Tetramethyl Bisphenol F: Organ- and System-Specific Toxicity, Current Status, and Perspectives
Abstract
1. Introduction
1.1. Background
1.2. Tetramethyl Bisphenol F (TMBPF)
1.2.1. Adoption of TMBPF as an Alternative to BPA
1.2.2. Early Toxicity Studies of TMBPF
1.2.3. Expanding Toxicological Evidence and the Need for Reassessment of TMBPF
1.3. Objectives and Structure of the Study
2. Organ System-Based Toxicological Evidence of TMBPF
2.1. Apoptotic and Cytotoxic Effects
2.2. Estrogenic Activity and Female Reproductive Effects
2.3. Androgenic Activity and Effects on the Male Reproductive System
2.4. Thyroid Hormone Disruption
2.5. Obesogenic Effects
2.6. Skeletal Effects
2.7. Developmental Toxicity
2.7.1. Teratogenic and General Developmental Effects
2.7.2. Neurodevelopmental Toxicity
2.8. Other Toxicological Studies
2.8.1. Identification and Toxicological Assessment of NIAS (Non-Intentionally Added Substances)
2.8.2. Effects on Gut Microbiota
3. Discussion
3.1. Characteristics of Reported Toxicity of TMBPF
3.2. Scientific Limitations and Regulatory Gaps
3.3. Beyond BPA-Free: Uncertainties Associated with Substitute Chemicals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzoor, M.F.; Tariq, T.; Fatima, B.; Sahar, A.; Tariq, F.; Munir, S.; Khan, S.; Nawaz Ranjha, M.M.A.; Sameen, A.; Zeng, X.A.; et al. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front. Nutr. 2022, 9, 1047827. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; He, Y.L.; Sun, Z.D.; Zhang, S.N.; Yang, X.X.; Liu, Q.S.; Zhou, Q.F.; Jiang, G.B. The environmental occurrence, human exposure, and toxicity of novel bisphenol S derivatives: A review. Ecotoxicol. Environ. Saf. 2025, 296, 118182. [Google Scholar] [CrossRef] [PubMed]
- Van den Brand, A.D.; Hessel, E.V.S.; Rijk, R.; van de Ven, B.; Leijten, N.M.; Rorije, E.; den Braver-Sewradj, S.P. A prioritization strategy for functional alternatives to bisphenol A in food contact materials. Crit. Rev. Toxicol. 2024, 54, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Groh, K. Health Risks of ‘BPA-Free’ Baby Bottles. Available online: https://foodpackagingforum.org/news/health-risks-of-bpa-free-baby-bottles (accessed on 31 July 2025).
- Eckardt, M.; Simat, T.J. Bisphenol A and alternatives in thermal paper receipts—A German market analysis from 2015 to 2017. Chemosphere 2017, 186, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Simkova, M.; Tichy, A.; Duskova, M.; Bradna, P. Dental composites—A low-dose source of bisphenol A? Physiol. Res. 2020, 69, S295–S304. [Google Scholar] [CrossRef]
- Yudaev, P.; Tamboura, B.; Konstantinova, A.; Babu, H.V.; Muralidharan, K. Epoxy Resins and Their Hardeners Based on Phosphorus-Nitrogen Compounds. J. Compos. Sci. 2025, 9, 277. [Google Scholar] [CrossRef]
- Stockholm University. Lignin Can Replace Bisphenol A. Available online: https://www.su.se/english/news/lignin-can-replace-bisphenol-a-1.739987 (accessed on 31 July 2025).
