Systemic Inflammation in Hip Fracture and Osteoarthritis: Insights into Pathways of Immunoporosis
Abstract
1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Inflammatory Markers Between Groups
2.3. Correlation Between Inflammatory Markers, BMD, and FRAX
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activities of Daily Living |
BMD | Bone Mineral Density |
BMI | Body Mass Index |
CAD–BMD | Hip bone mineral density (total hip) |
CALLY | CRP–Albumin–Lymphocyte Index |
CIRS–G | Cumulative Illness Rating Scale–Geriatrics |
CRP | C-reactive protein |
DXA | Dual-energy X-ray absorptiometry |
FAC | Functional Ambulation Category |
FRAX–Hip | 10-year probability of a hip fracture |
FRAX–Total | 10-year probability of a major osteoporotic fracture |
IL-17 | Interleukin-17 |
IL-6 | Interleukin-6 |
LUM–BMD | Lumbar spine bone mineral density |
MNA | Mini Nutritional Assessment |
NFATc1 | Nuclear factor of activated T-cells 1 |
NHANES | National Health and Nutrition Examination Survey |
NLR | Neutrophil-to-Lymphocyte Ratio |
OA | Osteoarthritis |
OP | Osteoporosis |
OR | Odds Ratio |
PCA | Principal Component Analysis |
RDW | Red Cell Distribution Width |
SII | Systemic Immune-Inflammation Index |
SPMSQ | Short Portable Mental Status Questionnaire |
TNF | Tumor Necrosis Factor |
TNF-α | Tumor Necrosis Factor-alpha |
WRIST–BMD | Distal radius (wrist) bone mineral density |
References
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.V.; Harvey, N.C.; Javaid, M.K.; et al. Fragility Fractures in Europe: Burden, Management and Opportunities. Arch. Osteoporos. 2020, 15, 59. [Google Scholar] [CrossRef]
- Dhiman, P.; Andersen, S.; Vestergaard, P.; Masud, T.; Qureshi, N. Does Bone Mineral Density Improve the Predictive Accuracy of Fracture Risk Assessment? A Prospective Cohort Study in Northern Denmark. BMJ Open 2018, 8, e018898. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, Y.; Gao, Y.; Zhang, Z.; Qin, L.; Song, J.; Wang, H.; Wu, I.X. Prediction Models for Osteoporotic Fractures Risk: A Systematic Review and Critical Appraisal. Aging Dis. 2022, 13, 1215–1238. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zhang, C.; Lu, C.; Mo, C.; Zeng, J.; Yao, M.; Jia, B.; Liu, Z.; Yuan, P.; Xu, S. Age-Related Bone Diseases: Role of Inflammaging. J. Autoimmun. 2024, 143, 103169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, S.; Luo, Y.; Xiao, W.; Huang, C.; Li, Y. Osteoimmunology and Aging: Mechanisms, Implications, and Therapeutic Perspectives. Ageing Res. Rev. 2025, 111, 102822. [Google Scholar] [CrossRef]
- Zhou, P.; Zheng, T.; Zhao, B. Cytokine-Mediated Immunomodulation of Osteoclastogenesis. Bone 2022, 164, 116540. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, R.; Rong, X.; Zhu, S.; Cui, Y.; Liu, H.; Li, M. Immunoporosis: Role of Immune System in the Pathophysiology of Different Types of Osteoporosis. Front. Endocrinol. 2022, 13, 965258. [Google Scholar] [CrossRef]
- Bai, B.; Xie, X.; Yue, Y.; Cui, J.; Xie, F.; Yao, F. Association between Immune-Inflammatory Index and Osteoporosis: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2025, 30, 632. [Google Scholar] [CrossRef]
- Little-Letsinger, S.E. Serum High Sensitivity C-Reactive Protein Poorly Predicts Bone Mineral Density: A NHANES 2017–2020 Analysis. PLoS ONE 2023, 18, e0288212. [Google Scholar] [CrossRef]
