Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects
Abstract
1. Introduction
2. Results
2.1. Cholinergic Effects
2.1.1. Short-Term (PN21)
2.1.2. Long-Term (PN180)
2.2. Serotonergic Effects
2.2.1. Short-Term (PN21)
2.2.2. Long-Term (PN180)
3. Discussion
3.1. Cholinergic Effects
3.2. Serotonergic Effects
3.3. Sex Differences
4. Materials and Methods
4.1. Animals and Treatment (Figure 3)
4.2. Evaluation of Cholinergic and Serotonergic Systems
4.2.1. Nicotinic Acetylcholine Receptor and Choline Transporter
4.2.2. Serotonin Receptors and Transporter
4.3. Materials
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-HT | Serotonin |
5-HT1AR | 5-HT1A receptor |
5-HT2R | 5-HT2 receptor |
5-HTT | Presynaptic 5-HT transporter |
ANOVA | Analyses of variance |
BCA | Bicinchoninic acid |
BPA | Bisphenol A |
BPS | Bisphenol S |
BPA10 | progeny exposed to 10 μg/kg/day of bisphenol A |
BPA50 | progeny exposed to 50 μg/kg/day of bisphenol A |
BPS10 | progeny exposed to 10 μg/kg/day of bisphenol S |
BPS50 | progeny exposed to 50 μg/kg/day of bisphenol S |
ChT | High-affinity presynaptic choline transporter |
CT | Control progeny |
EFSA | European Food Safety Authority |
EPA | Environmental Protection Agency |
FDA | Food and Drug Administration |
FPLSD | Fisher’s Protected Least Significant Difference |
HC-3 | Hemicholinium-3 |
nAChR | nicotinic acetylcholine receptor |
NOAEL | No-observed-adverse-effect-level |
PN | Postnatal day |
PSU | Polysulfone |
TDI | Tolerable daily intake |
References
- Manzoor, M.F.; Tariq, T.; Fatima, B.; Sahar, A.; Tariq, F.; Munir, S.; Khan, S.; Nawaz Ranjha, M.M.A.N.; Sameen, A.; Zeng, X.-A.; et al. An Insight into Bisphenol A, Food Exposure and Its Adverse Effects on Health: A Review. Front. Nutr. 2022, 9, 1047827. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rasheed, S.; Rehman, K.; Imran, M.; Assiri, M.A. Toxicological Evaluation of Bisphenol Analogues: Preventive Measures and Therapeutic Interventions. RSC Adv. 2023, 13, 21613–21628. [Google Scholar] [CrossRef]
- Nesan, D.; Kurrasch, D.M. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu. Rev. Physiol. 2020, 82, 177–202. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.-P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.-M.; Pussemier, L.; Scippo, M.-L.; et al. A Review of Dietary and Non-Dietary Exposure to Bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Henare, K.; Thorstensen, E.B.; Ponnampalam, A.P.; Mitchell, M.D. Transfer of Bisphenol A across the Human Placenta. Am. J. Obstet. Gynecol. 2010, 202, 393.e1–393.e7. [Google Scholar] [CrossRef]
- Tanaka, M.; Kawamoto, T.; Matsumoto, H. Distribution of 14C-Bisphenol A in Pregnant and Newborn Mice. Dent. Mater. 2010, 26, e181–e187. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human Exposure to Bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Welshons, W.V.; Nagel, S.C.; vom Saal, F.S. Large Effects from Small Exposures. III. Endocrine Mechanisms Mediating Effects of Bisphenol A at Levels of Human Exposure. Endocrinology 2006, 147, s56–s69. [Google Scholar] [CrossRef]
- Xu, L.-C.; Sun, H.; Chen, J.-F.; Bian, Q.; Qian, J.; Song, L.; Wang, X.-R. Evaluation of Androgen Receptor Transcriptional Activities of Bisphenol A, Octylphenol and Nonylphenol in Vitro. Toxicology 2005, 216, 197–203. [Google Scholar] [CrossRef]
