Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2
Abstract
1. Introduction
Class | Isozyme Name | Synonym Name | Subunit | Gene Name | Km (EtOH) | Pyrazole Sensitiviy | Distribution | Original Publication | |
---|---|---|---|---|---|---|---|---|---|
Duester et al. [27] | Edenberg | (mM) | |||||||
I | ADH1A | ADH1 | α | ADH1A | ADH1A | 4.0 | +++++ | Liver | Wartburg et al., 1964 [5] |
ADH1B | ADH2 | β1, β2, β3 | ADH1B | ADH1B | 0.05–40 | Kidney, Stomach, | |||
ADH1C | ADH3 | γ1, γ2 | ADH1C | ADH1C | 0.6–1.0 | Small intestine, etc. | |||
II | ADH2 | ADH4 | π | ADH2 | ADH4 | 30 | ++ | Liver | Li et al., 1977 [16] |
III | ADH3 | ADH5 | χ | ADH3 | ADH5 | >1000 | + | Liver, Ubiquitous | Haseba et al.,1979 [17] (mouse) |
Pares et al., 1981 [18] | |||||||||
IV | ADH4 | ADH7 | σ | ADH4 | ADH7 | 30–580 | ++ | Stomach, Esophagus | Pares et al., 1990 [19] |
V | ADH5 | ADH6 | undetected | ADH5 | ADH6 | ? | ? | Liver, Stimach | Yasunami et al.,1991 [25] |
VI | ADH6 | undetected | ADH6 | ? | ? | Unknown | Hoog et all., 2001 [26] (rat) |
2. The Fundamental System of Alcohol Metabolism via Liver ADH/NADH Reoxidation
2.1. ADH Activity in Liver Extract
2.2. NADH Reoxidation Rate
3. The Roles of ADH Isoenzymes in Alcohol Metabolism In Vivo
3.1. Class I ADH1
3.2. Class II ADH2
3.3. Class III ADH3
3.4. Class IV ADH4
3.5. Class V ADH5 and Class VI ADH6
4. The Roles of Non-ADH Pathways in Alcohol Metabolism In Vivo
4.1. Microsomal Ethanol-Oxidizing System (MEOS)
4.2. Catalase–H2O2 System (Peroxisomal Catalase EtOH-Oxidizing System)
5. The Role of Aldehyde Dehydrogenase 2 (ALDH2) in Alcohol Metabolism In Vivo
6. Limitations of Research Methods for Determining Enzymatic Mechanisms Underlying Alcohol Metabolism and Future Prospects
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lundsgaard, E. Alcohol oxidation as a function of the liver. Comptes Rendus Trav. Lab. Carlsberg 1938, 22, 333–337. [Google Scholar]
- Jacobsen, E. The metabolism of ethyl alcohol. Pharmacol. Rev. 1951, 4, 107–135. [Google Scholar] [CrossRef]
- Bonnichsen, R.K. Crystalline animal alcohol dehydrogenase 2. Acta Chem. Scand. 1950, 1, 715–717. [Google Scholar] [CrossRef]
- Crow, K.E.; Conell, N.W.; Veech, R.L. The role of alcohol dehydrogenase in covering of ethanol metabolism in rat. In Alcohol and Aldehyde Metabolizing System; Thurman, R.G., Williamson, J.R., Drott, H.R., Chance, B., Eds.; Academic Press, Inc.: New York, NY, USA, 1977; Volume 3, pp. 325–342. [Google Scholar]
- Von Wartburg, J.P.; Bethune, J.L.; Vallee, B.L. Human liver alcohol dehydrogenase, Kinetic and physicochemical properties. Biochemistry 1964, 3, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Vallee, B.L.; Bazzone, T.J. Isozymes of human liver alcohol dehydrogenase. In Isozymes: Current Topics in Biological and Medical Research; Scadalios, J.G., Rattazzi, M.C., Whitt, G.S., Eds.; Liss: New York, NY, USA, 1983; Volume 8, pp. 219–244. [Google Scholar]
- Haseba, T.; Hirakawa, K.; Tomita, Y.; Watanabe, T. Characterization of high Km alcohol dehydrogenase from mouse liver. In Electrophoresis’83; Hirai, H., Ed.; Walter de Gruyter & Co.: Berlin, Germany; New York, NY, USA, 1984; pp. 393–400. [Google Scholar]
- Mizoi, Y.; Kogame, M.; Fukunaga, T.; Ueno, Y.; Adachi, J.; Fujiwara, S. Polymorphism of aldehyde dehydrogenase and ethanol elimination. Alcohol 1985, 2, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.S.; DeCarli, L.M. Hepatic microsomal ethanol oxidizing system; in vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 1970, 245, 2505–2512. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharmacol. Exp. Ther. 1972, 181, 279–287. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding. Science 1968, 162, 917–918. [Google Scholar] [CrossRef]
- Keilin, D.; Hartree, E.F. Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem. J. 1945, 39, 293–301. [Google Scholar] [CrossRef]
- Thurman, R.G.; Ley, H.G.; Scholz, R. Hepatic microsomal ethanol oxidation-Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem. 1972, 25, 420–430. [Google Scholar] [CrossRef]
- Thurman, R.G.; Handler, J.A. New perspectives in catalase-dependent ethanol metabolism. Drug Metab. Rev. 1989, 20, 679–688. [Google Scholar] [CrossRef]