- Hoong, C.W.S.; Saul, D.; Khosla, S.; Sfeir, J.G. Advances in the Management of Osteoporosis. BMJ 2025, 390, e081250. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Khanzadeh, M.; Nabipoorashrafi, S.A.; Seyedi, S.A.; Yaghoobpoor, S.; Brismée, J.-M.; Lucke-Wold, B.; Ebadi, M.; Ghaedi, A.; Kumar, V.S.; et al. Association of Neutrophil to Lymphocyte Ratio with Bone Mineral Density in Post-Menopausal Women: A Systematic Review and Meta-Analysis. BMC Women’s Health 2024, 24, 169. [Google Scholar] [CrossRef]
- Panebianco, P.; Testa, G.; Barbagallo, G.; Costarella, L.; Caldaci, A.; Condorelli, S.; Sapienza, M.; Pavone, V. The Correlations of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio with Bone Mineral Density in Postmenopausal Women: A Cross-Sectional Study. Osteology 2025, 5, 14. [Google Scholar] [CrossRef]
- Zhang, S.; Ni, W. High Systemic Immune-inflammation Index Is Relevant to Osteoporosis among Middle-aged and Older People: A Cross-sectional Study. Immun. Inflam. Dis. 2023, 11, e992. [Google Scholar] [CrossRef]
- Kim, K.M.; Lui, L.-Y.; Cauley, J.A.; Ensrud, K.E.; Orwoll, E.S.; Schousboe, J.T.; Cummings, S.R.; The Osteoporotic Fractures in Men (MrOS) Study Research Group. Red Cell Distribution Width Is a Risk Factor for Hip Fracture in Elderly Men Without Anemia. J. Bone Miner. Res. 2020, 35, 869–874. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Y.; Zeng, J.; Luo, G.; Liao, P.; Chen, Q.; Zhong, H.; Liang, S.; Zhou, C.; Yang, B.; et al. The C-Reactive Protein (CRP)-Albumin-Lymphocyte (CALLY) Index Exhibits an L-Shaped Association with All-Cause Mortality in Rheumatoid Arthritis Patients: A Retrospective Cohort Study. BMC Rheumatol. 2025, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, N.; Laslop, A.; Rizzoli, R.; Al-Daghri, N.; Alokail, M.; Balkowiec-Iskra, E.; Beaudart, C.; Bruyère, O.; Bemden, A.B.; Burlet, N.; et al. Treatment of Osteoporosis and Osteoarthritis in the Oldest Old. Drugs 2025, 85, 343–360. [Google Scholar] [CrossRef]
- Bultink, I.E.M.; Lems, W.F. Osteoarthritis and Osteoporosis: What Is the Overlap? Curr. Rheumatol. Rep. 2013, 15, 328. [Google Scholar] [CrossRef] [PubMed]
- Maluta, T.; Toso, G.; Negri, S.; Samaila, E.M.; Magnan, B. Correlation between Hip Osteoarthritis and Proximal Femoral Fracture Site: Could It Be Protective for Intracapsular Neck Fractures? A Retrospective Study on 320 Cases. Osteoporos. Int. 2019, 30, 1591–1596. [Google Scholar] [CrossRef]
- Feng, W.; Guo, J.; Li, M. RANKL-Independent Modulation of Osteoclastogenesis. J. Oral Biosci. 2019, 61, 16–21. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, Ł.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1β and Age-Related Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef]
- Jin, X.; Beguerie, J.R.; Zhang, W.; Blizzard, L.; Otahal, P.; Jones, G.; Ding, C. Circulating C Reactive Protein in Osteoarthritis: A Systematic Review and Meta-Analysis. Ann. Rheum. Dis. 2015, 74, 703–710. [Google Scholar] [CrossRef]
- Tang, Y.; Fung, E.; Xu, A.; Lan, H. C-reactive Protein and Ageing. Clin. Exp. Pharmacol. Physiol. 2017, 44, 9–14. [Google Scholar] [CrossRef]
- Perri, G.; French, C.; Agostinis-Sobrinho, C.; Anand, A.; Antarianto, R.D.; Arai, Y.; Baur, J.A.; Cauli, O.; Clivaz-Duc, M.; Colloca, G.; et al. An Expert Consensus Statement on Biomarkers of Aging for Use in Intervention Studies. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2025, 80, glae297. [Google Scholar] [CrossRef] [PubMed]