- Tanaka, M.; Nakaya, S.; Katayama, M.; Leffers, H.; Nozawa, S.; Nakazawa, R.; Iwamoto, T.; Kobayashi, S. Effect of Prenatal Exposure to Bisphenol A on the Serum Testosterone Concentration of Rats at Birth. Hum. Exp. Toxicol. 2006, 25, 369–373. [Google Scholar] [CrossRef]
- Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. J. Clin. Endocrinol. Metab. 2002, 87, 5185–5190. [Google Scholar] [CrossRef]
- Chevrier, J.; Gunier, R.B.; Bradman, A.; Holland, N.T.; Calafat, A.M.; Eskenazi, B.; Harley, K.G. Maternal Urinary Bisphenol a during Pregnancy and Maternal and Neonatal Thyroid Function in the CHAMACOS Study. Environ. Health Perspect. 2013, 121, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Poimenova, A.; Markaki, E.; Rahiotis, C.; Kitraki, E. Corticosterone-Regulated Actions in the Rat Brain Are Affected by Perinatal Exposure to Low Dose of Bisphenol A. Neuroscience 2010, 167, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.-A.; Ka, M. Bisphenol A (BPA) and Neurological Disorders: An Overview. Int. J. Biochem. Cell Biol. 2024, 173, 106614. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.; Mulligan, K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int. J. Mol. Sci. 2022, 23, 2894. [Google Scholar] [CrossRef]
- Costa, H.E.; Cairrao, E. Effect of Bisphenol A on the Neurological System: A Review Update. Arch. Toxicol. 2024, 98, 1–73. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Petersen, C.S. Neuronal Underpinnings of Cognitive Impairment and -Improvement in Mood Disorders. CNS Spectr. 2019, 24, 30–53. [Google Scholar] [CrossRef]
- Price, J.L.; Drevets, W.C. Neurocircuitry of Mood Disorders. Neuropsychopharmacology 2010, 35, 192–216. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Fan, X.; Guo, W. Dysfunction in Serotonergic and Noradrenergic Systems and Somatic Symptoms in Psychiatric Disorders. Front. Psychiatry 2019, 10, 286. [Google Scholar] [CrossRef]
- Dulawa, S.C.; Janowsky, D.S. Cholinergic Regulation of Mood: From Basic and Clinical Studies to Emerging Therapeutics. Mol. Psychiatry 2019, 24, 694–709. [Google Scholar] [CrossRef]
- Seyedabadi, M.; Fakhfouri, G.; Ramezani, V.; Mehr, S.E.; Rahimian, R. The Role of Serotonin in Memory: Interactions with Neurotransmitters and Downstream Signaling. Exp. Brain Res. 2014, 232, 723–738. [Google Scholar] [CrossRef]
- Fuenzalida, M.; Pérez, M.Á.; Arias, H.R. Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases. Curr. Pharm. Des. 2016, 22, 2004–2014. [Google Scholar] [CrossRef]
- Bonaldo, B.; Casile, A.; Ostuni, M.T.; Bettarelli, M.; Nasini, S.; Marraudino, M.; Panzica, G.C.; Gotti, S. Perinatal Exposure to Bisphenol A or S: Effects on Anxiety-Related Behaviors and Serotonergic System. Chemosphere 2024, 349, 140827. [Google Scholar] [CrossRef]
- Castro, B.; Sánchez, P.; Miranda, M.T.; Torres, J.M.; Ortega, E. Identification of Dopamine- and Serotonin-Related Genes Modulated by Bisphenol A in the Prefrontal Cortex of Male Rats. Chemosphere 2015, 139, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Matsuzawa, D.; Ishii, D.; Tomizawa, H.; Sajiki, J.; Shimizu, E. Perinatal Exposure to Bisphenol A Enhances Contextual Fear Memory and Affects the Serotoninergic System in Juvenile Female Mice. Horm. Behav. 2013, 63, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fan, S.; Guo, Y.; Tan, R.; Zhang, J.; Zhang, W.; Pan, B.-X.; Kato, N. The Effects of Perinatal Bisphenol A Exposure on Thyroid Hormone Homeostasis and Glucose Metabolism in the Prefrontal Cortex and Hippocampus of Rats. Brain Behav. 2019, 9, e01225. [Google Scholar] [CrossRef] [PubMed]