- Yokoyama, Y.; Yasui, T.; Takeda, A.; Kanehashi, S.; Ogino, K. Synthesis of bisphenol compounds from non-edible cashew nut shell liquid. Tetrahedron Lett. 2023, 118, 154384. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, J.I.; Gye, M.C.; Yoo, H.H. Isosorbide, a versatile green chemical: Elucidating its ADME properties for safe use. Ecotoxicol. Environ. Saf. 2024, 272, 116051. [Google Scholar] [CrossRef]
- Ng, F.F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials. Molecules 2017, 22, 149. [Google Scholar] [CrossRef]
- Kim, H.; Ji, K. Effects of tetramethyl bisphenol F on thyroid and growth hormone-related endocrine systems in zebrafish larvae. Ecotoxicol. Environ. Saf. 2022, 237, 113516. [Google Scholar] [CrossRef]
- Tickner, J.A.; Simon, R.V.; Jacobs, M.; Pollard, L.D.; van Bergen, S.K. The nexus between alternatives assessment and green chemistry: Supporting the development and adoption of safer chemicals. Green Chem. Lett. Rev. 2021, 14, 21–42. [Google Scholar] [CrossRef]
- Harnett, K.G.; Moore, L.G.; Chin, A.; Cohen, I.C.; Lautrup, R.R.; Schuh, S.M. Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development. Curr. Res. Toxicol. 2021, 2, 399–410. [Google Scholar] [CrossRef]
- Soto, A.M.; Schaeberle, C.; Maier, M.S.; Sonnenschein, C.; Maffini, M.V. Evidence of Absence: Estrogenicity Assessment of a New Food-Contact Coating and the Bisphenol Used in Its Synthesis. Environ. Sci. Technol. 2017, 51, 1718–1726. [Google Scholar] [CrossRef]
- Szafran, A.T.; Stossi, F.; Mancini, M.G.; Walker, C.L.; Mancini, M.A. Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS ONE 2017, 12, e0180141. [Google Scholar] [CrossRef] [PubMed]
- Maffini, M.V.; Canatsey, R.D. An expanded toxicological profile of tetramethyl bisphenol F (TMBPF), a precursor for a new food-contact metal packaging coating. Food Chem. Toxicol. 2020, 135, 110889. [Google Scholar] [CrossRef] [PubMed]
- Harnett, K.G.; Chin, A.; Schuh, S.M. Cytotoxic and apoptotic data of BPA and BPA alternatives TMBPF, BPAF, and BPS in female adult rat and human stem cells. Data Brief 2021, 37, 107183. [Google Scholar] [CrossRef] [PubMed]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Possible Exposure Pathways During Emergencies. Available online: https://www.epa.gov/emergency-response/possible-exposure-pathways-during-emergencies#:~:text=An%20exposure%20pathway%20refers%20to,at%20the%20point%20of%20contact (accessed on 31 July 2025).
- Zhang, N.; Scarsella, J.B.; Hartman, T.G. Identification and Quantitation Studies of Migrants from BPA Alternative Food-Contact Metal Can Coatings. Polymers 2020, 12, 2846. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, M.G.; Li, D.; Chen, Y.; Feng, W.W.; Zhao, T.; Yang, L.Q.; Mao, G.H.; Wu, X.Y. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: Characterization methods, toxic effects and mechanisms. Environ. Res. 2024, 246, 118010. [Google Scholar] [CrossRef]
- Fan, H.; Li, C.; Lv, Y.; Qi, T.; Huang, Y.; Ma, L.; Lan, Y.; Chen, P.; Lou, Z.; Zhou, J. Tetramethyl bisphenol F exposure induces human ovarian granulosa cell senescence and mouse ovarian damage by regulating ESRRB signalling. Ecotoxicol. Environ. Saf. 2025, 292, 117940. [Google Scholar] [CrossRef]
- Park, C.G.; Adnan, K.M.; Cho, H.; Ryu, C.S.; Yoon, J.; Kim, Y.J. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues. Toxicol. Vitr. 2024, 98, 105838. [Google Scholar] [CrossRef]
- Higley, C.M.; Waligora, K.D.; Clore, J.R.; Timmons, S.C.; Kuzmanov, A. Effects of bisphenol A, bisphenol S, and tetramethyl bisphenol F on male fertility in Caenorhabditis elegans. Toxicol. Ind. Health 2025, 41, 11–19, Erratum in Toxicol. Ind. Health 2025, 41, 265. [Google Scholar] [CrossRef] [PubMed]
