Effects of Aerobic-Resistance Training and Nutritional Intervention on Adiponectin, Interleukin-6, and hs-CRP Concentrations in Men with Abdominal Obesity—A Randomized Controlled Trial
Abstract
1. Introduction
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design
4.2. Sample
4.3. Methods
4.3.1. Anthropometric Measurements
4.3.2. Body Composition
4.3.3. Adipokines
4.3.4. Biochemical Blood Parameters
4.3.5. Assessment of Total Energy Expenditure and Dietary Energy Intake
4.4. Interventions
4.4.1. Aerobic Resistance Exercises
4.4.2. High-Protein, Low-Glycemic Index Carbohydrate Diet
- Participants were instructed to shop exclusively in selected retail chains offering standardized products sourced from centralized warehouses to ensure consistency in food quality and availability.
- Visual aids were employed for educational purposes, including pictorial charts of high-protein foods and low-GI carbohydrate options. These materials were adapted from the Food and Nutrition Institute’s (Warsaw, Poland, 2000) photographic food atlas.
- A custom photo catalog featuring available food products from local shopping centers was provided to support appropriate food selection.
- Participants were equipped with precision kitchen scales (accuracy ± 1 g) to measure food portions prior to meal preparation or consumption.
- All food intake was logged using the Fitatu dietary application (version 3.41, Fitatu Ltd., Poznan, Poland), which generated real-time feedback on caloric and macronutrient consumption.
- A licensed dietitian continuously monitored dietary logs submitted via the app and provided individualized feedback to ensure compliance with dietary targets.
- When dietary deviations occurred—such as the inclusion of high-GI foods or insufficient protein intake—the dietitian recommended appropriate substitutions aligned with the study protocol.
- Participants could consult with a dietitian as needed, and 18 additional one-on-one sessions were conducted during the study period to evaluate and reinforce dietary adherence.
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; He, H.; Xie, K.; Zhang, L.; Cao, C. Effects of various exercise types on visceral adipose tissue in individuals with overweight and obesity: A systematic review and network meta-analysis of 84 randomized controlled trials. Obes. Rev. 2024, 25, e13666. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K.; American College of Sports Medicine. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528, Erratum in J. Acad. Nutr. Diet. 2017, 117, 146. [Google Scholar] [CrossRef]
- Eather, N.; Wade, L.; Pankowiak, A.; Eime, R. The impact of sports participation on mental health and social outcomes in adults: A systematic review and the ‘Mental Health through Sport’ conceptual model. Syst. Rev. 2023, 12, 102. [Google Scholar] [CrossRef]
- Robinson, E.; Haynes, A.; Sutin, A.; Daly, M. Self-perception of overweight and obesity: A review of mental and physical health outcomes. Obes. Sci. Pract. 2020, 6, 552–561. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Rogers, R.J.; Davis, K.K.; Collins, K.A. Role of physical activity and exercise in treating patients with overweight and obesity. Clin. Chem. 2018, 64, 99–107. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Montani, J.P. Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: An overview. Obes. Rev. 2015, 16 (Suppl. 1), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Effect of Exercise Interventions on Irisin and Interleukin-6 Concentrations and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. J. Clin. Med. 2023, 12, 369. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Kozioł-Kozakowska, A.; Haim, A. Impact of two types of exercise interventions on leptin and omentin concentrations and indicators of lipid and carbohydrate metabolism in males with metabolic syndrome. J. Clin. Med. 2023, 12, 2822. [Google Scholar] [CrossRef] [PubMed]