- Lieber, C.S. Cytochrome P-450 2E1: Its physiological and pathological role. Physiol. Rev. 1997, 77, 517–544. [Google Scholar] [CrossRef]
- Li, T.-K.; Bosron, W.F.; Dafeldecker, W.P.; Lange, L.G.; Vallee, B.L. Isolation of π-alcohol dehydrogenase of human liver. Is it a determinant of alcoholism? Proc. Natl. Acad. Sci. USA 1977, 74, 4378–4381. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Hirakawa, K.; Nihira, S.; Hayashida, M.; Kurosu, M.; Ide, T.; Watanabe, T. Partial purification and enzymatic properties of alcohol dehydrogenase in mouse liver. Jpn. J. Stud. Alcohol 1979, 14, 324. [Google Scholar]
- Pares, X.; Vallee, B.L. New human liver alcohol dehydrogenase forms with unique kinetic characteristics. Biochem. Biophys. Res. Commun. 1981, 98, 122–130. [Google Scholar] [CrossRef]
- Pares, X.; Moreno, A.; Cederlund, E.; Hoog, J.-O.; Jornvall, H. Class IV mammalian alcohol dehydrogenase. Structural data of the rat stomach enzyme reveal a new class well separated from those dehydrogenases characterized. FEBS Lett. 1990, 277, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T. Acidic pI-alcohol dehydrogenase of mouse liver. Jpn. J. Alcohol Stud. Drug Depend. 1985, 20, 333–349. [Google Scholar]
- Haseba, T.; Duester, G.; Shimizu, A.; Yamamoto, I.; Kameyama, K.; Ohno, Y. In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Biochim. Biophys. Acta 2006, 1762, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Ohno, Y. A new view of alcohol metabolism and alcoholism—Role of the high Km Class III alcohol dehydrogenase (ADH3). Int. J. Environ. Res. Public Health 2010, 7, 1076–1092. [Google Scholar] [CrossRef]
- Haseba, T. The true nature of the non-ADH pathway in alcohol metabolism and Class III alcohol dehydrogenase (ADH3). Nihon Arukouru Yakubutsu Igakkai Zasshi 2014, 49, 159–168. [Google Scholar]
- Haseba, T.; Okuda, T.; Maruyama, M.; Akimoto, T.; Duester, G.; Ohno, Y. Roles of two major alcohol dehydrogenases, ADH1 (Class I) and ADH3 (Class III), in the adaptive enhancement of alcohol metabolism induced by chronic alcohol consumption in mice. Alcohol Alcohol. 2020, 55, 11–19. [Google Scholar] [CrossRef]
- Yasunami, M.; Chen, C.S.; Yoshida, A. A human alcohol dehydrogenase gene (ADH6) coding an additional class of isozyme. Proc. Natl. Acad. Sci. USA 1991, 88, 7610–7614. [Google Scholar] [CrossRef]
- Hoog, J.; Brandt, T.; Hedberg, J.J.; Stromberg, P. Mammalian alcohol dehydrogenase of higher classes: Analyses of human ADH5 and rat ADH6. Chem. Biol. Interact. 2001, 30, 130–132. [Google Scholar] [CrossRef]
- Duester, G.; Farres, J.; Felder, M.R.; Holmes, R.S.; Hoog, J.-O.; Pares, X.; Plapp, B.V.; Yin, S.-J. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. 1999, 58, 389–395. [Google Scholar] [CrossRef]
- Edenberg, H.J. The genetics of alcohol metabolism-Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health 2007, 30, 5–13. [Google Scholar]
- Lumeng, L.; Bosron, W.F.; Li, T.-K. Quantitative correlation of ethanol elimination rates in vivo with liver alcohol dehydrogenase activities in fed, fasted and food-restricted rats. Biochem. Pharmacol. 1979, 28, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Cornell, N.W. Properties of alcohol dehydrogenase and ethanol oxidation in vivo and in hepatocytes. Pharmacol. Biochem. Behav. 1983, 18 (Suppl. S1), 1215–1221. [Google Scholar] [CrossRef]
- Hahn, H.K.J.; Burch, R.E. Impaired ethanol metabolism with advancing age. Alcohol. Clin. Exp. Res. 1983, 7, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Cheema-Dhadli, S.; Halperin, F.A.; Sonnenberg, K.; MacMillan, V.; Halperin, M.L. Regulation of ethanol metabolism in the rat. Biochem. Cell Biol. 1986, 65, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Tomita, Y.; Kurosu, M.; Ohno, Y. Dose and time changes in liver alcohol dehydrogenase (ADH) activity during acute alcohol intoxication involve not only class I but also class III ADH and govern elimination rate of blood ethanol. Leg. Med. 2003, 5, 202–211. [Google Scholar] [CrossRef]