- Corrigendum to “Effects of BPA, BPS, and TMBPF on male fertility in Caenorhabditis elegans”. Toxicol. Ind. Health 2025, 41, 265. [CrossRef]
- Thambirajah, A.A.; Wade, M.G.; Verreault, J.; Buisine, N.; Alves, V.A.; Langlois, V.S.; Helbing, C.C. Disruption by stealth-Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. Environ. Res. 2022, 203, 111906. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, Y.J. Bisphenols and Thyroid Hormone. Endocrinol. Metab. 2019, 34, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fan, S.; Guo, Y.; Tan, R.; Zhang, J.; Zhang, W.; Pan, B.X.; Kato, N. The effects of perinatal bisphenol A exposure on thyroid hormone homeostasis and glucose metabolism in the prefrontal cortex and hippocampus of rats. Brain Behav. 2019, 9, e01225. [Google Scholar] [CrossRef]
- Wang, Z.; Alderman, M.H.; Asgari, C.; Taylor, H.S. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020, 161, bqaa164. [Google Scholar] [CrossRef]
- Chae, J.; Kim, H.K. Birth cohort effects on maternal and child environmental health: A systematic review. Korean J. Women Health Nurs. 2021, 27, 27–39. [Google Scholar] [CrossRef]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Chamorro-Garcia, R.; Blumberg, B. Transgenerational effects of obesogens and the obesity epidemic. Curr. Opin. Pharmacol. 2014, 19, 153–158. [Google Scholar] [CrossRef]
- Nappi, F.; Barrea, L.; Di Somma, C.; Savanelli, M.C.; Muscogiuri, G.; Orio, F.; Savastano, S. Endocrine Aspects of Environmental “Obesogen” Pollutants. Int. J. Environ. Res. Public Health 2016, 13, 765. [Google Scholar] [CrossRef]
- Cohen, I.C.; Cohenour, E.R.; Harnett, K.G.; Schuh, S.M. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int. J. Mol. Sci. 2021, 22, 5363. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Crosthwait, J.; Sorisky, A.; Atlas, E. Tetra methyl bisphenol F: Another potential obesogen. Int. J. Obes. 2024, 48, 923–933. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, S.M.; Choi, J.; Soung, N.K.; Heo, J.D. Effects of Bisphenol A and Its Alternatives, Bisphenol F and Tetramethyl Bisphenol F on Osteoclast Differentiation. Molecules 2021, 26, 6100. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Seo, I.; Choi, M.H.; Jeong, D. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. Int. J. Mol. Sci. 2018, 19, 3004. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, Y.; Deng, Y.; Li, Y.; Liu, S.; Yang, Y.; Qiu, Y.; Li, B.; Sheng, W.; Liu, J.; et al. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: Mechanisms and potential therapeutic targets. Mol. Med. 2024, 30, 20. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Liu, X.; Huang, W.; Zhu, C.; Xu, Y.; Yang, H.; Bai, J.; Geng, D. Targeting strategies for bone diseases: Signaling pathways and clinical studies. Signal Transduct. Target. Ther. 2023, 8, 202. [Google Scholar] [CrossRef]
- Metruccio, F.; Battistoni, M.; Di Renzo, F.; Bacchetta, R.; Santo, N.; Menegola, E. Teratogenic and neuro-behavioural toxic effects of bisphenol A (BPA) and B (BPB) on development. Reprod. Toxicol. 2024, 123, 108496. [Google Scholar] [CrossRef]
- Crump, D.; Sharin, T.; Chiu, S.; O’Brien, J.M. In Vitro Screening of 21 Bisphenol A Replacement Alternatives: Compared with Bisphenol A, the Majority of Alternatives Are More Cytotoxic and Dysregulate More Genes in Avian Hepatocytes. Environ. Toxicol. Chem. 2021, 40, 2026–2033. [Google Scholar] [CrossRef]
- Arancio, A.L.; Cole, K.D.; Dominguez, A.R.; Cohenour, E.R.; Kadie, J.; Maloney, W.C.; Cilliers, C.; Schuh, S.M. Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17beta-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. Reprod. Toxicol. 2019, 84, 65–74. [Google Scholar] [CrossRef]
