. BMC Pulm. Med. 2023, 23, 422. [Google Scholar] [CrossRef]
- Ushio, H.; Ueno, T.; Kojima, Y.; Komatsu, M.; Tanaka, S.; Yamamoto, A.; Ichimura, Y.; Ezaki, J.; Nishida, K.; Komazawa-Sakon, S.; et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 2011, 127, 1267–1276. [Google Scholar] [CrossRef]
- Maneechotesuwan, K.; Kasetsinsombat, K.; Wongkajornsilp, A.; Barnes, P.J. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin. Exp. Allergy 2021, 51, 1553–1565. [Google Scholar] [CrossRef]
- Liu, J.N.; Suh, D.H.; Trinh, H.K.; Chwae, Y.J.; Park, H.S.; Shin, Y.S. The role of autophagy in allergic inflammation: A new target for severe asthma. Exp. Mol. Med. 2016, 48, e243. [Google Scholar] [CrossRef]
- Reza, M.I.; Ambhore, N.S. Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers. Biomedicines 2025, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yang, W.; Li, W.; Zhu, S.; Zhu, L.; Gao, P.; Hao, Y. New insights into autophagy in inflammatory subtypes of asthma. Front. Immunol. 2023, 14, 1156086. [Google Scholar] [CrossRef] [PubMed]
- Quoc, Q.L.; Cao, T.B.T.; Kim, S.H.; Choi, Y.; Ryu, M.S.; Choi, Y.; Park, H.S.; Shin, Y.S. Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem. Toxicol. 2023, 175, 113699. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, Y.; Kwon, Y.; Kim, Y.; Byun, J.; Jeong, M.S.; Kim, H.U.; Jung, H.S.; Mun, J.Y.; Jeoung, D. MiR-135-5p-p62 Axis Regulates Autophagic Flux, Tumorigenic Potential, and Cellular Interactions Mediated by Extracellular Vesicles During Allergic Inflammation. Front. Immunol. 2019, 10, 738. [Google Scholar] [CrossRef]
- Pavlyuchenkova, A.N.; Smirnov, M.S.; Chernyak, B.V.; Chelombitko, M.A. The Role Played by Autophagy in FcepsilonRI-Dependent Activation of Mast Cells. Cells 2024, 13, 690. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Yang, Y.; Li, S.; Liu, Z.; Liu, C.; Mao, Z.; Huo, Y. TTC4 Overexpression Attenuates Allergic Rhinitis via Inhibiting AMPK-Mediated Autophagy. Int. Arch. Allergy Immunol. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhuo, J.J.; Li, W.Q.; Zhou, M.L.; Cheng, K.J. Role of autophagy and mitophagy of group 2 innate lymphoid cells in allergic and local allergic rhinitis. World Allergy Organ J. 2024, 17, 100852. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, L.; Qin, X.; Zhang, T. Changes of autophagy related proteins during sublingual immunotherapy treatment in allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 2025, 196, 112477. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Feng, L.; Yang, W. Inhibition of dendritic cell autophagy alleviates the progression of allergic rhinitis by inhibiting Th1/Th2/Th17 immune imbalance and inflammation. Histol. Histopathol. 2025, 40, 237–247. [Google Scholar]
- Liu, Q.Q.; Tian, C.J.; Li, N.; Chen, Z.C.; Guo, Y.L.; Cheng, D.J.; Tang, X.Y.; Zhang, X.Y. Brain-derived neurotrophic factor promotes airway smooth muscle cell proliferation in asthma through regulation of transient receptor potential channel-mediated autophagy. Mol. Immunol. 2023, 158, 22–34. [Google Scholar] [CrossRef]
- Liu, Y.B.; Tan, X.H.; Yang, H.H.; Yang, J.T.; Zhang, C.Y.; Jin, L.; Yang, N.S.; Guan, C.X.; Zhou, Y.; Liu, S.K.; et al. Wnt5a-mediated autophagy contributes to the epithelial-mesenchymal transition of human bronchial epithelial cells during asthma. Mol. Med. 2024, 30, 93. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, P.; Yan, G.; Sun, A.; Xu, L.; Li, J.; Zhai, X.; Liu, X.; Mei, T.; Xuan, Y.; et al. Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells. Respir. Res. 2025, 26, 50. [Google Scholar] [CrossRef]
- Liu, K.; Liu, R.; Zhang, C.; Huang, D.; Wei, B.; Song, Y.; Wang, C.; Zhang, X.; Zheng, M.; Yan, G. Suzi Daotan Decoction alleviates asthmatic airway remodeling through the AMPK/SIRT1/PGC-1α signaling pathway and PI3K/AKT signaling pathway. Sci. Rep. 2025, 15, 6690. [Google Scholar] [CrossRef]
- Chan, H.Y.; Ramasamy, T.S.; Chung, F.F.; Teow, S.Y. Role of sirtuin 1 (SIRT1) in regulation of autophagy and nuclear factor-kappa Beta (NF-ĸβ) pathways in sorafenib-resistant hepatocellular carcinoma (HCC). Cell Biochem. Biophys. 2024, 82, 959–968. [Google Scholar] [CrossRef]
- Kwon, Y.; Choi, Y.; Kim, M.; Jeong, M.S.; Jung, H.S.; Jeoung, D. HDAC6 and CXCL13 Mediate Atopic Dermatitis by Regulating Cellular Interactions and Expression Levels of miR-9 and SIRT1. Front. Pharmacol. 2021, 12, 691279. [Google Scholar] [CrossRef]