- Suder, A.; Makiel, K.; Targosz, A.; Maciejczyk, M.; Kosowski, P.; Haim, A. Exercise-induced effects on asprosin and indices of atherogenicity and insulin resistance in males with metabolic syndrome: A randomized controlled trial. Sci. Rep. 2024, 14, 985. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Drummond, M.J.; Pennings, B.; Fujita, S.; Glynn, E.L.; Chinkes, D.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E392–E400. [Google Scholar] [CrossRef]
- Koopman, R.; Pennings, B.; Zorenc, A.H.; van Loon, L.J. Protein ingestion further augments S6K1 phosphorylation in skeletal muscle following resistance-type exercise in males. J. Nutr. 2007, 137, 1880–1886. [Google Scholar] [CrossRef]
- Kimball, S.R.; Farrell, P.A.; Jefferson, L.S. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J. Appl. Physiol. 2002, 93, 1168–1180. [Google Scholar] [CrossRef]
- Parkington, J.D.; Siebert, A.P.; LeBrasseur, N.K.; Fielding, R.A. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1086–R1090. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J.C. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29 (Suppl. 1), S29–S38. [Google Scholar] [CrossRef]
- Simonson, M.; Boirie, Y.; Guillet, C. Protein, amino acids and obesity treatment. Rev. Endocr. Metab. Disord. 2020, 21, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Layman, D.K. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 2008, 87, 1567S–1570S. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828; Correction in Nat. Metab. 2020, 2, 990. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Carbohydrate feeding during exercise. Eur. J. Sport Sci. 2008, 8, 77–86. [Google Scholar] [CrossRef]
- Alexander, L.; Christensen, S.M.; Richardson, L.; Ingersoll, A.B.; Burridge, K.; Golden, A.; Karjoo, S.; Cortez, D.; Shelver, M.; Bays, H.E. Nutrition and physical activity: An Obesity Medicine Association (OMA) Clinical Practice Statement 2022. Obes. Pillars 2022, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- McMillan-Price, J.; Brand-Miller, J. Low-glycaemic index diets and body weight regulation. Int. J. Obes. 2006, 30 (Suppl. 3), S40–S46. [Google Scholar] [CrossRef]
- Ngo, T.V.; Kunyanee, K.; Luangsakul, N. Insights into recent updates on factors and technologies that modulate the glycemic index of rice and its products. Foods 2023, 12, 3659. [Google Scholar] [CrossRef]
- Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. The influence of nutrition on adiponectin—A narrative review. Nutrients 2021, 13, 1394. [Google Scholar] [CrossRef]
- Yu, N.; Ruan, Y.; Gao, X.; Sun, J. Systematic Review and Meta-Analysis of Randomized, Controlled Trials on the Effect of Exercise on Serum Leptin and Adiponectin in Overweight and Obese Individuals. Horm. Metab. Res. 2017, 49, 164–173. [Google Scholar] [CrossRef]
- Kistner, T.M.; Pedersen, B.K.; Lieberman, D.E. Interleukin-6 as an energy allocator in skeletal muscle. Nat. Metab. 2022, 4, 170–179. [Google Scholar] [CrossRef]
- González-Muniesa, P.; Martínez-González, M.-A.; Hu, F.B.; Després, J.-P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed. Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef]
- Nguyen, T.M.D. Adiponectin: Role in Physiology and Pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Cuenca-Sánchez, M.; Navas-Carrillo, D.; Orenes-Piñero, E. Controversies surrounding high-protein diet intake: Satiating effect and kidney and bone health. Adv. Nutr. 2015, 6, 260–266. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Calvez, J.; Poupin, N.; Chesneau, C.; Lassale, C.; Tomé, D. Protein intake, calcium balance and health consequences. Eur. J. Clin. Nutr. 2012, 66, 281–295. [Google Scholar] [CrossRef]