- Cunha, Y.G.O.; do Amaral, G.C.B.; Felix, A.A.; Blumberg, B.; Amato, A.A. Early-life exposure to endocrine-disrupting chemicals and autistic traits in childhood and adolescence: A systematic review of epidemiological studies. Front. Endocrinol. 2023, 14, 1184546. [Google Scholar] [CrossRef] [PubMed]
- Shoaff, J.R.; Coull, B.; Weuve, J.; Bellinger, D.C.; Calafat, A.M.; Schantz, S.L.; Korrick, S.A. Association of Exposure to Endocrine-Disrupting Chemicals During Adolescence with Attention-Deficit/Hyperactivity Disorder-Related Behaviors. JAMA Netw. Open 2020, 3, e2015041. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Aschner, M.; Vitalone, A.; Syversen, T.; Soldin, O.P. Developmental neuropathology of environmental agents. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 87–110. [Google Scholar] [CrossRef]
- De Felice, A.; Ricceri, L.; Venerosi, A.; Chiarotti, F.; Calamandrei, G. Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. Toxics 2015, 3, 89–129. [Google Scholar] [CrossRef]
- Liang, M.; Deng, J.; Gu, J.; Yang, J.; Ge, F.; Huang, C.; Wu, W. TMBPF-induced neurotoxicity and oxidative stress in zebrafish larvae: Impacts on central nervous system development and dopamine neurons. Ecotoxicol. Environ. Saf. 2023, 268, 115710. [Google Scholar] [CrossRef]
- Kodanch, S.M.; Mukherjee, S.; Prabhu, N.B.; Kabekkodu, S.P.; Bhat, S.K.; Rai, P.S. Altered mitochondrial homeostasis on bisphenol-A exposure and its association in developing polycystic ovary syndrome: A comprehensive review. Reprod. Toxicol. 2024, 130, 108700. [Google Scholar] [CrossRef]
- Costa, H.E.; Cairrao, E. Effect of bisphenol A on the neurological system: A review update. Arch. Toxicol. 2024, 98, 1–73. [Google Scholar] [CrossRef]
- d’Amora, M.; Giordani, S. The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front. Neurosci. 2018, 12, 976. [Google Scholar] [CrossRef]
- Kato, L.S.; Conte-Junior, C.A. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef]
- Mallen, T.R.; Abston, K.D.; Parizek, N.J.; Negley, J.; Shores, K.S.; Canatsey, R.D.; Dubail, S.; Maier, M.S.; Maffini, M.V. Characterization of a new polymeric food contact coating with emphasis on the chemical analysis and safety assessment of non-intentionally added substances (NIAS). Food Chem. Toxicol. 2023, 173, 113635. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Q.; Liu, X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023, 14, 762–775. [Google Scholar] [CrossRef]
- Srednicka, P.; Roszko, M.; Emanowicz, P.; Wojcicki, M.; Popowski, D.; Kanabus, J.; Juszczuk-Kubiak, E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. Sci. Total Environ. 2024, 956, 177323. [Google Scholar] [CrossRef]
- Perez-Reytor, D.; Puebla, C.; Karahanian, E.; Garcia, K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front. Physiol. 2021, 12, 650313. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.C.; Suarez, C.; Cheang, S.E.; Couture, G.; Goodson, M.L.; Barboza, M.; Kalanetra, K.M.; Masarweh, C.F.; Mills, D.A.; Raybould, H.E.; et al. Quantifying Gut Microbial Short-Chain Fatty Acids and Their Isotopomers in Mechanistic Studies Using a Rapid, Readily Expandable LC-MS Platform. Anal. Chem. 2024, 96, 2415–2424. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Agency. Can Coatings: Safety Assessment. Available online: https://www.food.gov.uk/our-work/can-coatings-safety-assessment (accessed on 3 August 2025).
- California State Assembly. Assembly Bill No. 1148: Updated Amendments (April 2025); California State Assembly: Sacramento, CA, USA, 2025. [Google Scholar]
- Keller and Heckman LLP. China Approves New and Expanded Usage for Food-Contact Materials. Available online: https://www.packaginglaw.com/news/china-approves-new-and-expanded-usage-food-contact-materials-0 (accessed on 15 September 2025).