- Imraish, A.; Abu-Thiab, T.; Zihlif, M. IL-13 and FOXO3 genes polymorphisms regulate IgE levels in asthmatic patients. Biomed. Rep. 2021, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Ham, D.W.; Lee, J.E.; Shin, E.H. Toxoplasma GRA16 attenuates Tau hyperphosphorylation and enhances autophagy in thrombin-treated HT-22 hippocampal neuronal cells. Sci. Rep. 2025, 15, 17412. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, D.; Nouri, H.R.; Chu, H.W.; Huang, H. Transcriptional Regulation of Mouse Mast Cell Differentiation and the Role of Human Lung Mast Cells in Airway Inflammation. Immunol. Rev. 2025, 331, e70026. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ge, W.; Lin, X.; Yu, N.; Xu, X.; Zhang, J. Nebulized riclinoctaose mitigates ovalbumin-induced allergic asthma by attenuating mast cell activation. Int. Immunopharmacol. 2025, 154, 114555. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsutsui, H.; Shimabukuro-Demoto, S.; Yoshida-Sugitani, R.; Karyu, H.; Furuyama-Tanaka, K.; Ohshima, D.; Kato, N.; Okamura, T.; Toyama-Sorimachi, N. Lysosome biogenesis regulated by the amino-acid transporter SLC15A4 is critical for functional integrity of mast cells. Int. Immunol. 2017, 29, 551–566. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, F.; Kang, X.; Aierken, N.; Li, Q. Matricaria chamomilla L. Ameliorates Asthma by Protecting OVA-Induced Rats and LPS-Induced Human Bronchial Epithelial Cells Through Suppressing Autophagy and Apoptosis. Food Sci. Nutr. 2025, 13, e70030. [Google Scholar] [CrossRef]
- Tebroke, J.; Lieverse, J.E.; Säfholm, J.; Schulte, G.; Nilsson, G.; Rönnberg, E. Wnt-3a Induces Cytokine Release in Human Mast Cells. Cells 2019, 8, 1372. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nishijima, M.; Tashiro, K.; Kawabata, K. Wnt-beta-Catenin Signaling Promotes the Maturation of Mast Cells. Biomed. Res. Int. 2016, 2016, 2048987. [Google Scholar] [CrossRef]
- Guo, J.; Fu, R.; Zhao, B.; Li, H.; Jiao, J. LncRNA TMC3-AS1 silence alleviates lipopolysaccharide-induced acute kidney injury by suppressing Wnt5a-mediated autophagy and pyroptosis pathway. Mol. Cell. Probes 2025, 79, 102006. [Google Scholar] [CrossRef]
- Skaria, T.; Burgener, J.; Bachli, E.; Schoedon, G. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLoS ONE 2016, 11, e0156002. [Google Scholar] [CrossRef]
- Weinstock, A.; Rahman, K.; Yaacov, O.; Nishi, H.; Menon, P.; Nikain, C.A.; Garabedian, M.L.; Pena, S.; Akbar, N.; Sansbury, B.E.; et al. Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis. Elife 2021, 10, e67932. [Google Scholar] [CrossRef]
- Luo, L.; Yang, X.; Zhao, H.; Wang, L.; Li, W.; Zhang, Y. High expression of ITGB3 ameliorates asthma by inhibiting epithelial-mesenchymal transformation through suppressing the activation of NF-kB pathway. Sci. Rep. 2025, 15, 3837. [Google Scholar] [CrossRef]
- Klewer, T.; Bakic, L.; Müller-Reichert, T.; Kiewisz, R.; Jessberger, G.; Kiessling, N.; Roers, A.; Jessberger, R. E-Cadherin restricts mast cell degranulation in mice. Eur. J. Immunol. 2022, 52, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.O.; Sommerhoff, C.P.; Paivandy, A.; Pejler, G. Mast cell chymase regulates extracellular matrix remodeling-related events in primary human small airway epithelial cells. J. Allergy Clin. Immunol. 2022, 150, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wuniqiemu, T.; Tang, W.; Teng, F.; Bian, Q.; Yi, L.; Qin, J.; Zhu, X.; Wei, Y.; Dong, J. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex. Int. Immunopharmacol. 2021, 94, 107460. [Google Scholar] [CrossRef] [PubMed]
- Friedel, J.; Pierre, S.; Kolbinger, A.; Schäufele, T.J.; Aliraj, B.; Weigert, A.; Scholich, K. Mast cell-derived interleukin-4 mediates activation of dendritic cell during toll-like receptor 2-mediated inflammation. Front. Immunol. 2024, 15, 1353922. [Google Scholar] [CrossRef]
- Park, M.K.; Park, H.K.; Yu, H.S. The Recombinant Profilin from Free-Living Amoebae Induced Allergic Immune Responses via TLR2. J. Inflamm. Res. 2024, 17, 2915–2925. [Google Scholar] [CrossRef]