- de Lorenzo, A.; Bomback, A.S.; Mihic, N. High protein diets and glomerular hyperfiltration in athletes and bodybuilders: Is chronic kidney disease the real finish line? Sports Med. 2024, 54, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Tidmas, V.; Brazier, J.; Hawkins, J.; Forbes, S.C.; Bottoms, L.; Farrington, K. Nutritional and Non-Nutritional Strategies in Bodybuilding: Impact on Kidney Function. Int. J. Environ. Res. Public Health 2022, 19, 4288. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Kasza, S.; Kubasiak, K. Body composition and dietary patterns in professional and amateur bodybuilders. Anthropol. Rev. 2020, 83, 225–238. [Google Scholar] [CrossRef]
- Burke, L.M. The IOC consensus on sports nutrition 2003: New guidelines for nutrition for athletes. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef]
- Levenhagen, D.K.; Gresham, J.D.; Carlson, M.G.; Maron, D.J.; Borel, M.J.; Flakoll, P.J. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E982–E993. [Google Scholar] [CrossRef]
- Aragon, A.A.; Schoenfeld, B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int. Soc. Sports Nutr. 2013, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Morifuji, M.; Kanda, A.; Koga, J.; Kawanaka, K.; Higuchi, M. Post-exercise carbohydrate plus whey-protein hydrolysate supplementation increases skeletal-muscle glycogen level in rats. Amino Acids 2010, 38, 1109–1115. [Google Scholar] [CrossRef]
- Sahin, K.; Orhan, C.; Ozdemir, O.; Tuzcu, M.; Sahin, N.; Ojalvo, S.P.; Komorowski, J.R. Effects of whey protein combined with amylopectin/chromium on muscle protein synthesis and mTOR phosphorylation in exercised rats. Biol. Trace Elem. Res. 2024, 202, 1031–1040. [Google Scholar] [CrossRef]
- Friedlander, A.L.; Braun, B.; Pollack, M.; MacDonald, J.R.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Henderson, G.C.; Horning, M.A.; Brooks, G.A.; et al. Three weeks of caloric restriction alters protein metabolism in normal-weight, young men. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E446–E455. [Google Scholar] [CrossRef]
- Ross, R.; Dagnone, D.; Jones, P.J.H.; Smith, H.; Paddags, A.; Hudson, R.; Janssen, I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: A randomized, controlled trial. Ann. Intern. Med. 2000, 133, 92–103. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Quílez, J.; Bulló, M.; Salas-Salvadó, J. Improved postprandial response and feeling of satiety after consumption of low-calorie muffins with maltitol and high-amylose corn starch. J. Food Sci. 2007, 72, S407–S411. [Google Scholar] [CrossRef]
- Wiecek, M.; Mardyla, M.; Szymura, J.; Kantorowicz, M.; Kusmierczyk, J.; Maciejczyk, M.; Szygula, Z. Maximal intensity exercise induces adipokine secretion and disrupts prooxidant–antioxidant balance in young men with different body composition. Int. J. Mol. Sci. 2025, 26, 350. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Exercise-induced alterations of adiponectin, interleukin-8 and indicators of carbohydrate metabolism in males with metabolic syndrome. Biomolecules 2023, 13, 852. [Google Scholar] [CrossRef]
- Jamurtas, A.Z.; Theocharis, V.; Koukoulis, G.; Stakias, N.; Fatouros, I.G.; Kouretas, D.; Koutedakis, Y. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur. J. Appl. Physiol. 2006, 97, 122–126. [Google Scholar] [CrossRef]
- Coughlin, C.C.; Finck, B.N.; Eagon, J.C.; Halpin, V.J.; Magkos, F.; Mohammed, B.S.; Klein, S. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity 2007, 15, 640–645. [Google Scholar] [CrossRef]
