The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells
Abstract
1. Introduction
2. Results
2.1. Imatinib Inhibits PDGF Signaling-Induced Proliferation and Migration of PASMCs
2.2. Imatinib Affects the Expression of miRNAs That Respond to PDGF Signaling
2.3. miR-335-5p Inhibits the Activation of PDGF Signaling
2.4. miR-335-5p Inhibits the Proliferation and Migration of PASMCs
2.5. ARHGAP18 Is a Novel Target of miR-335-5p
2.6. ARHGAP18 Regulates the Proliferation and Migration of PASMCs
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Quantitative Reverse Transcriptase-PCR (qRT-PCR)
4.3. miRNA Mimics and Anti-miRNA Oligonucleotides
4.4. Cell Counting Kit-8 Assay
4.5. In Vitro Scratch Wound Assay
4.6. Immunoblotting
4.7. Luciferase Reporter Constructs
4.8. Luciferase Assay
4.9. Statistical Analysis
4.10. Bioinformatic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schermuly, R.T.; Dony, E.; Ghofrani, H.A.; Pullamsetti, S.; Savai, R.; Roth, M.; Sydykov, A.; Lai, Y.J.; Weissmann, N.; Seeger, W.; et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Investig. 2005, 115, 2811–2821. [Google Scholar] [CrossRef]
- Xing, A.-P.; Du, Y.-C.; Hu, X.-Y.; Xu, J.-Y.; Zhang, H.-P.; Li, Y.; Nie, X. Cigarette Smoke Extract Stimulates Rat Pulmonary Artery Smooth Muscle Cell Proliferation via PKC-PDGFB Signaling. BioMed Res. Int. 2012, 2012, 534384. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Hata, A. MicroRNA regulation of smooth muscle gene expression and phenotype. Curr. Opin. Hematol. 2012, 19, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Tang, H.; Lin, R.; Carr, S.G.; Wang, Z.; Babicheva, A.; Ayon, R.J.; Jain, P.P.; Xiong, M.; Rodriguez, M. Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension. Pulm. Circ. 2020, 10, 2045894020948470. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Sitapara, R.; Osterhout, R.; Weiss, A.; Carter, L.L.; Zisman, L.S.; Schermuly, R.T. Pharmacology and Rationale for Seralutinib in the Treatment of Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2023, 24, 12653. [Google Scholar] [CrossRef]
- Berghausen, E.; ten Freyhaus, H.; Rosenkranz, S. Targeting of platelet-derived growth factor signaling in pulmonary arterial hypertension. Handb. Exp. Pharmacol. 2013, 218, 381–408. [Google Scholar] [CrossRef]
- Gomberg-Maitland, M.; Bull, T.M.; Saggar, R.; Barst, R.J.; Elgazayerly, A.; Fleming, T.R.; Grimminger, F.; Rainisio, M.; Stewart, D.J.; Stockbridge, N.; et al. New trial designs and potential therapies for pulmonary artery hypertension. J. Am. Coll. Cardiol. 2013, 62, D82–D91. [Google Scholar] [CrossRef]
- Keen, J.L.; Al-Naamani, N.; Ventetuolo, C.E. The future of PAH treatment. Adv. Pulm. Hypertens. 2023, 22, 55–61. [Google Scholar] [CrossRef]
- Solinc, J.; Raimbault-Machado, J.; Dierick, F.; El Bernoussi, L.; Tu, L.; Thuillet, R.; Mougenot, N.; Hoareau-Coudert, B.; Monceau, V.; Pavoine, C. Platelet-Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. J. Am. Heart Assoc. 2022, 11, e023021. [Google Scholar] [CrossRef]
- Noskovičová, N.; Petřek, M.; Eickelberg, O.; Heinzelmann, K. Platelet-derived growth factor signaling in the lung. From lung development and disease to clinical studies. Am. J. Respir. Cell Mol. Biol. 2015, 52, 263–284. [Google Scholar] [CrossRef]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Small, E.M.; Frost, R.J.; Olson, E.N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010, 121, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, G. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury. J. Cardiovasc. Transl. Res. 2010, 3, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, T.; Raj, J.U. MicroRNAs in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2015, 52, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Atanasov, A.G. The microRNAs regulating vascular smooth muscle cell proliferation: A minireview. Int. J. Mol. Sci. 2019, 20, 324. [Google Scholar] [CrossRef]