- Galle-Treger, L.; Hurrell, B.P.; Lewis, G.; Howard, E.; Jahani, P.S.; Banie, H.; Razani, B.; Soroosh, P.; Akbari, O. Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. J. Allergy Clin. Immunol. 2020, 145, 502–517. [Google Scholar] [CrossRef]
- Park, D.; Kwak, D.W.; Kim, J.H. Leukotriene B4 receptors contribute to house dust mite-induced eosinophilic airway inflammation via TH2 cytokine production. BMB Rep. 2021, 54, 182–187. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Dong, R.; Feng, Y.; Zhou, M. Therapeutic potential of BLT1 antagonist for COPD: Involvement of inducing autophagy and ameliorating inflammation. Drug Des. Devel. Ther. 2019, 13, 3105–3116. [Google Scholar] [CrossRef]
- Huang, J.; Bai, X.; Stewart, W.; Xu, X.; Zhang, X.Q. Budesonide-incorporated inhalable lipid nanoparticles for antiTSLP nanobody mRNA delivery to treat steroid-resistant asthma. Nat. Commun. 2025, 16, 6013. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Tang, M.; Zhang, K.; Yang, T.; Zhong, W.; Yu, B.; Wang, F.; Dou, X. Thymic stromal lymphopoietin-activated basophil promotes lung inflammation in mouse atopic march model. Front. Immunol. 2025, 16, 1573130. [Google Scholar] [CrossRef]
- Gates, J.; Haris, F.; Cefaloni, F.; Khooshemehri, P.; Green, L.; Fernandes, M.; Thomson, L.; Roxas, C.; Lam, J.; d’Ancona, G.; et al. Clinical and Biological Remission With Tezepelumab: The Real-World Response in Severe Uncontrolled Asthma. Allergy 2025, 80, 1669–1676. [Google Scholar] [CrossRef]
- Corren, J.; Pham, T.H.; Garcia Gil, E.; Sałapa, K.; Ren, P.; Parnes, J.R.; Colice, G.; Griffiths, J.M. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy 2022, 77, 1786–1796. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, J.; Wei, L.; Wu, S.; Shang, L.; Ye, X.; Li, S. TSLP protects against sepsis-induced liver injury by inducing autophagy via activation of the PI3K/Akt/STAT3 pathway. Pathol. Res. Pract. 2022, 236, 153979. [Google Scholar] [CrossRef] [PubMed]
- Han, N.R.; Moon, P.D.; Nam, S.Y.; Ko, S.G.; Park, H.J.; Kim, H.M.; Jeong, H.J. TSLP up-regulates inflammatory responses through induction of autophagy in T cells. FASEB J. 2022, 36, e22148. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yang, H.; Shao, Z.; Wan, H.; Wang, Y.; Chen, W. Effect of Chloroquine on Type 2 Inflammatory Response in MC903-Induced Atopic Dermatitis Mice. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1093–1105. [Google Scholar] [CrossRef]
- Eggel, A.; Pennington, L.F.; Jardetzky, T.S. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol. Rev. 2024, 328, 387–411. [Google Scholar] [CrossRef]
- Yang, F.; Kong, J.; Zon, Y.; Li, Z.; Lyu, M.; Li, W.; Zhu, H.; Chen, S.; Zhao, X.; Wang, J. Autophagy-related genes are involved in the progression and prognosis of asthma and regulate the immune microenvironment. Front. Immunol. 2022, 13, 897835. [Google Scholar] [CrossRef]
- Nagao, T.; Yamanishi, Y.; Miyake, K.; Teranishi, M.; Takahashi, S.; Yoshikawa, S.; Kawano, Y.; Karasuyama, H. Aggregation makes a protein allergenic at the challenge phase of basophil-mediated allergy in mice. Int. Immunol. 2019, 31, 41–49. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, J.; Cheng, B.; Li, Y.; Zhou, W.; Tian, H.; Shi, W.; Liu, K.; Fang, L.; Li, H.; et al. Targeted Degradation Technologies Utilizing Autophagy. Int. J. Mol. Sci. 2025, 26, 6576. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, H.; Du, X.; Yao, Y.; Qin, L.; Xia, Z.; Zhou, K.; Wu, X.; Yuan, Y.; Qing, B.; et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J. Allergy Clin. Immunol. 2023, 151, 431–446. [Google Scholar] [CrossRef]
- Shi, D.; Huang, J.; Wu, J. Down-regulation of SHP2 promotes neutrophil autophagy and inhibits neutrophil extracellular trap formation to alleviate asthma through the ERK5 pathway. Cent. Eur. J. Immunol. 2024, 49, 252–272. [Google Scholar] [CrossRef] [PubMed]
- Angelina, A.; Pérez-Diego, M.; López-Abente, J.; Rückert, B.; Nombela, I.; Akdis, M.; Martín-Fontecha, M.; Akdis, C.; Palomares, O. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunol. 2022, 15, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Li, X.; Lu, Y.; Jin, Y.; Jeong, Y.-T.; Kim, Y.D.; Lee, I.-K.; Taketomi, Y.; Sato, H.; Cho, Y.S.; et al. AMP-Activated Protein Kinase Negatively Regulates FcεRI-Mediated Mast Cell Signaling and Anaphylaxis in Mice. J. Allergy Clin. Immunol. 2013, 132, 729–736.e12. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Yu, X.; Yang, L.; Duan, X. Palmatine treats urticaria by reducing inflammation and increasing autophagy. Front. Immunol. 2023, 14, 1268467. [Google Scholar] [CrossRef]