- Wiberg, G.S.; Trennolm, H.L.; Coldwell, B.B. Increased ethanol toxicity in old rats: Changes in LD50, in vivo and in vitro metabolism, and liver alcohol dehydrogenase activity. Toxicol. Appl. Pharmacol. 1970, 16, 718–727. [Google Scholar] [CrossRef]
- Lindros, K.O.; Koivula, T.; Eriksson, C.J.P. Acetaldehyde levels during ethanol oxidation: A diet-induced change and its relation to liver aldehyde dehydrogenase and redox states. Life Sci. 1975, 17, 1589–1598. [Google Scholar] [CrossRef]
- Meijer, A.J.; van Woerkom, G.M.; Williamson, J.R.; Tager, J.M. Rate-limiting factors in the oxidation of ethanol by isolated rat liver cells. Biochem. J. 1975, 150, 205–209. [Google Scholar] [CrossRef]
- Videla, L.; Flattery, K.V.; Sellers, E.A.; Israel, Y. Ethanol metabolism and liver oxidative capacity in cold acclimation. J. Pharmacol. Exp. Ther. 1975, 192, 575–582. [Google Scholar] [CrossRef]
- Zarzano, A.; Del-Arbl, L.R.; Herrera, E. Effect of liver disorders on ethanol elimination and alcohol and aldehyde dehydrogenase activities in liver and erythrocytes. Clin. Sci. 1989, 76, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Kameyama, K.; Mashimo, K.; Ohno, Y. Dose-dependent change in elimination kinetics of ethanol due to shift of dominant metabolizing enzyme from ADH1 (Class I) to ADH3 (Class III) in mouse. Int. J. Hepatol. 2012, 2012, 408190. [Google Scholar] [CrossRef] [PubMed]
- DeCarli, L.M.; Lieber, C.S. Fatty liver in the rat after prolonged intake of ethanol with nutritionally adequate new liquid diet. J. Nutr. 1967, 91, 331–336. [Google Scholar] [CrossRef]
- Shigeta, Y.; Nomura, F.; Leo, M.A.; Iida, S.; Felder, M.R.; Lieber, C.S. Alcohol dehydrogenase (ADH) independent ethanol metabolism in deermice lacking ADH. Pharmacol. Biochem. Behav. 1983, 18 (Suppl. S1), 195–199. [Google Scholar] [CrossRef] [PubMed]
- Nomura, F.; Pikkarainen, P.H.; Jauhonen, P.; Arai, M.; Gordon, E.R.; Baraona, E.; Lieber, C.S. Effect of ethanol administration on the metabolism of ethanol in baboons. J. Pharmacol. Exp. Ther. 1983, 227, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.S. The discovery of the microsomal ethanol-oxidizing system and its physiological and pathological role. Drug Metab. Rev. 2004, 36, 511–529. [Google Scholar] [CrossRef]
- McClearn, G.E.; Bennett, E.L.; Hebert, M. Alcohol dehydrogenase activity and previous ethanol consumption in mice. Nature 1964, 203, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Buris, L.; Csabai, G.; Fodor, M.; Verga, M. Increase of alcohol dehydrogenase and protein content of liver following chronic ethanol administration. FEBS Lett. 1985, 183, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, M.; Haseba, T.; Tomita, Y.; Kamii, H.; Yamamoto, I.; Watanabe, T. Effects of chronic ethanol feeding on alcohol dehydrogenase (ADH) isozymes in mouse liver. The abstract of 4th congress of ISBRA. Alcohol Alcohol. 1988, A62. [Google Scholar]
- Figueroa, R.B.; Klotz, A.P. Alteration of alcohol dehydrogenase and other hepatic enzymes following oral alcohol intoxication. Am. J. Clin. Nutr. 1962, 11, 235–239. [Google Scholar] [CrossRef]
- Dajani, R.M.; Danielski, J.; Orten, J.M. The utilization of ethanol. II. the alcohol-acetaldehyde dehydrogenase systems in the livers of alcohol-treated rats. J. Nutr. 1963, 80, 196–204. [Google Scholar] [CrossRef]
- Asada, M.; Galambos, J.T. Liver disease, hepatic alcohol dehydrogenase activity and alcohol metabolism in the human. Gastroenterology 1963, 45, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kamii, H. Pyrazole-sensitive and pyrazole-insensitive alcohol dehydrogenase activity in the liver of patients with alcoholic liver disease. J. Nippon Med. Sch. 1988, 55, 236–246. [Google Scholar] [CrossRef]
- Williamson, J.R.; Ohkawa, K.; Meijer, A.J. Regulation of ethanol oxidation in isolated rat liver cells. In Alcohol and Aldehyde Metabolizing Systems; Thurman, R.G., Yonetani, T., Williamson, J.R., Chance, B., Eds.; Academic Press: New York, NY, USA, 1974; pp. 365–381. [Google Scholar]
- Nordmann, R.; Petit, M.-A.; Nordmann, J. Role of the malate-aspartate shuttle in the metabolism of ethanol in vivo. Biochem. Pharmacol. 1975, 24, 139–143. [Google Scholar] [CrossRef]