- San José-Enériz, E.; Román-Gómez, J.; Jiménez-Velasco, A.; Garate, L.; Martin, V.; Cordeu, L.; Vilas-Zornoza, A.; Rodríguez-Otero, P.; José Calasanz, M.; Prósper, F. MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Mol. Cancer 2009, 8, 69. [Google Scholar] [CrossRef]
- Flamant, S.; Ritchie, W.; Guilhot, J.; Holst, J.; Bonnet, M.L.; Chomel, J.C.; Guilhot, F.; Turhan, A.G.; Rasko, J.E. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica 2010, 95, 1325–1333. [Google Scholar] [CrossRef]
- Alves, R.; Gonçalves, A.C.; Jorge, J.; Marques, G.; Luís, D.; Ribeiro, A.B.; Freitas-Tavares, P.; Oliveiros, B.; Almeida, A.M.; Sarmento-Ribeiro, A.B. MicroRNA signature refine response prediction in CML. Sci. Rep. 2019, 9, 9666. [Google Scholar] [CrossRef]
- Di Stefano, C.; Mirone, G.; Perna, S.; Marfe, G. The roles of microRNAs in the pathogenesis and drug resistance of chronic myelogenous leukemia. Oncol. Rep. 2016, 35, 614–624. [Google Scholar] [CrossRef]
- Klümper, T.; Bruckmueller, H.; Diewock, T.; Kaehler, M.; Haenisch, S.; Pott, C.; Bruhn, O.; Cascorbi, I. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp. Hematol. Oncol. 2020, 9, 26. [Google Scholar]
- Shibuta, T.; Honda, E.; Shiotsu, H.; Tanaka, Y.; Vellasamy, S.; Shiratsuchi, M.; Umemura, T. Imatinib induces demethylation of miR-203 gene: An epigenetic mechanism of anti-tumor effect of imatinib. Leuk. Res. 2013, 37, 1278–1286. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, L.; Zhao, M.; Zhu, S.; Kang, R.; Vernon, P.; Tang, D.; Cao, L. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012, 26, 1752–1760. [Google Scholar] [CrossRef]
- Tavazoie, S.F.; Alarcon, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massague, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008, 451, 147–152. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, F.; Wang, Z.; Song, Y.; Luo, Y.; Zhang, X.; Jiang, L.; Sun, Z.; Miao, Z.; Xu, H. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 2012, 31, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Tome, M.; Lopez-Romero, P.; Albo, C.; Sepulveda, J.C.; Fernandez-Gutierrez, B.; Dopazo, A.; Bernad, A.; Gonzalez, M.A. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011, 18, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhang, D.; Song, Y.; Kong, J.; Mu, C.; Shen, P.; Gui, W. miR-335-5p regulates the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection by directly regulating SP1. Acta Biochim. Biophys. Sin. 2022, 54, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Kang, H. Platelet-derived growth factor-stimulated pulmonary artery smooth muscle cells regulate pulmonary artery endothelial cell dysfunction through extracellular vesicle miR-409-5p. Biol. Chem. 2024, 405, 203–215. [Google Scholar] [CrossRef]
- Barst, R.J. PDGF signaling in pulmonary arterial hypertension. J. Clin. Investig. 2005, 115, 2691–2694. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Q.; McTiernan, C.; Lai, Y.C.; Osei-Hwedieh, D.; Gladwin, M. Novel Targets of Drug Treatment for Pulmonary Hypertension. Am. J. Cardiovasc. Drugs 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Morii, C.; Tanaka, H.Y.; Izushi, Y.; Nakao, N.; Yamamoto, M.; Matsubara, H.; Kano, M.R.; Ogawa, A. 3D in vitro Model of Vascular Medial Thickening in Pulmonary Arterial Hypertension. Front. Bioeng. Biotechnol. 2020, 8, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, F.; Shi, W.; Zhai, C.; Wang, J.; Yan, X.; Wang, Q.; Zhang, Q.; Yang, L.; Gao, L.; et al. COP9 signalosome subunit 6 mediates PDGF -induced pulmonary arterial smooth muscle cells proliferation. Exp. Cell Res. 2018, 371, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Kwapiszewska, G.; Markart, P.; Dahal, B.K.; Kojonazarov, B.; Marsh, L.M.; Schermuly, R.T.; Taube, C.; Meinhardt, A.; Ghofrani, H.A.; Steinhoff, M.; et al. PAR-2 inhibition reverses experimental pulmonary hypertension. Circ. Res. 2012, 110, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, A.; Nayeem, M.J.; Al Mamun, A.; Takahashi, R.; Hayashi, H.; Sato, M. Platelet-derived growth factor up-regulates Ca(2+)-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J. 2019, 33, 7363–7374. [Google Scholar] [CrossRef]