- Chang, H.W.; Sim, K.H.; Lee, Y.J. Thalidomide Attenuates Mast Cell Activation by Upregulating SHP-1 Signaling and Interfering with the Action of CRBN. Cells 2023, 12, 469. [Google Scholar] [CrossRef]
- Xu, M.; Chen, J.; Gao, L.; Cai, S.; Dong, H. Microplastic exposure induces HSP90alpha secretion and aggravates asthmatic airway remodeling via PI3K-Akt-mTOR pathway. Ecotoxicol. Environ. Saf. 2025, 291, 117828. [Google Scholar]
- Wang, C.; Wang, Y.; Wang, F.; Zhang, J.; Sun, Z.; Zhang, H.; Fu, L. High intestinal isoleucine is a potential risk factor for food allergy by regulating the mTOR/AKT pathway in dendritic cells. Clin. Immunol. 2023, 257, 109818. [Google Scholar]
- Kwon, Y.; Kim, M.; Kim, Y.; Jeong, M.S.; Jung, H.S.; Jeoung, D. EGR3-HDAC6-IL-27 Axis Mediates Allergic Inflammation and Is Necessary for Tumorigenic Potential of Cancer Cells Enhanced by Allergic Inflammation-Promoted Cellular Interactions. Front. Immunol. 2021, 12, 680441. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Zhang, Z.; Liu, Y.; Liu, J.; Zhang, C. IL-27 alleviates airway remodeling in a mouse model of asthma via PI3K/Akt pathway. Exp. Lung Res. 2020, 46, 98–108. [Google Scholar] [CrossRef]
- Lu, J.; Ji, X.; Wang, L.; Sun, F.; Huang, C.; Peng, H.; Jiang, Y.; Guo, Z.; Liu, X.; Ji, Y.; et al. Interleukin-27 ameliorates allergic asthma by alleviating the lung Th2 inflammatory environment. Int. J. Mol. Med. 2022, 49, 86. [Google Scholar] [CrossRef]
- Nian, J.B.; Zeng, M.; Zheng, J.; Zeng, L.Y.; Fu, Z.; Huang, Q.J.; Wei, X. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis. Cell Cycle 2020, 19, 1132–1142. [Google Scholar] [CrossRef]
- Stamatiou, R.; Paraskeva, E.; Boukas, K.; Gourgoulianis, K.I.; Molyvdas, P.A.; Hatziefthimiou, A.A. Azithromycin has an antiproliferative and autophagic effect on airway smooth muscle cells. Eur. Respir. J. 2009, 34, 721–730. [Google Scholar] [CrossRef]
- Nagar, E.; Singh, N.; Saini, N.; Arora, N. Glutathione attenuates diesel exhaust-induced lung epithelial injury via NF-κB/Nrf2/GPX4-mediated ferroptosis. Toxicology 2025, 515, 154154. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Sui, L.; Yan, X.; Xie, H.; Jiang, L.; Geng, C.; Li, Q.; Yao, X.; Kong, Y.; Cao, J. ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells. Chem. Biol. Interact. 2018, 279, 136–144. [Google Scholar] [CrossRef]
- Feng, F.; Li, S.; Shi, J.; Chen, W.; Deng, Y. Resveratrol ameliorates streptozotocin induced renal inflammation and promotes autophagy by mediating the SphK1 pathway via Sirt1 in Wistar rats. Food Chem. Toxicol. 2025, 203, 115588. [Google Scholar] [CrossRef] [PubMed]
- Ohkusu-Tsukada, K.; Ito, D.; Takahashi, K. The Role of Proteasome Inhibitor MG132 in 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis in NC/Nga Mice. Int. Arch. Allergy Immunol. 2018, 176, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Mudnakudu Nagaraju, K.K.; Babina, M.; Weise, C.; Kühl, A.; Schulzke, J.; Worm, M. Bortezomib treatment diminishes hazelnut-induced intestinal anaphylaxis in mice. Eur. J. Immunol. 2016, 46, 1727–1736. [Google Scholar] [CrossRef]
- Chen, D.; Wu, J.; Qiu, X.; Luo, S.; Huang, S.; Wei, E.; Qin, M.; Huang, J.; Liu, S. SPHK1 potentiates colorectal cancer progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination. Cancer Gene Ther. 2024, 31, 410–419. [Google Scholar] [CrossRef]
- Gong, R.; Wan, X.; Jiang, S.; Guan, Y.; Li, Y.; Jiang, T.; Chen, Z.; Zhong, C.; He, L.; Xiang, Z.; et al. GPX4-AUTAC induces ferroptosis in breast cancer by promoting the selective autophagic degradation of GPX4 mediated by TRAF6-p62. Cell Death Differ. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Meng, S.; Sun, X.; Juan, Z.; Wang, M.; Wang, R.; Sun, L.; Li, Y.; Xin, A.; Li, S.; Li, Y. Clemastine Fumarate Attenuates Myocardial Ischemia Reperfusion Injury Through Inhibition of Mast Cell Degranulation. Front. Pharmacol. 2021, 12, 704852. [Google Scholar] [CrossRef]
- Zou, Y.; Tao, Z.; Li, P.; Yang, J.; Xu, Q.; Xu, X.; Miao, Z.; Zhao, X. Clemastine attenuates subarachnoid haemorrhage pathology in a mouse model via Nrf2/SQSTM1-mediated autophagy. Br. J. Pharmacol. 2025, 182, 2730–2753. [Google Scholar] [CrossRef]