- Khalafi, M.; Hossein Sakhaei, M.; Kheradmand, S.; Symonds, M.E.; Rosenkranz, S.K. The impact of exercise and dietary interventions on circulating leptin and adiponectin in individuals who are overweight and those with obesity: A systematic review and meta-analysis. Adv. Nutr. 2023, 14, 128–146. [Google Scholar] [CrossRef]
- Becic, T.; Studenik, C.; Hoffmann, G. Exercise increases adiponectin and reduces leptin levels in prediabetic and diabetic individuals: Systematic review and meta-analysis of randomized controlled trials. Med. Sci. 2018, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Kishida, K.; Funahashi, T.; Shimomura, I. Molecular mechanisms of diabetes and atherosclerosis: Role of adiponectin. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, F.F.; Kraaijenhof, J.M.; von Herrath, M.; Hovingh, G.K.K.; von Scholten, B.J. Interleukin-6 in diabetes, chronic kidney disease, and cardiovascular disease: Mechanisms and therapeutic perspectives. Expert Rev. Clin. Immunol. 2022, 18, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Malik, R.; Li, X.; Gill, D.; Levin, M.G.; Vy, H.M.T.; Judy, R.; Ritchie, M.; Verma, S.S.; Regeneron Genetics Center; et al. Genetically downregulated interleukin-6 signaling is associated with a favorable cardiometabolic profile: A phenome-wide association study. Circulation 2021, 143, 1177–1180. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef]
- Suder, A. Socioeconomic and lifestyle determinants of body fat distribution in young working males from Cracow, Poland. Am. J. Hum. Biol. 2008, 20, 100–109. [Google Scholar] [CrossRef]
- Takić, M.; Ranković, S.; Girek, Z.; Pavlović, S.; Jovanović, P.; Jovanović, V.; Šarac, I. Current insights into the effects of dietary α-linolenic acid focusing on alterations of polyunsaturated fatty acid profiles in metabolic syndrome. Int. J. Mol. Sci. 2024, 25, 4909. [Google Scholar] [CrossRef]
- Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Kosciolek, T.; Łabaj, P.P.; Kochanowicz, A.; Mieszkowski, J.; Proia, P.; Cięszczyk, P.; Zielińska, K. Gut microbiome and blood biomarkers reveal differential responses to aerobic and anaerobic exercise in collegiate men of diverse training backgrounds. Sci. Rep. 2025, 15, 16061. [Google Scholar] [CrossRef]
- Liu, S.; Rodriguez, J.S.; Munteanu, V.; Ronkowski, C.; Sharma, N.K.; Alser, M.; Andreace, F.; Blekhman, R.; Błaszczyk, D.; Chikhi, R.; et al. Analysis of metagenomic data. Nat. Rev. Methods Primers 2025, 5, 5. [Google Scholar] [CrossRef]
- Noroozi, R.; Rudnicka, J.; Pisarek, A.; Wysocka, B.; Masny, A.; Boroń, M.; Migacz-Gruszka, K.; Pruszkowska-Przybylska, P.; Kobus, M.; Lisman, D.; et al. Analysis of epigenetic clocks links yoga, sleep, education, reduced meat intake, coffee, and a SOCS2 gene variant to slower epigenetic aging. GeroScience 2024, 46, 2583–2604. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.E.M.; Kautzky-Willer, A.; Legato, M.J. Effects of sex and gender on cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 762–779. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef]
- Mikó, A.; Kovács, A.; Ruzsa, Z.; Jakubiczka-Smorag, J.; Sipos, D.; Mangel, L.; Sipos, P.; Oláh, C.; Gombos, T.; Oláh, Z. Gender difference in the effects of interleukin-6: A systematic review and meta-analysis. BMC Geriatr. 2018, 18, 210. [Google Scholar] [CrossRef] [PubMed]
- Öhman-Hanson, R.A.; Cree-Green, M.; Kelsey, M.M.; Bensard, T.; Pyle, L.; Nadeau, K.J. Ethnic and sex differences in adiponectin in children and adolescents. J. Clin. Endocrinol. Metab. 2016, 101, 4808–4816. [Google Scholar] [CrossRef]