- Guignard, D.; Canlet, C.; Tremblay-Franco, M.; Chaillou, E.; Gautier, R.; Gayrard, V.; Picard-Hagen, N.; Schroeder, H.; Jourdan, F.; Zalko, D.; et al. Gestational Exposure to Bisphenol A Induces Region-Specific Changes in Brain Metabolomic Fingerprints in Sheep. Environ. Int. 2022, 165, 107336. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Cantua, R.; Mulligan, K. Developmental Neurotoxicity of Bisphenol F and Bisphenol S in Animal Model Systems: A Literature Review. Neurotoxicology 2025, 108, 263–280. [Google Scholar] [CrossRef]
- Grimaldi, M.; Boulahtouf, A.; Toporova, L.; Balaguer, P. Functional Profiling of Bisphenols for Nuclear Receptors. Toxicology 2019, 420, 39–45. [Google Scholar] [CrossRef]
- Castro, B.; Sánchez, P.; Torres, J.M.; Ortega, E. Bisphenol A, bisphenol F and bisphenol S Affect Differently 5α-Reductase Expression and Dopamine–Serotonin Systems in the Prefrontal Cortex of Juvenile Female Rats. Environ. Res. 2015, 142, 281–287. [Google Scholar] [CrossRef]
- Matsuda, S.; Matsuzawa, D.; Ishii, D.; Tomizawa, H.; Sutoh, C.; Nakazawa, K.; Amano, K.; Sajiki, J.; Shimizu, E. Effects of Perinatal Exposure to Low Dose of Bisphenol A on Anxiety like Behavior and Dopamine Metabolites in Brain. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 39, 273–279. [Google Scholar] [CrossRef]
- Silva, B.S.; Bertasso, I.M.; Pietrobon, C.B.; Lopes, B.P.; Santos, T.R.; Peixoto-Silva, N.; Carvalho, J.C.; Claudio-Neto, S.; Manhães, A.C.; Cabral, S.S.; et al. Effects of Maternal Bisphenol A on Behavior, Sex Steroid and Thyroid Hormones Levels in the Adult Rat Offspring. Life Sci. 2019, 218, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, F.; Lin, R.; Meng, Y.; Wei, W.; Sun, Q.; Jia, L. Impairment of Learning and Memory Induced by Perinatal Exposure to BPA Is Associated with ERα-Mediated Alterations of Synaptic Plasticity and PKC/ERK/CREB Signaling Pathway in Offspring Rats. Brain Res. Bull. 2020, 161, 43–54. [Google Scholar] [CrossRef]
- da Silva, B.S.; Pietrobon, C.B.; Bertasso, I.M.; Lopes, B.P.; Carvalho, J.C.; Peixoto-Silva, N.; Santos, T.R.; Claudio-Neto, S.; Manhães, A.C.; Oliveira, E.; et al. Short and Long-Term Effects of Bisphenol S (BPS) Exposure during Pregnancy and Lactation on Plasma Lipids, Hormones, and Behavior in Rats. Environ. Pollut. 2019, 250, 312–322. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.M.; Guo, D.J.; Guo, T.L. Developmental Toxicity of Bisphenol S in Caenorhabditis Elegans and NODEF Mice. Neurotoxicology 2021, 87, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.B.; Bilenberg, N.; Timmermann, C.A.G.; Jensen, R.C.; Frederiksen, H.; Andersson, A.-M.; Kyhl, H.B.; Jensen, T.K. Prenatal Exposure to Bisphenol A and Autistic- and ADHD-Related Symptoms in Children Aged 2 and 5 Years from the Odense Child Cohort. Environ. Health 2021, 20, 24. [Google Scholar] [CrossRef]
- Heindel, J.J.; Belcher, S.; Flaws, J.A.; Prins, G.S.; Ho, S.-M.; Mao, J.; Patisaul, H.B.; Ricke, W.; Rosenfeld, C.S.; Soto, A.M.; et al. Data Integration, Analysis, and Interpretation of Eight Academic CLARITY-BPA Studies. Reprod. Toxicol. 2020, 98, 29–60. [Google Scholar] [CrossRef]
- Hill, C.E.; Myers, J.P.; Vandenberg, L.N. Nonmonotonic Dose–Response Curves Occur in Dose Ranges That Are Relevant to Regulatory Decision-Making. Dose-Response 2018, 16, 1559325818798282. [Google Scholar] [CrossRef]