- Pangarkar, T. Tetramethyl Bisphenol F Market Growth Projected at 5.3% CAGR. Available online: https://www.news.market.us/tetramethyl-bisphenol-f-market-news/ (accessed on 3 August 2025).
- Jin, Z.Y.; Liu, C.K.; Hong, Y.Q.; Liang, Y.X.; Liu, L.; Yang, Z.M. BHPF exposure impairs mouse and human decidualization. Environ. Pollut. 2022, 304, 119222. [Google Scholar] [CrossRef]
- Kang, J.; Kang, H.; Choi, Y.H. Changes of urinary bisphenol A and alternatives in Korea 2015–2020 and environmental disparities by socioeconomic status. Environ. Res. 2025, 285, 122307. [Google Scholar] [CrossRef]
- Hyun, M.; Rathor, L.; Kim, H.-J.; McElroy, T.; Hwang, K.H.; Wohlgemuth, S.; Curry, S.; Xiao, R.; Leeuwenburgh, C.; Heo, J.-D.; et al. Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021, 461, 152924. [Google Scholar] [CrossRef]
- Cousins, I.T.; Ng, C.A.; Wang, Z.; Scheringer, M. Why is high persistence alone a major cause of concern? Environ. Sci. Process Impacts 2019, 21, 781–792. [Google Scholar] [CrossRef]
- National Library of Medicine. PubChem Compound Summary for CID 6623, Bisphenol A. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6623#section=Experimental-Properties (accessed on 30 July 2025).
- National Library of Medicine. PubChem Compound Summary for CID 79345, 4,4′-Methylenebis(2,6-dimethylphenol). Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Methylenebis_2_6-dimethylphenol (accessed on 31 July 2025).
Application Area | Traditional BPA Uses | Current Alternative Materials |
---|---|---|
Food and beverage packaging [3] | Epoxy-based can coatings, polycarbonate containers | TMBPF-based epoxy (e.g., valPure V70), polyester 1 resins, acrylic 2 resins |
Baby bottles and infant products [4] | Polycarbonate plastics | Tritan™ copolyester, polypropylene (PP) 3, polyethylene (PE) 4, glass, silicone 5 |
Thermal paper receipts [5] | BPA-based thermal developing agents | Bisphenol S (BPS) 6, Bisphenol F (BPF) 7, Pergafast® 2018 |
Medical equipment and devices [6] | Polycarbonate medical components, dental composites | BPS, BPF, ceramic fillings, and glass ionomer fillings |
Electronic components [7] | Flame-retardant polycarbonates, epoxy resins for electronic boards | DOPO 8 (9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), Organophosphates, Metal hydroxides, Lignin-based flame retardants |
Automotive and transportation, Construction materials [8,9,10,11] | Polycarbonate vehicle parts, epoxy-based adhesives, protective coatings | Lignin 9, Cashew nutshell liquid (CNSL) 10, Isosorbide 11, Resorcinol diglycidyl ether (RE) 12 |
Toxicity | Test System | Chemical Treatment | Main Findings | Reference |
---|---|---|---|---|
Systemic | SD Rats (8 weeks) | 100–1000 mg/kg/day (male), 100–750 mg/kg/day (female) for 90 days, followed by 28 days of recovery | Repeated dose 90-day oral toxicity study in rats following OECD TG 408, with NOAEL of 750 mg/kg-bw/day for females and 1000 mg/kg-bw/day for males. | Maffini et al., 2020 [17] |
Cytotoxic | rASCs and hMSCs | 0.01–50 uM (0.01% ethanol), 20–300 min | Strong cytotoxicity at low and high doses; LC50 0.88 µM in rASCs and 0.06 µM in hMSCs; caspase-6 activation; overall more toxic than BPA. | Harnett et al., 2021 [18] |