- Xuan, L.; Yang, S.; Ren, L.; Liu, H.; Zhang, W.; Sun, Y.; Xu, B.; Gong, L.; Liu, L. Akebia saponin D attenuates allergic airway inflammation through AMPK activation. J. Nat. Med. 2024, 78, 393–402. [Google Scholar] [CrossRef]
- Theofani, E.; Xanthou, G. Autophagy: A Friend or Foe in Allergic Asthma? Int. J. Mol. Sci. 2021, 22, 6314. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, S.; Yu, Q.; Yu, T.; Sun, P.; Ye, C.; Xue, H. Paeoniflorin inhibits PRAS40 interaction with Raptor to activate mTORC1 to reverse excessive autophagy in airway epithelial cells for asthma. Phytomedicine 2024, 134, 155946. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, Y.; Zhang, G.; Wang, X.; Gu, W.; Guo, X. p62-dependent autophagy in airway smooth muscle cells regulates metabolic reprogramming and promotes airway remodeling. Life Sci. 2021, 266, 118884. [Google Scholar] [CrossRef]
- Obeso, D.; Mera-Berriatua, L.; Rodríguez-Coira, J.; Rosace, D.; Fernández, P.; Martín-Antoniano, I.A.; Santaolalla, M.; Marco Martín, G.; Chivato, T.; Fernández-Rivas, M.; et al. Multi-omics analysis points to altered platelet functions in severe food-associated respiratory allergy. Allergy 2018, 73, 2137–2149. [Google Scholar] [CrossRef] [PubMed]
- Sukseree, S.; Bakiri, L.; Palomo-Irigoyen, M.; Uluçkan, Ö.; Petzelbauer, P.; Wagner, E.F. Sequestosome 1/p62 enhances chronic skin inflammation. J. Allergy Clin. Immunol. 2021, 147, 2386–2393. [Google Scholar] [CrossRef] [PubMed]
- Chelombitko, M.A.; Chernyak, B.V.; Fedorov, A.V.; Zinovkin, R.A.; Razin, E.; Paruchuru, L.B. The Role Played by Mitochondria in FcepsilonRI-Dependent Mast Cell Activation. Front. Immunol. 2020, 11, 584210. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, R.P.; Anderson, C.C.; Fudge, D.H.; Roede, J.R.; Brown, J.M. Metabolic Consequences of IgE- and Non-IgE-Mediated Mast Cell Degranulation. J. Immunol. 2021, 207, 2637–2648. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Qu, L. The changes of intestinal flora and metabolites in atopic dermatitis mice. Front. Microbiol. 2024, 15, 1462491. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wei, D.; Zhang, Z.; Guo, H.; Li, S.; Zhang, J.; Zhang, P.; Zhang, L.; Zhao, Y. FABP5 controls macrophage alternative activation and allergic asthma by selectively programming long-chain unsaturated fatty acid metabolism. Cell Rep. 2022, 41, 111668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, X.; Lin, Y.; Wu, C.; Zhu, R.; Jiang, X.; Tao, J.; Chen, Z.; He, J.; Zhang, X.; et al. Acetyl-CoA synthetase 2 alleviates brain injury following cardiac arrest by promoting autophagy in brain microvascular endothelial cells. Cell. Mol. Life Sci. 2025, 82, 160. [Google Scholar] [CrossRef] [PubMed]
- Sharkia, I.; Hadad Erlich, T.; Landolina, N.; Assayag, M.; Motzik, A.; Rachmin, I.; Kay, G.; Porat, Z.; Tshori, S.; Berkman, N.; et al. Pyruvate Dehydrogenase Has a Major Role in Mast Cell Function, and Its Activity Is Regulated by Mitochondrial Microphthalmia Transcription Factor. J. Allergy Clin. Immunol. 2017, 140, 204–214.e8. [Google Scholar] [CrossRef]
- Paruchuru, L.B.; Govindaraj, S.; Razin, E. The Critical Role Played by Mitochondrial MITF Serine 73 Phosphorylation in Immunologically Activated Mast Cells. Cells 2022, 11, 589. [Google Scholar] [CrossRef]
- Piotin, A.; Oulehri, W.; Charles, A.L.; Tacquard, C.; Collange, O.; Mertes, P.M.; Geny, B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants 2024, 13, 920. [Google Scholar] [CrossRef]
- Ding, N.; Bai, Q.; Wang, Z.; Piao, Y.; Li, L.; Piao, H.; Yan, G.; Song, Y. Artemetin targets the ABCG2/RAB7A axis to inhibit mitochondrial dysfunction in asthma. Phytomedicine 2025, 140, 156600. [Google Scholar] [CrossRef]
- Aguilera-Aguirre, L.; Bacsi, A.; Saavedra-Molina, A.; Kurosky, A.; Sur, S.; Boldogh, I. Mitochondrial dysfunction increases allergic airway inflammation. J. Immunol. 2009, 183, 5379–5387. [Google Scholar] [CrossRef]
- Otero, M.G.; Henao-Romero, N.; Krysak, T.M.; Vu-Lu, M.T.; Morales, O.O.M.; Momeni, Z.; Yamamoto, Y.; Falzone, T.L.; Campanucci, V.A. Hyperglycemia-induced mitochondrial abnormalities in autonomic neurons via the RAGE axis. Sci. Rep. 2025, 15, 25231. [Google Scholar] [CrossRef]