- Veith, C.; Zakrzewicz, D.; Dahal, B.K.; Balint, Z.; Murmann, K.; Wygrecka, M.; Seeger, W.; Schermuly, R.T.; Weissmann, N.; Kwapiszewska, G. Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-1alpha depletion or imatinib treatment. Thromb. Haemost. 2014, 112, 1288–1303. [Google Scholar] [CrossRef]
- Kim, S.; Kang, H. miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation. BMB Rep. 2013, 46, 550. [Google Scholar] [CrossRef]
- Ma, C.-N.; Shi, S.-R.; Zhang, X.-Y.; Xin, G.-S.; Zou, X.; Li, W.-L.; Guo, S.-D. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024, 14, 1446. [Google Scholar] [CrossRef]
- Huang, W.K.; Shi, H.; Akcakaya, P.; Zeljic, K.; Gangaev, A.; Caramuta, S.; Yeh, C.N.; Branstrom, R.; Larsson, C.; Lui, W.O. Imatinib Regulates miR-483-3p and Mitochondrial Respiratory Complexes in Gastrointestinal Stromal Tumors. Int. J. Mol. Sci. 2021, 22, 10600. [Google Scholar] [CrossRef]
- Liao, Y.; Lv, G.; Wang, B.; Kuang, L.; Wang, X. Imatinib promotes apoptosis of giant cell tumor cells by targeting microRNA-30a-mediated runt-related transcription factor 2. Mol. Med. Rep. 2016, 13, 1739–1745. [Google Scholar] [CrossRef]
- Chen, P.H.; Liu, A.J.; Ho, K.H.; Chiu, Y.T.; Anne Lin, Z.H.; Lee, Y.T.; Shih, C.M.; Chen, K.C. microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells. Chem.-Biol. Interact. 2018, 291, 144–151. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Chen, R.; Wu, Y.; Zhang, B.; Huang, S.; Zhang, J.; Xiao, F.; Wang, M.; Liang, Y. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem. Biophys. Res. Commun. 2012, 425, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Hasegawa, H.; Hyodo, T.; Ito, S.; Asano, E.; Yuang, H.; Funasaka, K.; Shimokata, K.; Hasegawa, Y.; Hamaguchi, M.; et al. ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility. Mol. Biol. Cell 2011, 22, 3840–3852. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Wang, W.; Xie, H.; Li, J.; Hu, Z.; Zheng, Z.; Li, H.; Teng, L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging 2018, 10, 3371–3381. [Google Scholar] [CrossRef]
- Chen, P.; Liu, X.; Liu, Y.; Bao, X.; Wu, Q. ARHGAP18 is Upregulated by Transcription Factor GATA1 Promotes the Proliferation and Invasion in Hepatocellular Carcinoma. Appl. Biochem. Biotechnol. 2024, 196, 679–689. [Google Scholar] [CrossRef]
- Humphries, B.; Wang, Z.; Li, Y.; Jhan, J.R.; Jiang, Y.; Yang, C. ARHGAP18 Downregulation by miR-200b Suppresses Metastasis of Triple-Negative Breast Cancer by Enhancing Activation of RhoA. Cancer Res. 2017, 77, 4051–4064. [Google Scholar] [CrossRef]
- Chelladurai, P.; Kuenne, C.; Bourgeois, A.; Gunther, S.; Valasarajan, C.; Cherian, A.V.; Rottier, R.J.; Romanet, C.; Weigert, A.; Boucherat, O.; et al. Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Sci. Transl. Med. 2022, 14, eabe5407. [Google Scholar] [CrossRef]
- Lemay, S.E.; Mougin, M.; Sauvaget, M.; El Kabbout, R.; Valasarajan, C.; Yamamoto, K.; Martineau, S.; Pelletier, A.; Bilodeau, C.; Grobs, Y.; et al. Unraveling AURKB as a potential therapeutic target in pulmonary hypertension using integrated transcriptomic analysis and pre-clinical studies. Cell Rep. Med. 2025, 6, 101964. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Kang, H. The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells. Int. J. Mol. Sci. 2025, 26, 9368. https://doi.org/10.3390/ijms26199368
Lee Y, Kang H. The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells. International Journal of Molecular Sciences. 2025; 26(19):9368. https://doi.org/10.3390/ijms26199368
Chicago/Turabian StyleLee, Yunyeong, and Hara Kang. 2025. "The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells" International Journal of Molecular Sciences 26, no. 19: 9368. https://doi.org/10.3390/ijms26199368
APA StyleLee, Y., & Kang, H. (2025). The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells. International Journal of Molecular Sciences, 26(19), 9368. https://doi.org/10.3390/ijms26199368