- Cornell, N.W.; Crow, K.E.; Leadbetter, M.G.; Veech, R.L. Rate-determining factors for ethanol oxidation in vivo and in isolated hepatocytes. In Alcohol and Nutrition; Li, T.-K., Schenker, S., Lumeng, L., Eds.; U.S. Govt. Printing Office: Washington, DC, USA, 1979; pp. 315–330. [Google Scholar]
- Porta, E.A.; Gomez-Dumm, C.L. A new experimental approach in the study of chronic alcoholism. II. Effects of high alcohol intake in the rats fed a commercial laboratory diet. Lab. Investig. 1968, 18, 352–364. [Google Scholar]
- Thurman, R.G.; Brentzei, H.J.; McKenne, W.R. Common mechanism for the adaptive increase in hepatic ethanol and acetaldehyde metabolism due to chronic pretreatment with ethanol. Adv. Exp. Med. Biol. 1977, 85A, 237–245. [Google Scholar]
- Cederbaum, A.I.; Dicker, E.; Liber, C.S. Ethanol oxidation by isolated hepatocytes from ethanol-treated and control rats; Factors contributing to the metabolic adaptation after chronic ethanol consumption. Biochem. Pharmacol. 1978, 27, 7–15. [Google Scholar] [CrossRef]
- Berry, M.N.; Fanning, D.C.; Grivell, A.R.; Wallance, P.G. Ethanol oxidation by isolated hepatocytes from fed and starved rats and from rats exposed to ethanol, phenobarbitone or 3-amino-triazole: No evidence for a physiological role of a microsomal ethanol oxidation system. Biochem. Pharmacol. 1980, 29, 2161–2168. [Google Scholar] [CrossRef]
- Israel, Y.; Khanna, J.M.; Lin, J. Effect of 2,4-dinitrophenol on the rate of ethanol elimination in the rat in vivo. Biochem. J. 1970, 120, 447–448. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.; Videla, L.; Israel, Y. Metabolic alterations produced in the liver by chronic ethanol administration−changes related to energetic parameters of cell. Biochem. J. 1973, 134, 515–521. [Google Scholar] [CrossRef]
- Israel, Y.; Videl, L.; Bernstein, J. Liver hypermetabolic state after chronic ethanol consumption: Hormonal interrelations and pathogenic implications. Fed. Proc. 1975, 34, 2052–2059. [Google Scholar] [PubMed]
- Li, T.-K.; Mannes, L.J. Identification of a distinctive molecular form of alcohol dehydrogenase in human liver with high activity. Biochem. Biophys. Res. Commun. 1975, 63, 202–208. [Google Scholar] [CrossRef]
- Okuda, T.; Haseba, T.; Katsuyama, M.; Maruyama, M.; Akimoto, T.; Igarashi, T.; Ohno, Y. Metabolic pharmacokinetics of chronic alcohol consumption mediated by liver alcohol dehydrogenase 1 and 3 in mice. J. Gastroenterol. Hepatol. 2018, 33, 1912–1919. [Google Scholar] [CrossRef]
- Lindros, K.; Salaspuro, M.; Pikkarainen, P. Studies of the Role of the ADH Pathway in Increased Ethanol Elimination After Chronic Intake in the Rat and Man; Thurman, R.G., Williamson, J.R., Drott, H.R., Chance, B., Eds.; Academic Press, Inc.: New York, NY, USA, 1997; Volume 3, pp. 343–354. [Google Scholar]
- Videla, L.; Bernstein, J.; Israel, Y. Metabolic alterations produced in the liver by chronic ethanol administration-increased oxidative capacity. Biochem. J. 1973, 134, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Piquet, M.A.; Nogueira, V.; Devin, A.; Sibille, B.; Filippi, C.; Fontaine, E.; Roulet, M.; Rigoulet, M.; Leverve, X.M. Chronic ethanol ingestion increases efficiency of oxidative phosphorylation in rat liver mitochondria. FEBS Lett. 2000, 468, 239–242. [Google Scholar] [CrossRef]
- Baek, I.-H.; Lee, B.-Y.; Kwon, K.-I. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans. Alc. Clin. Exp. Res. 2010, 34, 834–839. [Google Scholar] [CrossRef]
- Ueno, Y.; Adachi, J.; Imamichi, H.; Nishimura, A.; Tatsuno, Y. Effect of the cytochrome P-450IIEI genotype on ethanol elimination rate in alcoholics and control subjects. Alcohol. Clin. Exp. Res. 1996, 20, 17A–21A. [Google Scholar] [CrossRef]
- Thayer, W.S.; Rubin, E. Effects of chronic ethanol intoxication on oxidative phosphorylation in rat liver submitochondrial particles. J. Biol. Chem. 1979, 254, 7717–7723. [Google Scholar] [CrossRef] [PubMed]