- Suder, A.; Makiel, K.; Targosz, A.; Kosowski, P.; Malina, R.M. Positive effects of aerobic-resistance exercise and an ad libitum high-protein, low-glycemic index diet on irisin, omentin, and dyslipidemia in men with abdominal obesity: A randomized controlled trial. Nutrients 2024, 16, 3480. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Castelli, W.P.; Garrison, R.J.; Wilson, P.W.; Abbott, R.D.; Kalousdian, S.; Kannel, W.B. Incidence of coronary heart disease and lipoprotein cholesterol levels: The Framingham Study. Circulation 1983, 67, 730–734. [Google Scholar] [CrossRef]
- Legro, R.S.; Finegood, D.; Dunaif, A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1998, 83, 2694–2698. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.; Ainsworth, B.E.; Bull, F.; Craig, C.L.; Hagströmer, M.; Sallis, J.F.; Pratt, M.; Sjöström, M. Progress and pitfalls in the use of the International Physical Activity Questionnaire (IPAQ) for adult physical activity surveillance. J. Phys. Act. Health 2009, 6, S5–S8. [Google Scholar] [CrossRef] [PubMed]
- Byrne, N.M.; Wood, R.E.; Schutz, Y.; Hills, A.P. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int. J. Obes. 2012, 36, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.; Van Baak, M.; Jebb, S.; Kafatos, A.; Pfeiffer, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunešová, M.; Holst, C.; et al. The Diet, Obesity and Genes (Diogenes) Dietary Study in eight European countries—A comprehensive design for long-term intervention. Obes. Rev. 2009, 11, 76–91. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Larsen, T.M.; Mortensen, E.L.; Due, A.; Jespersen, J.; Stender, S.; Astrup, A. Long-term effects on haemostatic variables of three ad libitum diets differing in type and amount of fat and carbohydrate: A 6-month randomised study in obese individuals. Br. J. Nutr. 2010, 104, 1824–1830. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
Variable | Time | Groups Mean (SD) | Effect | F | p | ηp2 | ||
---|---|---|---|---|---|---|---|---|
CG | EG | EDG | ||||||
Structured exercise (PA) METs | baseline week 6 | 0.92 (0.18) 1.00 (0.09) | 1.10 (0.24) 2.97 a,b,c (0.22) | 1.02 (0.04) 3.06 a,b,c (0.06) | group time interaction | 432.55 1168.8 231.74 | <0.01 <0.01 <0.01 | 0.91 0.95 0.88 |
NEAT METs | baseline week 6 | 5.01 (1.69) 5.05 (1.59) | 4.50 (0.97) 4.91 (1.06) | 5.53 (0.94) 5.67 (1.00) | group time interaction | 2.46 1.15 0.73 | 0.10 0.29 0.48 | 0.10 0.01 0.01 |
Variable | Time | Groups Mean (SD) | Effect | F | p | ηp2 | ||
---|---|---|---|---|---|---|---|---|
CG | EG | EDG | ||||||
BF/BM | baseline week 6 | 0.35 (0.04) 0.35 (0.04) | 0.35 (0.04) 0.34 (0.04) | 0.34 (0.04) 0.31 b,c (0.03) | group time interaction | 2.13 21.37 11.10 | 0.13 <0.01 <0.01 | 0.09 0.03 0.03 |
FFM/BM | baseline week 6 | 0.65 (0.05) 0.64 (0.05) | 0.65 (0.06) 0.66 (0.05) | 0.67 (0.04) 0.69 b,c (0.04) | group time interaction | 1.47 3.91 7.16 | 0.24 0.04 <0.01 | 0.06 0.01 0.02 |
ABD/BM | baseline week 6 | 0.16 (0.03) 0.16 (0.03) | 0.15 (0.04) 0.15 (0.04) | 0.15 (0.03) 0.12 b,c (0.03) | group time interaction | 2.19 40.70 22.13 | 0.13 <0.01 <0.01 | 0.09 0.04 0.04 |
BAI | baseline week 6 | 27.65 (3.42) 27.56 (3.29) | 27.48 (2.98) 26.85 b,c (2.94) | 27.01 (3.28) 26.08 b,c (2.28) | group time interaction | 0.43 5.73 5.40 | 0.65 0.02 <0.01 | 0.02 0.01 0.01 |
Variable | Time | Groups Mean (SD) | Effect | F | p | ηp2 | ||
---|---|---|---|---|---|---|---|---|
CG | EG | EDG | ||||||
ADIPO [ng/mL] | baseline week 6 | 4.37 (1.94) 4.49 (1.31) | 3.43 (1.85) 3.97 b (1.85) | 4.51 (2.03) 5.32 b (2.56) | group time interaction | 1.71 6.26 0.99 | 0.19 0.02 0.38 | 0.07 0.02 0.01 |
IL-6 [pg/mL] | baseline week 6 | 12.65 (6.29) 13.34 (5.23) | 8.83 (6.44) 6.17 a,b (6.17) | 8.72 (5.51) 4.56 a,b,c (4.21) | group time interaction | 4.86 8.67 3.86 | 0.01 0.01 0.03 | 0.18 0.03 0.03 |
hs-CRP [mg/L] | baseline week 6 | 2.43 (1.49) 2.25 (1.53) | 1.95 (1.28) 1.73 (0.98) | 2.69 (2.34) 1.89 b (1.55) | group time interaction | 0.47 4.37 1.28 | 0.63 0.04 0.29 | 0.02 0.02 0.01 |