- Evans, S.F.; Kobrosly, R.W.; Barrett, E.S.; Thurston, S.W.; Calafat, A.M.; Weiss, B.; Stahlhut, R.; Yolton, K.; Swan, S.H. Prenatal Bisphenol A Exposure and Maternally Reported Behavior in Boys and Girls. Neurotoxicology 2014, 45, 91–99. [Google Scholar] [CrossRef]
- Harley, K.G.; Gunier, R.B.; Kogut, K.; Johnson, C.; Bradman, A.; Calafat, A.M.; Eskenazi, B. Prenatal and Early Childhood Bisphenol A Concentrations and Behavior in School-Aged Children. Environ. Res. 2013, 126, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Mustieles, V.; Bleses, D.; Frederiksen, H.; Trecca, F.; Schoeters, G.; Andersen, H.R.; Grandjean, P.; Kyhl, H.B.; Juul, A.; et al. Prenatal Bisphenol A Exposure Is Associated with Language Development but Not with ADHD-Related Behavior in Toddlers from the Odense Child Cohort. Environ. Res. 2019, 170, 398–405. [Google Scholar] [CrossRef]
- Miyagawa, K.; Narita, M.; Narita, M.; Akama, H.; Suzuki, T. Memory Impairment Associated with a Dysfunction of the Hippocampal Cholinergic System Induced by Prenatal and Neonatal Exposures to Bisphenol-A. Neurosci. Lett. 2007, 418, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Villaça, Y.; Filgueiras, C.C.; Manhães, A.C. Developmental Aspects of the Cholinergic System. Behav. Brain Res. 2011, 221, 367–378. [Google Scholar] [CrossRef]
- Abreu-Villaça, Y.; Seidler, F.J.; Qiao, D.; Slotkin, T.A. Modeling the Developmental Neurotoxicity of Nicotine in Vitro: Cell Acquisition, Growth and Viability in PC12 Cells. Dev. Brain Res. 2005, 154, 239–246. [Google Scholar] [CrossRef]
- Quick, M.W.; Lester, R.A.J. Desensitization of Neuronal Nicotinic Receptors. J. Neurobiol. 2002, 53, 457–478. [Google Scholar] [CrossRef]
- Wonnacott, S. Presynaptic Nicotinic ACh Receptors. Trends Neurosci. 1997, 20, 92–98. [Google Scholar] [CrossRef]
- Dickinson, J.A.; Kew, J.N.C.; Wonnacott, S. Presynaptic A7- and Β2-Containing Nicotinic Acetylcholine Receptors Modulate Excitatory Amino Acid Release from Rat Prefrontal Cortex Nerve Terminals via Distinct Cellular Mechanisms. Mol. Pharmacol. 2008, 74, 348–359. [Google Scholar] [CrossRef]
- Livingstone, P.D.; Srinivasan, J.; Kew, J.N.C.; Dawson, L.A.; Gotti, C.; Moretti, M.; Shoaib, M.; Wonnacott, S. A7 and Non-A7 Nicotinic Acetylcholine Receptors Modulate Dopamine Release in Vitro and in Vivo in the Rat Prefrontal Cortex. Eur. J. Neurosci. 2009, 29, 539–550. [Google Scholar] [CrossRef]
- Smith, J.W.; Evans, A.T.; Costall, B.; Smythe, J.W. Thyroid Hormones, Brain Function and Cognition: A Brief Review. Neurosci. Biobehav. Rev. 2002, 26, 45–60. [Google Scholar] [CrossRef]
- Leach, P.T.; Gould, T.J. Thyroid Hormone Signaling: Contribution to Neural Function, Cognition, and Relationship to Nicotine. Neurosci. Biobehav. Rev. 2015, 57, 252–263. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Bansal, R.; Parris, C. Bisphenol-A, an Environmental Contaminant That Acts as a Thyroid Hormone Receptor Antagonist in Vitro, Increases Serum Thyroxine, and Alters RC3/Neurogranin Expression in the Developing Rat Brain. Endocrinology 2005, 146, 607–612. [Google Scholar] [CrossRef]
- Leach, P.T.; Holliday, E.; Kutlu, M.G.; Gould, T.J. Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice. Nicotine Tob. Res. 2016, 17, 690–696, Erratum in Nicotine Tob. Res. 2016, 18, 1387. [Google Scholar] [CrossRef]