- Cedeno-Veloz, B.A.; Lozano-Vicario, L.; Zambom-Ferraresi, F.; Fernández-Irigoyen, J.; Santamaría, E.; Rodríguez-García, A.; Romero-Ortuno, R.; Mondragon-Rubio, J.; Ruiz-Ruiz, J.; Ramírez-Vélez, R.; et al. Effect of Immunology Biomarkers Associated with Hip Fracture and Fracture Risk in Older Adults. Immun. Ageing I A 2023, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, X.; Zheng, S.; Lai, W.; Chen, C.; He, X.; Gong, K.; He, K.; Hu, S.; Zheng, J.; et al. Association of Novel Inflammatory Markers with Osteoporosis Index in Older Spine Osteoporosis Patients: NHANES 1999–2018 Cross-Sectional Study. Sci. Rep. 2025, 15, 9128. [Google Scholar] [CrossRef]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in Chronic Inflammatory Diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Storey, R. The Role of Platelets in Inflammation. Thromb. Haemost. 2015, 114, 449–458. [Google Scholar] [CrossRef]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture Healing: Mechanisms and Interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef]
- Portal-Núñez, S.; de la Fuente, M.; Díez, A.; Esbrit, P. Oxidative Stress as a Possible Therapeutic Target for Osteoporosis Associated with Aging. Rev. Osteoporos. Y Metab. Miner. 2016, 8, 138–145. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Ahmed, F.; Ali, R.; Ghoneim, M.M.; Alshehri, S.; Najmi, A.K.; Ahmad, S.; Ahmad, M.Z.; Ahmad, J.; Khan, M.A. Immunology of Osteoporosis: Relevance of Inflammatory Targets for the Development of Novel Interventions. Immunotherapy 2022, 14, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, S.; Chen, X.; Zhang, T.; Ni, Z.; Ji, G.; Wang, F. Causal Associations between Circulating Immune Cells and Osteoarthritis: A Bidirectional Mendelian Randomization Study. Int. Immunopharmacol. 2024, 142, 113156. [Google Scholar] [CrossRef]
- Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-Grade Inflammation as a Key Mediator of the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 580–592. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Yang, T.-I.; Huang, S.-W.; Kuo, Y.-J.; Chen, Y.-P. Associations of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio with Osteoporosis: A Meta-Analysis. Diagnostics 2022, 12, 2968. [Google Scholar] [CrossRef]
- Biswas, M.; Suvarna, R.; Krishnan, S.V.; Devasia, T.; Shenoy Belle, V.; Prabhu, K. The Mechanistic Role of Neutrophil Lymphocyte Ratio Perturbations in the Leading Non Communicable Lifestyle Diseases. F1000Res 2022, 11, 960. [Google Scholar] [CrossRef]
- Dainese, P.; Wyngaert, K.V.; De Mits, S.; Wittoek, R.; Van Ginckel, A.; Calders, P. Association between Knee Inflammation and Knee Pain in Patients with Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2022, 30, 516–534. [Google Scholar] [CrossRef]
- Salimi, M.; Khanzadeh, S.; Lucke-Wold, B.; Ghaedi, A.; Stone, A.V. Role of Neutrophil to Lymphocyte Ratio in Osteoarthritis: A Systematic Review and Meta-Analysis. World J. Orthop. 2025, 16, 106145. [Google Scholar] [CrossRef] [PubMed]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. IJMS 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ghimire, A.; Liesveld, J. Marrow Failure and Aging: The Role of “Inflammaging”. Best Pract. Res. Clin. Haematol. 2021, 34, 101283. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Wang, P.; Dai, P.; Xue, H.; Zhang, L.; Xu, J.; Gao, K. Association of the Red Blood Cell Distribution Width with Osteoarthritis Risk: A Cross-Sectional Study from NHANES 2009–2018. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Demir Cendek, B.; Bayraktar, B.; Sapmaz, M.A.; Yıldırım, A.E.; Can Ibanoglu, M.; Engin Ustun, Y. The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study. JCM 2024, 13, 7741. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.R.; Suriyaarachchi, P.; Gomez, F.; Curcio, C.L.; Boersma, D.; Gunawardene, P.; Demontiero, O.; Duque, G.; Muir, S.W.; Montero-Odasso, M.; et al. Phenotype of Osteosarcopenia in Older Individuals With a History of Falling. J. Am. Med. Dir. Assoc. 2015, 16, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Zhang, K. CRP-Albumin-Lymphocyte Index (CALLYI) as a Risk-Predicting Biomarker in Association with Osteoarthritis. Arthritis Res. Ther. 2025, 27, 57. [Google Scholar] [CrossRef] [PubMed]
- Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C.S. The Effect of Inflammation on Bone. Front. Physiol. 2021, 11, 511799. [Google Scholar] [CrossRef]
- Cataltepe, E.; Ceker, E.; Fadiloglu, A.; Gungor, F.; Karakurt, N.; Ulger, Z.; Varan, H.D. Association between the Systemic Immune-Inflammation Index and Sarcopenia in Older Adults: A Cross-Sectional Study. BMC Geriatr. 2025, 25, 28. [Google Scholar] [CrossRef]
- Xu, Y.S.; Wang, M.M.; Chen, D.; Jiang, X.; Xiong, Z.F. Inflammatory Biomarkers in Older Adults with Frailty: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Aging Clin. Exp. Res. 2022, 34, 971–987. [Google Scholar] [CrossRef]
- Pan, W.-G.; Chou, Y.-C.; Wu, J.-L.; Yeh, T.-T. Impact of Hematologic Inflammatory Markers on the Prognosis of Geriatric Hip Fracture: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2024, 29, 609. [Google Scholar] [CrossRef]
- Castañeda, S.; Garcés-Puentes, M.; Bernad Pineda, M. Fisiopatología de La Osteoporosis En Las Enfermedades Articulares Inflamatorias Crónicas. Rev. Osteoporos. Metab. Min. 2021, 13, 32–38. [Google Scholar] [CrossRef]
- Di, D.; Zhou, H.; Cui, Z.; Zhang, J.; Liu, Q.; Yuan, T.; Zhou, T.; Luo, X.; Ling, D.; Wang, Q. Frailty Phenotype as Mediator between Systemic Inflammation and Osteoporosis and Fracture Risks: A Prospective Study. J. Cachexia Sarcopenia Muscle 2024, 15, 897–906. [Google Scholar] [CrossRef]
- Cedeno-Veloz, B.; Martínez-Velilla, N. Importance of Biomarkers in Osteoporosis: Advances in the Geroscience of the Older Adult. Rev. Esp. Geriatr. Y Gerontol. 2023, 58, 101390. [Google Scholar] [CrossRef]
- Geusens, P.P.; van den Bergh, J.P. Osteoporosis and Osteoarthritis: Shared Mechanisms and Epidemiology. Curr. Opin. Rheumatol. 2016, 28, 97–103. [Google Scholar] [CrossRef]
- Livshits, G.; Kalinkovich, A. Targeting Chronic Inflammation as a Potential Adjuvant Therapy for Osteoporosis. Life Sci. 2022, 306, 120847. [Google Scholar] [CrossRef] [PubMed]
- Amani, F.; Amanzadeh, M.; Hamedan, M.; Amani, P. Diagnostic Accuracy of Deep Learning in Prediction of Osteoporosis: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2024, 25, 991. [Google Scholar] [CrossRef]
- Altman, R.; Alarcón, G.; Appelrouth, D.; Bloch, D.; Borenstein, D.; Brandt, K.; Brown, C.; Cooke, T.D.; Daniel, W.; Feldman, D.; et al. The American College of Rheumatology Criteria for the Classification and Reporting of Osteoarthritis of the Hip. Arthritis Rheum. 1991, 34, 505–514. [Google Scholar] [CrossRef]