- Bosron, W.F.; Li, T.-K. Genetic polymorphism of human liver alcohol dehydrogenase and aldehyde dehydrogenase, and their relationship to alcohol metabolism and alcoholism. Hepatology 1986, 6, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Bosron, W.F.; Li, T.-K. Catalytic properties of human liver alcohol dehydrogenase isozymes. Enzyme 1987, 37, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Mizoi, Y.; Yamamoto, K.; Ueno, Y.; Fukunaga, T.; Harada, S. Involvement of genetic polymorphism of alcohol and aldehyde dehydrogenases in individual variation of alcohol metabolism. Alcohol Alcohol. 1994, 29, 707–710. [Google Scholar] [CrossRef]
- Yokoyama, A.; Yokoyama, T.; Mizukami, T.; Matsui, T.; Kimura, M.; Matsushita, S.; Higuchi, S.; Maruyama, K. Blood ethanol levels of nonabstinent Japanese alcoholic men in the morning after drinking and their ADH1B and ALDH2 genotypes. Alcohol Alcohol. 2014, 49, 31–37. [Google Scholar] [CrossRef]
- Yokoyama, A.; Kamada, Y.; Imazeki, H.; Hayashi, E.; Murata, S.; Kinoshita, K.; Yokoyama, T.; Kitagawa, Y. Effects of ADH1B and ALDH2 genetic polymorphisms on alcohol elimination rates and salivary acetaldehyde levels in intoxicated Japanese alcoholic men. Alcohol. Clin. Exp. Res. 2016, 40, 1241–1250. [Google Scholar] [CrossRef]
- Haseba, T.; Kurosu, M.; Tomita, Y.; Watanabe, T. Contribution of high Km alcohol dehydrogenase to cytosol alcohol dehydrogenase activity in mouse liver. J. Jpn. Leg. Med. 1982, 36, 36. [Google Scholar]
- He, L.; Ronis, M.J.J.; Badger, T.M. Ethanol induction of class I alcohol dehydrogenase expression in the rat occurs through alteration in CCAAT/enhancer binding proteins β and γ. J. Biol. Chem. 2002, 277, 43572–43577. [Google Scholar] [CrossRef]
- Hoog, J.O.; Hedberg, J.J.; Stromberg, P.; Svensson, S. Mammalian ADH; functional and structural implications. J. Biomed. Sci. 2001, 8, 71–76. [Google Scholar] [CrossRef]
- Svensson, S.; Stromberg, P.; Sandalova, T. Class II alcohol dehydrogenase (ADH2)- adding the structure. Chem. Biol. Interact. 2001, 130–132, 339–350. [Google Scholar] [CrossRef]
- Holmes, R.S.; VandeBerg, J.L. Baboon alcohol dehydrogenase isozymes; phenotypic changes in liver following chronic consumption of alcohol. In Isozymes; Current Topic in Biological and Medical Research; Alan R. Liss Inc.: New York, NY, USA, 1987; Volume 16, pp. 1–20. [Google Scholar]
- Holmes, R.S.; Meyer, J.; VandeBerg, J.L. Baboon alcohol dehydrogenase isozymes; purification and properties of liver Class I ADH. Moderate alcohol consumption reduces liver Class I and Class II ADH activities. In Isozymes; Structure, Functions, and Use in Biology and Medicine; Wiley-Less Inc.: New York, NY, USA, 1990; pp. 819–841. [Google Scholar]
- Kimura, Y.; Nishimura, F.T.; Abe, S.; Fukunaga, T.; Tanii, H.; Saijoh, K. Polymorphisms in the promoter region of the human Class II alcohol dehydrogenase (ADH4) gene affect both transcriptional activity and ethanol metabolism in Japanese subjects. J. Toxicol. 2009, 34, 89–97. [Google Scholar] [CrossRef]
- Alger, E.M.; Seeley, T.-E.; Holmes, R.S. Purification and molecular properties of mouse alcohol dehydrogenase isozymes. Eur. J. Biochem. 1983, 137, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, M.; Baumann, M.; Uotila, L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and Class III alcohol dehydrogenase. FEBS Lett. 1989, 257, 105–109. [Google Scholar] [CrossRef]
- Lui, L.; Hausladen, A.; Zeng, M.; Que, L.; Heitman, J.; Stamler, J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 2001, 40, 490–494. [Google Scholar] [CrossRef]
- Moulis, J.M.; Holmquist, B.; Vallee, B.L. Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase. Biochemistry 1991, 30, 5743–5749. [Google Scholar] [CrossRef] [PubMed]
- Bernett, K.G.; Felder, M.R. Ethanol metabolism in Peromyscus genetically deficient in alcohol dehydrogenase. Biochem. Pharmacol. 1980, 29, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Glassman, E.B.; McLaughlin, G.A.; Forman, D.T.; Felder, M.R.; Thurman, R.G. Role of alcohol dehydrogenase in the swift increase in alcohol metabolism (SIAM). Biochem. Pharmacol. 1985, 34, 3523–3526. [Google Scholar] [CrossRef]
- Haseba, T.; Yamamoto, I.; Kamii, H.; Ohno, Y.; Watanabe, T. Alcohol dehydrogenase (ADH) isozymes in the AdhN/AdhN strain of Peromyscus maniculatus (ADH−deermouse) and a possible role of Class III ADH in alcohol metabolism. Biochem. Genet. 1995, 33, 349–363. [Google Scholar] [CrossRef]