CRI II [mmol/L] | baseline week 6 | 2.97 (0.51) 2.77 (0.50) | 2.94 (1.24) 2.73 (1.07) | 2.69 (0.88) 2.47 b (0.83) | group time interaction | 0.23 9.78 0.32 | 0.79 <0.01 0.73 | 0.01 0.02 0.01 |
FG/I | baseline week 6 | 7.38 (3.56) 6.75 (3.36) | 6.23 (2.93) 8.57 b (3.99) | 7.43 (2.65) 9.72 b (4.49) | group time interaction | 0.99 5.55 2.75 | 0.38 0.02 0.08 | 0.03 0.04 0.04 |
Variable | Time | Groups Mean (SD) | Effect | F | p | ηp2 | ||
---|---|---|---|---|---|---|---|---|
CG | EG | EDG | ||||||
Energy value of the diet [kcal/kg-bm] | baseline week 6 | 26.68 (5.13) 27.29 (4.16) | 26.65 (4.33) 27.37 (4.76) | 27.67 (4.47) 23.46 b,c (3.91) | group time interaction | 0.56 5.62 17.36 | 0.58 0.02 <0.01 | 0.03 0.01 0.07 |
Proteins [g/kg-bm] | baseline week 6 | 1.39 (0.31) 1.33 (0.26) | 1.22 (0.25) 1.20 (0.27) | 1.16 (0.19) 1.50 b,c (0.27) | group time interaction | 1.50 7.72 19.85 | 0.24 <0.01 <0.01 | 0.06 0.03 0.13 |
Carbo-hydrates [g/kg-bm] | baseline week 6 | 3.03 (0.76) 2.95 (0.68) | 3.17 (0.85) 3.38 (0.64) | 3.21 (0.71) 2.47 b,c (0.54) | group time interaction | 1.61 5.19 12.86 | 0.21 0.03 <0.01 | 0.07 0.02 0.09 |
Fiber [g/kg-bm] | baseline week 6 | 0.23 (0.08) 0.23 (0.08) | 0.23 (0.06) 0.23 (0.05) | 0.22 (0.09) 0.33 b,c (0.09) | group time interaction | 2.03 10.38 15.28 | 0.15 <0.01 <0.01 | 0.08 0.05 0.13 |
Fats [g/kg-bm] | baseline week 6 | 1.00 (0.35) 1.12 (0.27) | 1.02 (0.17) 1.01 (0.27) | 1.13 (0.32) 0.84 c (0.21) | group time interaction | 0.32 3.21 14.19 | 0.73 0.08 <0.01 | 0.01 0.01 0.10 |
Dependent Variable | Parameter Assessment | t Value | p-Value |
---|---|---|---|
Intercept | 10.69 (2.61) | 4.09 | <0.01 |
CRI II | −0.72 (0.25) | −2.92 | <0.01 |
FG/I | 0.25 (0.06) | 4.53 | <0.01 |
Dependent Variable | Parameter Assessment | t Value | p-Value |
---|---|---|---|
Intercept | −14.29 (6.43) | −2.22 | 0.03 |
BF/BM | 25.50 (7.52) | 3.39 | <0.01 |
FFM/BM | 11.78 (6.29) | 1.87 | 0.07 |
Index | Group | p-Value | ||
---|---|---|---|---|
CG | EG | EDG | ||
Age [years] | 34.12 | 34.84 | 34.91 | 0.92 |
(5.52) | (6.03) | (5.61) | ||
FFM/BM | 0.65 | 0.65 | 0.67 | 0.66 |
(0.05) | (0.06) | (0.04) | ||
ABD/BM | 0.16 | 0.15 | 0.15 | 0.69 |
(0.03) | (0.04) | (0.03) | ||
BAI | 27.65 | 27.48 | 27.01 | 0.69 |
(3.42) | (2.98) | (3.28) | ||
BF/BM | 0.35 | 0.35 | 0.34 | 0.86 |
(0.04) | (0.04) | (0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makiel, K.; Targosz, A.; Kosowski, P.; Suder, A. Effects of Aerobic-Resistance Training and Nutritional Intervention on Adiponectin, Interleukin-6, and hs-CRP Concentrations in Men with Abdominal Obesity—A Randomized Controlled Trial. Int. J. Mol. Sci. 2025, 26, 9500. https://doi.org/10.3390/ijms26199500
Makiel K, Targosz A, Kosowski P, Suder A. Effects of Aerobic-Resistance Training and Nutritional Intervention on Adiponectin, Interleukin-6, and hs-CRP Concentrations in Men with Abdominal Obesity—A Randomized Controlled Trial. International Journal of Molecular Sciences. 2025; 26(19):9500. https://doi.org/10.3390/ijms26199500
Chicago/Turabian StyleMakiel, Karol, Aneta Targosz, Piotr Kosowski, and Agnieszka Suder. 2025. "Effects of Aerobic-Resistance Training and Nutritional Intervention on Adiponectin, Interleukin-6, and hs-CRP Concentrations in Men with Abdominal Obesity—A Randomized Controlled Trial" International Journal of Molecular Sciences 26, no. 19: 9500. https://doi.org/10.3390/ijms26199500
APA StyleMakiel, K., Targosz, A., Kosowski, P., & Suder, A. (2025). Effects of Aerobic-Resistance Training and Nutritional Intervention on Adiponectin, Interleukin-6, and hs-CRP Concentrations in Men with Abdominal Obesity—A Randomized Controlled Trial. International Journal of Molecular Sciences, 26(19), 9500. https://doi.org/10.3390/ijms26199500