- Buttgereit, T.; Pfeiffenberger, M.; Frischbutter, S.; Krauß, P.L.; Chen, Y.; Maurer, M.; Buttgereit, F.; Gaber, T. Inhibition of Complex I of the Respiratory Chain, but Not Complex III, Attenuates Degranulation and Cytokine Secretion in Human Skin Mast Cells. Int. J. Mol. Sci. 2022, 23, 11591. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yoshimaru, T.; Inoue, T.; Ra, C. Mitochondrial Ca2+ Flux Is a Critical Determinant of the Ca2+ Dependence of Mast Cell Degranulation. J. Leukoc. Biol. 2006, 79, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Weng, Z.; Sismanopoulos, N.; Asadi, S.; Therianou, A.; Alysandratos, K.D.; Angelidou, A.; Shirihai, O.; Theoharides, T.C. Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int. Arch. Allergy Immunol. 2012, 159, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Suzuki, Y.; Ra, C. Epigallocatechin-3-Gallate Inhibits Mast Cell Degranulation, Leukotriene C4 Secretion, and Calcium Influx via Mitochondrial Calcium Dysfunction. Free Radic. Biol. Med. 2010, 49, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Tagen, M.; Elorza, A.; Kempuraj, D.; Boucher, W.; Kepley, C.L.; Shirihai, O.S.; Theoharides, T.C. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J. Immunol. 2009, 183, 6313–6319. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.H. TGF-β/SMAD4 mediated UCP2 downregulation contributes to Aspergillus protease-induced inflammation in primary bronchial epithelial cells. Redox. Biol. 2018, 18, 104–113. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, N.; Mao, M.; Zhou, Y.; Wu, Y.; Li, J.; Zhang, W.; Peng, C.; Chen, X.; Li, J. Fine particulate matter (PM2.5) promotes IgE-mediated mast cell activation through ROS/Gadd45b/JNK axis. J. Dermatol. Sci. 2021, 102, 47–57. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, H.W.; Kim, H.S.; Nam, S.T.; Lee, D.; Lee, M.B.; Min, K.Y.; Koo, J.; Kim, S.J.; Kim, Y.M.; et al. An Anti-Cancer Drug Candidate CYC116 Suppresses Type I Hypersensitive Immune Responses through the Inhibition of Fyn Kinase in Mast Cells. Biomol. Ther. 2019, 27, 311–317. [Google Scholar] [CrossRef]
- Smieško, L.; Mažerik, J.; Gondáš, E.; Dohál, M.; Jošková, M.; Šutovská, M.; Fraňová, S. N-Acetylcysteine and Its Therapeutic Potential in an Animal Model of Allergic Asthma. J. Aerosol Med. Pulm. Drug Deliv. 2025, 38, 118–126. [Google Scholar] [CrossRef]
- Gan, X.; Xing, D.; Su, G.; Li, S.; Luo, C.; Irwin, M.G.; Xia, Z.; Li, H.; Hei, Z. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation. Oxid. Med. Cell Longev. 2015, 2015, 167014, Correction in Oxid. Med. Cell Longev. 2017, 2017, 8932871. [Google Scholar] [CrossRef]
- Inoue, T.; Suzuki, Y.; Yoshimaru, T.; Ra, C. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: Role of NADPH oxidase and mitochondria. Biochim. Biophys. Acta. 2008, 1783, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Somma, F.; Romano, B.; Maresca, D.C.; Maisto, M.; Tenore, G.; Ianaro, A.; Ercolano, G. Olive leaf extract (OLE) reduces mast cell-mediated allergic inflammation. Biomed. Pharmacother. 2025, 182, 117784. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhao, F.; Ran, C.; Xu, Y.; Zhang, J.; Wang, H. Ginsenoside Rg1 attenuates diabetic vascular endothelial dysfunction by inhibiting the calpain-1/ROS/PKC-β axis. Life Sci. 2023, 29, 121972. [Google Scholar] [CrossRef] [PubMed]
- Chodaczek, G.; Bacsi, A.; Dharajiya, N.; Sur, S.; Hazra, T.K.; Boldogh, I. Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol. Immunol. 2009, 46, 2505–2514. [Google Scholar] [CrossRef]
- Pino-Belmar, C.; Aguilar, R.; Valenzuela-Nieto, G.E.; Cavieres, V.A.; Cerda-Troncoso, C.; Navarrete, V.C.; Salazar, P.; Burgos, P.V.; Otth, C.; Bustamante, H.A. An Intrinsic Host Defense against HSV-1 Relies on the Activation of Xenophagy with the Active Clearance of Autophagic Receptors. Cells 2024, 13, 1256. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, W.; Bi, Y.; Xu, H.; Abudureyimu, M.; Peng, H.; Zhang, Y.; Ren, J. NDP52 Protects Against Myocardial Infarction-Provoked Cardiac Anomalies Through Promoting Autophagosome-Lysosome Fusion via Recruiting TBK1 and RAB7. Antioxid. Redox. Signal. 2022, 36, 1119–1135. [Google Scholar] [CrossRef]