- Lupsa, B.C.; Insogna, K. Bone Health and Osteoporosis. Endocrinol. Metab. Clin. N. Am. 2015, 44, 517–530. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Harvey, N.C.; McCloskey, E.V. A Brief History of FRAX. Arch. Osteoporos. 2018, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Metsalu, T.; Vilo, J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
Fracture Group (n = 20) | Non-Fracture (OA) Group (n = 20) | p Value * | |
---|---|---|---|
Demographic | |||
Age, years | 87.25 (6.73) | 75.20 (4.15) | 0.026 |
Sex (men/female), n (%) | 4 (20)/16 (80) | 7 (35)/13 (65) | 0.480 |
BMI (kg/m2) | 24.91 (2.74) | 29.87 (5.02) | 0.003 |
Clinical status | |||
CIRS-G score | 12.7 (4.81) | 10.2 (3.17) | 0.060 |
Polypharmacy score | 7.25 (3.09) | 5.3 (3) | 0.534 |
Osteoporosis (n, %) | 4 (20%) | 6 (30%) | 0.716 |
Functional status | |||
Barthel Index (ADL), score | 67.5 (30.41) | 95.75 (7.48) | <0.001 |
Functional Ambulation Category (n, %) | |||
FAC 0 to 1 | 3 (15%) | 0 (0) | 0.032 |
FAC 4 to 5 | 17 (85%) | 20 (100%) | |
Frailty score | 3.05 (1.47) | 1.3 (1.42) | <0.001 |
Hand grip strength (kg) | 11.3 (6.24) | 23.95 (8.6) | <0.001 |
MNA score | 18.83 (6.08) | 28.03 (2.33) | <0.001 |
Pfeiffer’s SPMSQ | 5.05 (4.05) | 0.5 (0.224) | <0.001 |
Depression score (n, %) | 6 (42.9%) | 2 (10%) | 0.026 |
FRAX major score | 13.4 (6.99) | 6.12 (5.29) | <0.001 |
FRAX hip score | 6.29 (3.79) | 2.58 (2.94) | <0.001 |
Bone mineral density and body composition | |||
BMD—total hip | 0.735 (0.079) | 0.976 (0.177) | 0.001 |
BMD—lumbar spine | 0.981 (0.18) | 1.239 (0.247) | 0.007 |
BMD—wrist | 0.679 (0.127) | 0.812 (0.37) | 0.281 |
Fracture (Mean, SD) | Non-Fracture ((OA) Mean, SD) | p-Value | |
---|---|---|---|
RDW | 14.66 (1.47) | 26.67 (38.17) | 0.18 |
CRP | 66.17 (70.34) | 3.80 (3.97) | <0.01 |
NLR | 6.76 (4.84) | 4.80 (2.34) | 0.11 |
SII | 1399.71 (1143.43) | 751.41 (400.81) | 0.025 |
CALLY | 0.97 (1.94) | 4.52 (9.92) | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedeno-Veloz, B.A.; Rodriguez-Garcia, A.M.; Zambom-Ferraresi, F.; Domínguez-Mendoza, S.; Guruceaga-Eguillor, I.; Ruiz-Izquieta, V.; Lasarte, J.J.; Martinez-Velilla, N. Systemic Inflammation in Hip Fracture and Osteoarthritis: Insights into Pathways of Immunoporosis. Int. J. Mol. Sci. 2025, 26, 9138. https://doi.org/10.3390/ijms26189138
Cedeno-Veloz BA, Rodriguez-Garcia AM, Zambom-Ferraresi F, Domínguez-Mendoza S, Guruceaga-Eguillor I, Ruiz-Izquieta V, Lasarte JJ, Martinez-Velilla N. Systemic Inflammation in Hip Fracture and Osteoarthritis: Insights into Pathways of Immunoporosis. International Journal of Molecular Sciences. 2025; 26(18):9138. https://doi.org/10.3390/ijms26189138
Chicago/Turabian StyleCedeno-Veloz, Bernardo Abel, Alba María Rodriguez-Garcia, Fabricio Zambom-Ferraresi, Soledad Domínguez-Mendoza, Irene Guruceaga-Eguillor, Virginia Ruiz-Izquieta, Juan Jose Lasarte, and Nicolás Martinez-Velilla. 2025. "Systemic Inflammation in Hip Fracture and Osteoarthritis: Insights into Pathways of Immunoporosis" International Journal of Molecular Sciences 26, no. 18: 9138. https://doi.org/10.3390/ijms26189138
APA StyleCedeno-Veloz, B. A., Rodriguez-Garcia, A. M., Zambom-Ferraresi, F., Domínguez-Mendoza, S., Guruceaga-Eguillor, I., Ruiz-Izquieta, V., Lasarte, J. J., & Martinez-Velilla, N. (2025). Systemic Inflammation in Hip Fracture and Osteoarthritis: Insights into Pathways of Immunoporosis. International Journal of Molecular Sciences, 26(18), 9138. https://doi.org/10.3390/ijms26189138