- Hammond, K.B.; Rumack, B.H.; Rodgerson, D.O. Blood ethanol, a report of unusually high levels in a living patient. JAMA 1973, 266, 63–64. [Google Scholar] [CrossRef]
- O’Neill, S.; Tipton, K.F.; Prichard, J.S.; Quinlan, A. Survival high blood alcohol levels. Association with first-order elimination kinetics. Arch. Intern. Med. 1984, 144, 641–642. [Google Scholar] [CrossRef]
- Haseba, T.; Sato, S.; Ishizaki, M.; Yamamoto, I.; Kurosu, M.; Watanabe, T. Intralobular and intracellular localization of alcohol dehydrogenase (ADH) isozymes in mouse liver-Basic ADH (Class I) and Acidic ADH (Class III). Biomed. Res. 1991, 12, 199–209. [Google Scholar] [CrossRef]
- Baraona, E.; Abittan, C.; Dohmen, K.; Moretti, M.; Pozatto, G.; Chayes, Z.W.; Schaefer, C.; Lieber, C.S. Gender differences in pharmacokinetics of alcohol. Alcohol. Clin. Exp. Res. 2001, 25, 502–507. [Google Scholar] [CrossRef]
- Kameyama, K.; Haseba, T.; Wang, R.; Machida, M.; Onda, M.; Mori, O.; Asano, G. Membrane damage in coronary artery smooth muscle cells and expression of alcohol dehydrogenase (ADH). Angiology 2000, 40, 91–98. [Google Scholar]
- Haseba, T.; Maruyama, M.; Akimoto, T.; Naruo, M.; Okuda, T. Roles of high Km ADH3 in increase in alcohol metabolism and in progression of alcoholic liver disease. In Proceedings of the ISBRA/ESBRA Congress 2016, Berlin, Germany, 2–5 September 2016. Poster 4–17. [Google Scholar]
- Julknen, R.J.K.; Padova, C.D.; Lieber, C.S. First pass metabolism of ethanol—A gastrointestinal barrier against the systemic toxicity of ethanol. Life Sci. 1985, 37, 567–573. [Google Scholar] [CrossRef] [PubMed]
- DiPadova, C.; Roine, R.; Frezza, M.; Gentry, R.T.; Baraona, E.; Lieber, C.S. Effects of ranitidine on blood alcohol levels after ethanol ingestion. Comparison with other H2-receptor antagonists. JAMA 1992, 267, 83–86. [Google Scholar] [CrossRef]
- Caballeria, J.; Baraona, E.; Rodamilans, M.; Lieber, C.S. Effects of cimetidine on gastric alcohol dehydrogenase activity and blood ethanol levels. Gastroenterology 1989, 96, 388–392. [Google Scholar] [CrossRef]
- Mallet, A.; RouDot-Thoraval, F.; Bergmann, J.-F.; Trout, H.; Simonneau, G.; Dutreuil, C.; Blanc, L.E.; Dhumeaux DDelchier, J.-C. Inhibition of gastric alcohol dehydrogenase activity by histamine H2-receptor antagonists has no influence on the pharmacokinetics of ethanol after a moderate dose. Br. J. Clin. Pharmacol. 1994, 37, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Ito, D.; Lieber, C.S. Ethanol metabolism in deermice: Role of extrahepatic alcohol dehydrogenase. Alcohol. Clin. Exp. Res. 1993, 17, 919–925. [Google Scholar] [CrossRef]
- Seitz, H.K.; Veith, S.; Czygan, P.; Bosche, J.; Simon, B.; Gugler, R.; Kommerell, B. In vivo interactions between H2-receptor antagonists and ethanol metabolism in man and in rat. Hepatology 1984, 4, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Deltour, L.; Foglio, M.H.; Duester, G. Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3 and Adh4 null mutant mice. J. Biol. Chem. 1999, 274, 16796–16801. [Google Scholar] [CrossRef] [PubMed]
- Frezza, M.; DiPadova, C.; Pozzato, G.; Terpin, M.; Baraona, E.; Lieber, C.S. High blood alcohol levels in women −The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N. Engl. J. Med. 1990, 322, 95–99. [Google Scholar] [CrossRef]
- Zheng, Y.-W.; Bey, M.; Liu, H.; Felder, M.R. Molecular basis of alcohol dehydrogenase-negative deer mouse. J. Biol. Chem. 1993, 268, 24933–24939. [Google Scholar] [CrossRef] [PubMed]
- Ostberg, L.J.; Stromberg, P.; Hedberg, J.J.; Persson, B.; Hoog, J.-O. Analysis of mammalian alcohol dehydrogenase 5 (ADH5): Characterization of rat ADH5 with comparison to the corresponding human variant. Chemico. Biol. Interact. 2013, 202, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ostberg, L.J.; Persson, B.; Hoog, J.-O. Computational studies of human class V alcohol dehydrogenase−the odd sibling. BMC Biochem. 2016, 17, 16. [Google Scholar] [CrossRef]
- Jornvall, H.; Landreh, M.; Ostberg, L.J. Alcohol dehydrogenase, SDR and MDR structural stages, present uptake and altered era. Chem. Biol. Interact. 2015, 234, 75–79. [Google Scholar] [CrossRef]