- Pavlyuchenkova, A.N.; Chelombitko, M.A.; Fedorov, A.V.; Kuznetsova, M.K.; Zinovkin, R.A.; Razin, E. The Distinct Effects of the Mitochondria-Targeted STAT3 Inhibitors Mitocur-1 and Mitocur-3 on Mast Cell and Mitochondrial Functions. Int. J. Mol. Sci. 2023, 24, 1471. [Google Scholar] [CrossRef]
- Trinchese, G.; Paparo, L.; Aitoro, R.; Fierro, C.; Varchetta, M.; Nocerino, R.; Mollica, M.P.; Berni Canani, R. Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy. Nutrients 2018, 10, 744. [Google Scholar] [CrossRef]
- Yang, P.; Xu, B.; Zhu, R.; Zhang, T.; Wang, Z.; Lin, Q.; Yan, M.; Yu, Z.; Mao, H.; Zhang, Y.T. ROS-mediated mitophagy and necroptosis regulate osteocytes death caused by TCP particles in MLO-Y4 cells. Toxicology 2023, 496, 153627. [Google Scholar] [CrossRef]
- König, B.; Koch, A.N.; Bellanti, J.A. Studies of mitochondrial and nuclear DNA released from food allergen-activated neutrophils. Implications for non-IgE food allergy. Allergy Asthma Proc. 2021, 42, e59–e70. [Google Scholar] [CrossRef]
- Plewes, M.R.; Przygrodzka, E.; Monaco, C.F.; Snider, A.P.; Keane, J.A.; Burns, P.D.; Wood, J.R.; Cupp, A.S.; Davis, J.S. Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum. Life Sci. Alliance 2023, 6, e202301968. [Google Scholar] [CrossRef]
- Tsai, M.L.; Tsai, Y.G.; Lin, Y.C.; Hsu, Y.L.; Chen, Y.T.; Tsai, M.K.; Liao, W.T.; Lin, Y.C.; Hung, C.H. IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy. Int. J. Mol. Sci. 2021, 23, 3. [Google Scholar] [CrossRef]
- Xun, Q.; Yang, Q.; Wang, W.; Zhu, G. GLCCI1 ameliorates mitochondrial dysfunction in allergic asthma mice via DYRK1A/FAM117B-dependent NRF2 activation. Cell Signal 2025, 134, 111929. [Google Scholar] [CrossRef]
- Guo, Y.; Negre, J.; Eitzen, G. GEF-H1 Transduces FcepsilonRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023, 12, 537. [Google Scholar] [CrossRef]
- Sheshachalam, A.; Baier, A.; Eitzen, G. The effect of Rho drugs on mast cell activation and degranulation. J. Leukoc. Biol. 2017, 102, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ding, Y.; Huang, Y.; Wang, C.; Guo, B.; Zhang, T. Quercetin Attenuates MRGPRX2-Mediated Mast Cell Degranulation via the MyD88/IKK/NF-kappaB and PI3K/AKT/ Rac1/Cdc42 Pathway. J. Inflamm. Res. 2024, 17, 7099–7110. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, K.; Lee, H.; Han, S.; Lee, Y.S.; Choe, J.; Kim, Y.M.; Hahn, J.H.; Ro, J.Y.; Jeoung, D. Celastrol binds to ERK and inhibits FcepsilonRI signaling to exert an anti-allergic effect. Eur. J. Pharmacol. 2009, 612, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Tan, V.P.; Yu, J.D.; Tripathi, R.; Bigham, Z.; Barlow, M.; Smith, J.M.; Brown, J.H.; Miyamoto, S. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death Differ. 2022, 29, 2472–2486. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Xiong, A.; Liu, J.; Zeng, R.; Zhang, L.; Wang, J.; Jiang, M.; Gao, J.; Xiong, Y.; et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation. J. Hazard. Mater. 2025, 495, 138854. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, Q.; Chen, D.; Huang, L.; Mo, R.; Cai, X. METTL14-mediated lncRNA NEAT1 promotes asthma progression by regulating the miR-302a-3p/March5 axis. Int. Immunopharmacol. 2025, 158, 114850. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Liu, Q.; Chen, Y.; Wang, G.; Zhang, Q.; Guan, S. Effects of sodium metabisulfite on pyroptosis, mitophagy and degranulation in mast cells. Food Chem. Toxicol. 2023, 178, 113918. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Zhao, C.; Li, L.; Sun, H.; Wang, Y.; Li, D. Echinococcus granulosus induces mitophagy and mitochondrial dysfunction in AML12 hepatocytes. Diagn. Microbiol. Infect. Dis. 2025, 113, 116952. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, J.; Yang, C.; Qin, D.; Zhu, D. Aerobic exercise activates let-7e-5p through TP73-AS1 to inhibit the HMGB1/RAGE axis and alleviate asthma airway inflammation and remodeling. Cell. Immunol. 2025, 414, 104990. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Liu, H.; Hao, Y.; Xu, X.; Zhang, Y.; Zhao, H.; Zuo, T.; Yu, H.; Yin, J.; et al. Mechanisms and therapeutic potential of epithelial-immune crosstalk in airway inflammation. Expert. Rev. Clin. Immunol. 2025, 21, 893–907. [Google Scholar] [CrossRef]