Estrogenic | LC-TOF-MS and LC-MS/MS (negative-mode ESI) | Migration extracts of TMBPF-based polymeric coating | TMBPF migration was detected below the method’s reporting limit (~0.01–0.06 ppb) following extraction in food simulants, indicating negligible migration into food. | Soto et al., 2017 [15] |
MCF7 cells (ER transactivated) | 0.1–2.5 μM for 19–24 h (Transactivation Assay) 10 pM–100 μM for 6 d (E-SCREEN Bioassay) | No estrogen agonist or antagonist activity observed in the OECD TG 455 stably transfected transactivation assay, and no estrogenic activity detected in the E-SCREEN assay. | ||
SD rats (female) | Uterotrophic assay: 0.2–1000 mg/kg/day (PND19-21) Pubertal assay: 200–600 mg/kg/day (PND22-42) | No estrogenic activity in the uterotrophic assay and did not alter puberty in male and female rats or mammary gland development in female rats. | ||
GFP-ERα/β:PRL-HeLa cell MCF-7 ERE-MAR cells | HeLa: 50 pM–5 μM TMBPF/-DGE/-ER for 1 or 24 h ± 10 nM E2 MCF-7: 2 or 5 μM TMBPF/-DGE/-ER ±10 nM E2 for 24 h. | TMBPF exhibited anti-estrogenic activity, whereas its derivatives, DGE and ER, showed no estrogenic activity. | Szafran et al., 2017 [16] | |
Human CYP19 + P450 reductase Supersomes | 10−4 to 10−10 M for 15 min with the same concentrations of Formestane | No aromatase inhibition observed, conducted according to EPA OCSPP 890.1200. | Maffini et al., 2020 [17] | |
H295R cells | 0.0001–100 μM for 48 h | Induced estradiol synthesis at near-cytotoxic concentration (10 μM), conducted according to OECD TG 456. | ||
CD-1 mice (8 weeks) KGN cells | 50 or 200 μg/kg/day from GD7-PND21 0.01–100 μM for 48 h | Increased E2, FSH, and LH and induced ovarian fibrosis in offspring Elevated oxidative stress and triggered ERRB–p21–dependent cellular senescence. | Fan et al., 2025 [23] | |
Androgenic | 2PB-mCherry-NLS:LnCaP cells | 50 pM–5 μM TMBPF/-DGE/-ER for 1 or 24 h ± 10 nM DHT | TMBPF exhibited anti-estrogenic and anti-androgenic activity, whereas its derivatives, DGE and ER, showed no estrogenic or androgenic activity. | Szafran et al., 2017 [16] |
Castrated Rats H295R cells | 100–1000 mg/kg/day for 10 days 0.0001–100 μM for 48 h | No androgenic activity and weak anti-androgenic activity up to 1000 mg/kg-bw/day, as assessed by the Hershberger assay (OECD TG 441). Weak induction of testosterone, differing from the testosterone reduction observed, as assessed by OECD TG 456 steroidogenesis assay. | Maffini et al., 2020 [17] | |
Yeast-based AR reporter assay In silico docking | 0.01–10 μM for 48 h Molecular simulation of AR binding | Strong anti-androgenic activity about 57 times higher than BPA, with binding to the androgen receptor at Gln711 and Thr877. | Park et al., 2024 [24] | |
C. elegans | 0.5 mM for 48 h | Reduced sperm size and embryo survival, without decreases in sperm activity or offspring size; overall weaker toxicity than BPA. | Higley et al., 2024 [25,26] | |
Thyroidal | Zebrafish larvae | 0.05–500 μg/L (0.1% DMSO) for 14 days (from 2 hpf) | Elevated T3 and suppressed GH, with reduced growth, hatchability, and survival, and disruption of the HPT and GH/IGF axes. | Kim et al., 2022 [12] |
Obesogenic | hASCs | 0.01 and 0.1 μM with/without 10 μM E2 | Inhibited adipogenesis, with concomitant cytotoxicity and apoptosis induction. | Cohen et al., 2021 [35] |
3T3-L1 cells | 0.01–20 μM (0.1% DMSO) | Showed increased cytotoxicity and, in 3T3-L1 cells, promoted lipid accumulation and PPARγ activity. | Singh et al., 2024 [36] | |