- Opazo, M.C.; Gianini, A.; Pancetti, F.; Azkcona, G.; Alarcón, L.; Lizana, R.; Noches, V.; Gonzalez, P.A.; Porto, M.; Mora, S.; et al. Maternal Hypothyroxinemia Impairs Spatial Learning and Synaptic Nature and Function in the Offspring. Endocrinology 2008, 149, 5097–5106. [Google Scholar] [CrossRef]
- Shu, Y.; Tian, L.; Wang, X.; Meng, T.; Yu, S.; Li, Y. Decoding Serotonin: The Molecular Symphony behind Depression. Front. Cell. Neurosci. 2025, 19, 1572462. [Google Scholar] [CrossRef]
- Fischer, A.G.; Ullsperger, M. An Update on the Role of Serotonin and Its Interplay with Dopamine for Reward. Front. Hum. Neurosci. 2017, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.F.; Seligman, M.E.P. Learned Helplessness at Fifty: Insights from Neuroscience. Psychol. Rev. 2016, 123, 349–367. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.V.; Gener, T. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease. ACS Chem. Neurosci. 2015, 6, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Quentin, E.; Belmer, A.; Maroteaux, L. Somato-Dendritic Regulation of Raphe Serotonin Neurons; A Key to Antidepressant Action. Front. Neurosci. 2018, 12, 982. [Google Scholar] [CrossRef]
- Andrews, P.W.; Bharwani, A.; Lee, K.R.; Fox, M.; Thomson, J.A. Is Serotonin an Upper or a Downer? The Evolution of the Serotonergic System and Its Role in Depression and the Antidepressant Response. Neurosci. Biobehav. Rev. 2015, 51, 164–188. [Google Scholar] [CrossRef]
- Belmer, A.; Patkar, O.L.; Lanoue, V.; Bartlett, S.E. 5-HT1A Receptor-Dependent Modulation of Emotional and Neurogenic Deficits Elicited by Prolonged Consumption of Alcohol. Sci. Rep. 2018, 8, 2099. [Google Scholar] [CrossRef] [PubMed]
- Cummins, B.R.; Billac, G.B.; Nichols, D.E.; Nichols, C.D. 5-HT2A Receptors: Pharmacology and Functional Selectivity. Pharmacol. Rev. 2025, 77, 100059. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R.; Vahid-Ansari, F. The 5-HT1A Receptor: Signaling to Behavior. Biochimie 2019, 161, 34–45. [Google Scholar] [CrossRef]
- Marano, G.; Anesini, M.B.; Milintenda, M.; Acanfora, M.; Calderoni, C.; Bardi, F.; Lisci, F.M.; Brisi, C.; Traversi, G.; Mazza, O.; et al. Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior. Pediatr. Rep. 2025, 17, 65. [Google Scholar] [CrossRef]
- Stiede, J.T.; Mangen, K.H.; Storch, E.A. Childhood Anxiety Disorders. Psychiatr. Clin. N. Am. 2024, 47, 723–739. [Google Scholar] [CrossRef]
- Parajulee, A.; Kim, K. Structural Studies of Serotonin Receptor Family. BMB Rep. 2023, 56, 527–536. [Google Scholar] [CrossRef]
- Nakamura, K.; Itoh, K.; Yoshimoto, K.; Sugimoto, T.; Fushiki, S. Prenatal and Lactational Exposure to Low-Doses of Bisphenol A Alters Brain Monoamine Concentration in Adult Mice. Neurosci. Lett. 2010, 484, 66–70. [Google Scholar] [CrossRef]
- Matsuda, S.; Saika, S.; Amano, K.; Shimizu, E.; Sajiki, J. Changes in Brain Monoamine Levels in Neonatal Rats Exposed to Bisphenol A at Low Doses. Chemosphere 2010, 78, 894–906. [Google Scholar] [CrossRef]
- Gundlah, C.; Lu, N.Z.; Bethea, C.L. Ovarian Steroid Regulation of Monoamine Oxidase-A and B MRNAs in the Macaque Dorsal Raphe and Hypothalamic Nuclei. Psychopharmacology 2002, 160, 271–282. [Google Scholar] [CrossRef]
- Hiroi, R.; Handa, R.J. Estrogen Receptor-β Regulates Human Tryptophan Hydroxylase-2 through an Estrogen Response Element in the 5′ Untranslated Region. J. Neurochem. 2013, 127, 487–495. [Google Scholar] [CrossRef]