- Kwon, Y.; Choi, Y.; Kim, M.; Jo, H.; Jeong, M.S.; Jung, H.S.; Jeoung, D. HDAC6-MYCN-CXCL3 axis mediates allergic inflammation and is necessary for allergic inflammation-promoted cellular interactions. Mol. Immunol. 2024, 166, 1–15. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, H.; Zhang, L.; Pei, F.; Chen, Z. HDAC6 Regulates the Fusion of Autophagosome and Lysosome to Involve in Odontoblast Differentiation. Front. Cell Dev. Biol. 2020, 8, 605609. [Google Scholar] [CrossRef]
- Chen, M.; Cao, X.; Zheng, R.; Chen, H.; He, R.; Zhou, H.; Yang, Z. The role of HDAC6 in enhancing macrophage autophagy via the autophagolysosomal pathway to alleviate legionella pneumophila-induced pneumonia. Virulence 2024, 15, 2327096. [Google Scholar] [CrossRef]
- Wang, K.; Kong, F.; Qiu, Y.; Chen, T.; Fu, J.; Jin, X.; Su, Y.; Gu, Y.; Hu, Z.; Li, J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023, 19, 2934–2957. [Google Scholar] [CrossRef]
- Venkatesan, A.; Ridilla, M.; Castro, N.; Wolosin, J.M.; Henty-Ridilla, J.L.; Knox, B.E.; Ganapathy, P.S.; Brown, J.S.; DeVincentis Iii, A.F.; Sieminski, S.; et al. Mitochondrial and microtubule defects in Exfoliation Glaucoma. Free Radic. Biol. Med. 2025, 233, 226–239. [Google Scholar] [CrossRef]
- Lee, S.I.; Seo, Y.; Oanh, H.T.; Vo, T.T.H.; Go, H.; Kim, M.H.; Lee, J.Y. HDAC6 preserves BNIP3 expression and mitochondrial integrity by deacetylating p53 at lysine 320. Biochem. Biophys. Res. Commun. 2024, 691, 149320. [Google Scholar] [CrossRef]
- Kim, S.; Choi, C.; Son, Y.; Lee, J.; Joo, S.; Lee, Y.H. BNIP3-mediated mitophagy in macrophages regulates obesity-induced adipose tissue metaflammation. Autophagy 2025, 21, 2009–2027. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Z.; Chen, Y.; Xu, X.; Yang, Y.; Yue, W.; Shi, X. Histone deacetylase 6 deacetylates and ubiquitinates ATG3 to regulate autophagy. Cell Death Differ. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Xu, J.Y.; Rong, X.J.; Shen, Z.; Guo, Y.D.; Zhang, Y.X.; Ding, C.C.; Wang, Y.; Han, Y.X.; Gao, T.L.; Tie, C. Isochlorogenic Acid C Alleviates Allergic Asthma via Interactions Between Its Bioactive Form and the Gut Microbiome. Int. J. Mol. Sci. 2025, 26, 4864. [Google Scholar] [CrossRef]
- Li, K.; Zhou, R.; Yin, Z.; Ren, D.; Fan, S. Role of Ferroptosis in the Redox Biology of Mycotoxins. FASEB J. 2025, 39, e70916. [Google Scholar] [CrossRef]
- Lu, J.; Huang, X.; Xu, Y.; Xu, Q.; Shang, H. Dexamethasone Promotes Autophagy Dependent Ferroptosis of Placental Trophoblast Cells Through GRα. J. Cell. Mol. Med. 2025, 29, e70613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, L.; Peng, L.; Sun, M. Targeting IL-33 to suppress ferroptosis and alleviate inflammation in asthma exacerbations. Arch. Biochem. Biophys. 2025, 771, 110502. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Huang, D.; Huang, H.; Xie, L.; Huang, Y.; Ye, C.; Chu, L.; Qiao, Y.; Meng, X.; Cai, S.; et al. Lung microbiota metabolite L-malic acid attenuates the airway inflammation in asthma by inhibiting ferroptosis. Toxicol. Appl. Pharmacol. 2025, 500, 117396. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, H.; Shi, J.; Liu, Y.; Yu, J.; Yang, Y.; Weng, J.; Song, Z.; Zhou, R.; Min, H.; et al. Wuwei Shaji powder alleviates OVA-induced allergic asthma by protecting bronchial epithelial cells from ferroptosis via the S-sulfhydration of Keap1. J. Ethnopharmacol. 2025, 348, 119649. [Google Scholar] [CrossRef]
- Yousaf, S.; Arshad, M.; Raza, M.; Fatima, A.; Mammadova, K. Targeting mitochondrial damage and ER stress to inhibit ferroptosis in cadmium-induced nephrotoxicity. Toxicol. Rep. 2025, 15, 102082. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeoung, J.; Kim, W.; Jeoung, D. Crosstalk Between Allergic Inflammation and Autophagy. Int. J. Mol. Sci. 2025, 26, 9765. https://doi.org/10.3390/ijms26199765
Jeoung J, Kim W, Jeoung D. Crosstalk Between Allergic Inflammation and Autophagy. International Journal of Molecular Sciences. 2025; 26(19):9765. https://doi.org/10.3390/ijms26199765
Chicago/Turabian StyleJeoung, Jaewhoon, Wonho Kim, and Dooil Jeoung. 2025. "Crosstalk Between Allergic Inflammation and Autophagy" International Journal of Molecular Sciences 26, no. 19: 9765. https://doi.org/10.3390/ijms26199765
APA StyleJeoung, J., Kim, W., & Jeoung, D. (2025). Crosstalk Between Allergic Inflammation and Autophagy. International Journal of Molecular Sciences, 26(19), 9765. https://doi.org/10.3390/ijms26199765