Skeletal | RAW264.7 (osteoclast differentiation) | 0.1, 1, and 5 µM for 72 h with RANKL | Enhanced RANKL-induced osteoclast differentiation, with increased TRAP-positive cells, upregulation of Nfatc1 and CtsK, and activation of MAPK signaling. | Kim et al., 2021 [37] |
Teratogenic and developmental | Chicken embryo | 0.003 to 30 μM (E5-12) | Increased mortality, reduced body size, facial and gastrointestinal malformations, and greater toxicity than BPA (LC50 1.18 µM vs. 2.92 µM). | Harnett et al., 2021 [14] |
Developmental neuronal | Zebrafish embryos and larvae | 0.25–8 mg/L for 6d (from 4hpf) | Reduced hatch rate, spinal deformities, reduced swimming activity; impaired CNS development with increased ROS; effects reversed by NAC. | Liang et al., 2023 [48] |
NIAS-related genotoxicity | LC-TOF-MS Integrated in vitro genotoxicity test battery | Migration test extract of epoxy lining + Ames (OECD TG471), micronucleus (OECD TG487) and Migratox assay | No genotoxicity was detected in validated assays, while epoxide-containing NIAS were identified and prioritized. | Mallen et al., 2023 [53] |
Gut microbiota disruption | Human gut microbiota | 1 mM for 48 h exposure (anaerobic cultivation) | Less impact on gut microbiota diversity and SCFA production than other bisphenols, while microbial adsorption reduced estrogenicity; meanwhile, the gut microbiota culture supernatant decreased Caco-2 cell viability. | Średnicka et al., 2024 [56] |
Toxicity | Tested Assay and Results (BPA vs. TMBPF) |
---|---|
Estrogenic and anti-estrogenic | Fluorescent reporter array in GFP-ERα/ERβ PRL-HeLa [16]
|
Androgenic and anti-androgenic | Integrated probasin-mCherry-NLS reporter assay [16]
|
Androgenic and anti-androgenic | Yeast-based reporter assay [24]
|
Male fertility | Fertility and embryonic lethality of C.elegans [25,26]
|
Cytotoxic | Cytotoxicity in rat adipose-derived stem cell (rASCs) and human ASCs (hASCs) [18]
|
Obesogenic | Analyze mean ratio of lipid vacuoles to cell number in lipid differentiated: Lipid vacuoles/Cell number [35]
|
Obesogenic | Lipid accumulation in differentiating 3T3-L1 cells [36]
|
Developmental | Development, body size, tissue morphology, and reproduction of C.elegans [66]
|
Skeletal | Activation of Osteoclast Differentiation in RAS264.7 cell: Osteoclast area [37]
|
Teratogenic | Chicken embryo survival (LC50) [14]
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.; Cui, X.-S.; Jeung, E.-B. Tetramethyl Bisphenol F: Organ- and System-Specific Toxicity, Current Status, and Perspectives. Int. J. Mol. Sci. 2025, 26, 9280. https://doi.org/10.3390/ijms26199280
Hwang I, Cui X-S, Jeung E-B. Tetramethyl Bisphenol F: Organ- and System-Specific Toxicity, Current Status, and Perspectives. International Journal of Molecular Sciences. 2025; 26(19):9280. https://doi.org/10.3390/ijms26199280
Chicago/Turabian StyleHwang, Inho, Xiang-Shun Cui, and Eui-Bae Jeung. 2025. "Tetramethyl Bisphenol F: Organ- and System-Specific Toxicity, Current Status, and Perspectives" International Journal of Molecular Sciences 26, no. 19: 9280. https://doi.org/10.3390/ijms26199280
APA StyleHwang, I., Cui, X.-S., & Jeung, E.-B. (2025). Tetramethyl Bisphenol F: Organ- and System-Specific Toxicity, Current Status, and Perspectives. International Journal of Molecular Sciences, 26(19), 9280. https://doi.org/10.3390/ijms26199280