- Teschke, R.; Hasumura, Y.; Joly, J.G.; Ishii, H.; Lieber, C.S. Microsomal ethanol-oxidizing system (MEOS): Purification and properties of rat liver system free of catalase and alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 1972, 49, 1187–1193. [Google Scholar] [CrossRef]
- Teschke, R.; Hasumura, Y.; Lieber, C.S. Hepatic microsomal ethanol-oxidizing system: Solubilization, isolation and characterization. Arch Biochem. Biophys. 1974, 163, 404–415. [Google Scholar] [CrossRef]
- Ohnishi, K.; Lieber, C.S. Reconstitution of the microsomal ethanol-oxidizing system: Qualitative and quantitative changes of cytochrome P-450 after chronic ethanol consumption. J. Biol. Chem. 1977, 252, 7124–7131. [Google Scholar] [CrossRef]
- Shigeta, Y.; Nomura, F.; Iida, S.; Leo, M.A.; Felder, M.R.; Lieber, C.S. Ethanol metabolism in vivo by the microsomal ethanol oxidizing system in deermice lacking alcohol dehydrogenase (ADH). Biochem. Pharmacol. 1984, 33, 807–814. [Google Scholar] [CrossRef]
- Takagi, T.; Alderman, J.; Lieber, C.S. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice. Alcohol 1985, 2, 9–12. [Google Scholar] [CrossRef]
- Takagi, T.; Alderman, J.; Gellert, J.; Lieber, C.S. Assessment of the role of non-ADH ethanol oxidation in vivo and in hepatocytes from deermice. Biochem. Pharmacol. 1986, 35, 3601–3606. [Google Scholar] [CrossRef]
- Alderman, J.; Takagi, T.; Lieber, C.S. Ethanol-metabolizing pathway in deermice. J. Biol. Chem. 1987, 262, 7497–7503. [Google Scholar] [CrossRef]
- Handler, J.A.; Bradford, B.U.; Glassman, E.; Ladine, J.K.; Thurman, R.G. Catalase-dependent ethanol metabolism in vivo in deermice lacking alcohol dehydrogenase. Biochem. Pharmacol. 1986, 35, 4487–4492. [Google Scholar] [CrossRef] [PubMed]
- Ekstrom, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity. Biochemistry 1987, 26, 7348–7354. [Google Scholar] [CrossRef] [PubMed]
- Norsten, C.; Cronholm, T.; Ekstrom, G.; Handler, J.A.; Thurman, R.G. Dehyrogenase-dependent ethanol metabolism in deer mice (Peromyscus maniculatus) lacking cytosolic alcohol dehydrogenase. J. Biol. Chem. 1989, 264, 5593–5597. [Google Scholar] [CrossRef]
- Ekstrom, G.; Cronholm, T.; Norsten-Hoog, C.; Ingelman-Sundberg, M. Dehydrogenase-dependent metabolism of alcohols in gastric mucosa of deer mice lacking hepatic alcohol dehydrogenase. Biochem. Pharmacol. 1993, 45, 1989–1994. [Google Scholar] [CrossRef]
- Vasiliou, V.; Ziegler, T.L.; Bludeau, P.; Petersen, D.R.; Gonzalez, F.J.; Deitrich, R.A. CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenetics Genom. 2006, 16, 51–58. [Google Scholar] [CrossRef]
- Kono, H.; Bradford, B.U.; Yin, M.; Sulik, K.K.; Koop, D.R.; Peters, J.M.; Gonzalez, F.J.; McDonald, T.; Dikalova, A.; Kadiiska, M.B.; et al. CYP2E1 is not involved in early alcohol-induced liver injury. Am. J. Physiol. 1999, 277, G1259–G1267. [Google Scholar] [CrossRef]
- Lieber, C.S. Pathogenesis and treatment of alcoholic liver disease: Progress over the last 50 years. Ann. Acad. Medicae Bialostoc. 2005, 50, 7–20. [Google Scholar]
- Lieber, C.S. Metabolism of alcohol. Clin. Liver Dis. 2005, 9, 1–35. [Google Scholar] [CrossRef]
- Teschke, R. Microsomal ethanol-oxidizing system: Over 50 years and an encouraging future. Alcohol. Clin. Exp. Res. 2019, 43, 386–400. [Google Scholar] [CrossRef]
- Boveris, A.; Oshino, N.; Chance, B. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128, 617–630. [Google Scholar] [CrossRef]
- Oshino, N.; Chance, B.; Sies, H.; Bucher, T. The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 1973, 154, 117–131. [Google Scholar] [CrossRef]
- Nelson, G.H.; Kinard, F.W.; Aull, J.C., Jr.; Hay, M.G. Effect of aminotriazole on alcohol metabolism and hepatic enzyme activities in several species. Q. J. Stud. Alcohol 1957, 18, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Mikami, K.; Kurosu, M.; Ohno, Y. Alcohol metabolism by alcohol dehydrogenase (ADH) isoenzymes Class I and Class III. Jpn. J. Alcohol Drug Depend. 1995, 30, 206–207. [Google Scholar]
- Handler, J.A.; Thurman, R.G. Rates of H2O2 generation from peroxisomal β-oxidation are sufficient to account for fatty acid-stimulated ethanol metabolism in perfused rat liver. Alcohol 1987, 4, 131–134. [Google Scholar] [CrossRef]