- Kulikov, A.V.; Zubkov, E.A. Chronic Thyroxine Treatment Activates the 5-HT2A Serotonin Receptor in the Mouse Brain. Neurosci. Lett. 2007, 416, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Gur, E.; Lifschytz, T.; Van de Kar, L.D.; Lerer, B.; Newman, M.E. Effects of Triiodothyronine on 5-HT1A and 5-HT1B Autoreceptor Activity, and Postsynaptic 5-HT1A Receptor Activity, in Rat Hypothalamus: Lack of Interaction with Imipramine. Psychoneuroendocrinology 2004, 29, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Maglione, A.V.; do Nascimento, B.P.P.; Ribeiro, M.O.; de Souza, T.J.L.; da Silva, R.E.C.; Sato, M.A.; Penatti, C.A.A.; Britto, L.R.G.; de Souza, J.S.; Maciel, R.M.B.; et al. Triiodothyronine Treatment Reverses Depression-Like Behavior in a Triple-Transgenic Animal Model of Alzheimer’s Disease. Metab. Brain Dis. 2022, 37, 2735–2750. [Google Scholar] [CrossRef] [PubMed]
- Forger, N.G.; Strahan, J.A.; Castillo-Ruiz, A. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System. Front. Neuroendocrinol. 2016, 40, 67–86. [Google Scholar] [CrossRef]
- Pallier, P.N.; Ferrara, M.; Romagnolo, F.; Ferretti, M.T.; Soreq, H.; Cerase, A. Chromosomal and Environmental Contributions to Sex Differences in the Vulnerability to Neurological and Neuropsychiatric Disorders: Implications for Therapeutic Interventions. Prog. Neurobiol. 2022, 219, 102353. [Google Scholar] [CrossRef]
- Bakker, J. The Role of Steroid Hormones in the Sexual Differentiation of the Human Brain. J. Neuroendocrinol. 2022, 34, e13050. [Google Scholar] [CrossRef]
- Wolstenholme, J.T.; Rissman, E.F.; Connelly, J.J. The Role of Bisphenol A in Shaping the Brain, Epigenome and Behavior. Horm. Behav. 2011, 59, 296–305. [Google Scholar] [CrossRef]
- Arango, V.; Underwood, M.D.; Boldrini, M.; Tamir, H.; Kassir, S.A.; Hsiung, S.; Chen, J.J.-X.; Mann, J.J. Serotonin 1A Receptors, Serotonin Transporter Binding and Serotonin Transporter MRNA Expression in the Brainstem of Depressed Suicide Victims. Neuropsychopharmacology 2001, 25, 892–903. [Google Scholar] [CrossRef]
- Dagytė, G.; Den Boer, J.A.; Trentani, A. The Cholinergic System and Depression. Behav. Brain Res. 2011, 221, 574–582. [Google Scholar] [CrossRef]
- Fujita, M.; Charney, D.S.; Innis, R.B. Imaging Serotonergic Neurotransmission in Depression: Hippocampal Pathophysiology May Mirror Global Brain Alterations. Biol. Psychiatry 2000, 48, 801–812. [Google Scholar] [CrossRef]
- Shelby, M.D. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A. Nntp Cerhr Mon 2008, 22, 1–64. [Google Scholar]
- Nahar, M.S.; Liao, C.; Kannan, K.; Dolinoy, D.C. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans. J. Biochem. Mol. Toxicol. 2013, 27, 116–123. [Google Scholar] [CrossRef]
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S. Critical Periods of Vulnerability for the Developing Nervous System: Evidence from Humans and Animal Models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Lambré, C.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; et al. Re-Evaluation of the Risks to Public Health Related to the Presence of Bisphenol A (BPA) in Foodstuffs. EFSA J. 2023, 21, e06857. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. In Bisphenol A Alternatives in Thermal Paper–Final Report, 2015. Version Current August; 2015. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/bpa_final.pdf (accessed on 6 March 2022).