- Handler, J.A.; Thurman, R.G. Catalase-dependent ethanol oxidation in perfused rat liver-Requirement for fatty acid-stimulated H2O2 production by peroxisome. Eur. J. Biochem. 1988, 176, 477–487. [Google Scholar] [CrossRef]
- Misra, U.K.; Bradford, B.U.; Thurman, R.G. Chronic ethanol treatment induces H2O2 production selectively in pericentral regions of the liver lobule. Alcohol. Clin. Exp. Res. 1992, 16, 839–842. [Google Scholar] [CrossRef]
- Monk, J.P.; Todd, P.A. Bezafibrate a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hyperlipidaemia. Drugs 1987, 33, 539–576. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Kanegae, T.; Isobe, E.; Hirose, M.; Shimamura, M.; Nagoya, T. Effects of bezafibrate on ethanol oxidation in rats. Alcohol. Clin. Exp. Res. 1996, 20, 1599–1603. [Google Scholar] [CrossRef]
- Handler, J.A.; Thurman, R.G. Redox interactions between catalase and alcohol dehydrogenase pathways of ethanol metabolism in the perfused rat liver. J. Biol. Chem. 1990, 265, 1510–1515. [Google Scholar] [CrossRef]
- Hsu, L.C.; Yoshida, A.; Mohandas, T. Chromosomal assignment of the genes for human aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Am. J. Hum. Genet. 1986, 38, 641–648. [Google Scholar] [PubMed]
- Klyosov, A.A. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry 1996, 35, 4457–4467. [Google Scholar] [CrossRef]
- Tomita, Y.; Haseba, T.; Kurosu, M.; Watanabe, T. Effects of chronic ethanol intoxication on aldehyde dehydrogenases in mouse liver. Alcohol Alcohol. 1992, 27, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Korsten, M.A.; Matsuzaki, S.; Feinman, L.; Lieber, C.S. High blood acetaldehyde levels after ethanol administration in alcoholics. Difference between alcoholic and non-alcoholic subjects. N. Engl. J. Med. 1975, 292, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Uedaira, T.; Osaka, A. Water in Biological Systems; Kodansha Scientific, Kodansha: Tokyo, Japan, 1989. [Google Scholar]
- Gergel, D.; Cederbum, A.I. Inhibition of the catalytic activity of alcohol dehydrogenase by nitric oxide is associated with s-nitrosylation and release of zinc. Biochemistry 1996, 35, 16186–16194. [Google Scholar] [CrossRef]
- Choi, M.S. Pathophysiological role of s-Nitrosylation and transnitrosylation depending on s-Nitrosoglutathione levels regulated by s-nitrosoglutathione reductase. Biomol. Ther. 2018, 26, 533–538. [Google Scholar] [CrossRef]
- Haseba, T.; Maruyama, M.; Akimoto, T.; Yamamoto, I.; Katsuyama, M.; Okuda, T. Class III alcohol dehydrogenase plays a key role in the onset of alcohol-related/-associated liver disease as an s-nitrosoglutathione reductase in mice. Int. J. Mol. Sci. 2023, 24, 12102. [Google Scholar] [CrossRef]
- Pevsner, J. Bioinformatics and Functional Genomics, 3rd ed.; WILEY Blackwell, John Wiley & Sons, Ltd.: West Sussex, UK, 2015; pp. 307–635. [Google Scholar]
Hydrophobic Substances | Conc. (M) | Km (M) | Kcat (min−1) | Kcat/Km (M−1 min−1) |
---|---|---|---|---|
Non | NS a | 6.2 b | ||
tert-Butanol (C4) | 0.12 | 3.88 | 37.9 | 9.8 |
0.46 | 2.24 | 42.1 | 18.8 | |
1.38 | 0.31 | 19.4 | 62.6 | |
Butyramide (C4) | 0.10 | 3.17 | 26.1 | 8.2 |
1.00 | 1.66 | 22.3 | 13.4 | |
Valeramide (C5) | 0.05 | 2.92 | 25.1 | 8.6 |
0.50 | 1.61 | 24.4 | 15.2 | |
Capronamide (C6) | 0.10 | 2.38 | 44.6 | 18.7 |
0.20 | 0.27 | 8.6 | 31.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseba, T. Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2. Int. J. Mol. Sci. 2025, 26, 9479. https://doi.org/10.3390/ijms26199479
Haseba T. Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2. International Journal of Molecular Sciences. 2025; 26(19):9479. https://doi.org/10.3390/ijms26199479
Chicago/Turabian StyleHaseba, Takeshi. 2025. "Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2" International Journal of Molecular Sciences 26, no. 19: 9479. https://doi.org/10.3390/ijms26199479
APA StyleHaseba, T. (2025). Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2. International Journal of Molecular Sciences, 26(19), 9479. https://doi.org/10.3390/ijms26199479