- European Food Safety Authority (EFSA); FitzGerald, R.; Van Loveren, H.; Civitella, C.; Castoldi, A.F.; Bernasconi, G. Assessment of New Information on Bisphenol S (BPS) Submitted in Response to the Decision 1 under REACH Regulation (EC) No 1907/2006. EFSA Support. Publ. 2020, 17, 1844E. [Google Scholar] [CrossRef]
- Goldman, J.M.; Murr, A.S.; Cooper, R.L. The Rodent Estrous Cycle: Characterization of Vaginal Cytology and Its Utility in Toxicological Studies. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2007, 80, 84–97. [Google Scholar] [CrossRef]
- Fumagalli, F.; Jones, S.R.; Caron, M.G.; Seidler, F.J.; Slotkin, T.A. Expression of MRNA Coding for the Serotonin Transporter in Aged vs. Young Rat Brain: Differential Effects of Glucocorticoids. Brain Res. 1996, 719, 225–228. [Google Scholar] [CrossRef]
- Abreu-Villaça, Y.; Guimarães, V.M.S.; Nunes-Freitas, A.; Dutra-Tavares, A.C.; Manhães, A.C.; Filgueiras, C.C.; Ribeiro-Carvalho, A. Tobacco Smoke and Ethanol during Adolescence: Both Combined- and Single-Drug Exposures Lead to Short- and Long-Term Disruption of the Serotonergic System in the Mouse Brain. Brain Res. Bull. 2019, 146, 94–103. [Google Scholar] [CrossRef]
- Azmitia, E.C. Modern Views on an Ancient Chemical: Serotonin Effects on Cell Proliferation, Maturation, and Apoptosis. Brain Res. Bull. 2001, 56, 413–424. [Google Scholar] [CrossRef]
- Nutt, D.J. The Neuropharmacology of Serotonin and Noradrenaline in Depression. Int. Clin. Psychopharmacol. 2002, 17, S1–S12. [Google Scholar] [CrossRef] [PubMed]
- Klemm, N.; Kuhar, M.J. Post-Mortem Changes in High Affinity Choline Uptake. J. Neurochem. 1979, 32, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.R.; Atweh, S.; Kuhar, M.J. Sodium-Dependent High Affinity Choline Uptake: A Regulatory Step in the Synthesis of Acetylcholine. J. Neurochem. 1976, 26, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Carvalho, A.; Lima, C.S.; Dutra-Tavares, A.C.; Nunes, F.; Nunes-Freitas, A.L.; Filgueiras, C.C.; Manhães, A.C.; Meyer, A.; Abreu-Villaça, Y. Mood-Related Behavioral and Neurochemical Alterations in Mice Exposed to Low Chlorpyrifos Levels during the Brain Growth Spurt. PLoS ONE 2020, 15, e0239017. [Google Scholar] [CrossRef]
- Abreu-Villaça, Y.; Correa-Santos, M.; Dutra-Tavares, A.C.; Paes-Branco, D.; Nunes-Freitas, A.; Manhães, A.C.; Filgueiras, C.C.; Ribeiro-Carvalho, A. A Ten Fold Reduction of Nicotine Yield in Tobacco Smoke Does Not Spare the Central Cholinergic System in Adolescent Mice. Int. J. Dev. Neurosci. 2016, 52, 93–103. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; The Iowa State University Press: Ames, IA, USA, 1967. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semeão, K.A.; Dutra-Tavares, A.C.; Ribeiro-Carvalho, A.; Isnardo-Fernandes, J.; Lopes, L.D.; Souza, G.S.M.; Nunes-Freitas, A.L.; Silva, B.S.; Filgueiras, C.C.; Manhães, A.C.; et al. Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects. Int. J. Mol. Sci. 2025, 26, 9329. https://doi.org/10.3390/ijms26199329
Semeão KA, Dutra-Tavares AC, Ribeiro-Carvalho A, Isnardo-Fernandes J, Lopes LD, Souza GSM, Nunes-Freitas AL, Silva BS, Filgueiras CC, Manhães AC, et al. Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects. International Journal of Molecular Sciences. 2025; 26(19):9329. https://doi.org/10.3390/ijms26199329
Chicago/Turabian StyleSemeão, Keila A., Ana Carolina Dutra-Tavares, Anderson Ribeiro-Carvalho, Jemima Isnardo-Fernandes, Letycia D. Lopes, Gabriel S. M. Souza, André L. Nunes-Freitas, Beatriz S. Silva, Claudio C. Filgueiras, Alex C. Manhães, and et al. 2025. "Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects" International Journal of Molecular Sciences 26, no. 19: 9329. https://doi.org/10.3390/ijms26199329
APA StyleSemeão, K. A., Dutra-Tavares, A. C., Ribeiro-Carvalho, A., Isnardo-Fernandes, J., Lopes, L. D., Souza, G. S. M., Nunes-Freitas, A. L., Silva, B. S., Filgueiras, C. C., Manhães, A. C., Lisboa, P. C., & Abreu-Villaça, Y. (2025). Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects. International Journal of Molecular Sciences, 26(19), 9329. https://doi.org/10.3390/ijms26199329