Exploring Oxidative Stress in Different Endometriosis Phenoptypes: Insights from Ovarian and Systemic Perspectives by the Study of SIRT3
Abstract
1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Pre-IVF Cycle Treatments
2.3. Outcomes of IVF Cycles
2.4. Results of Oxido-Reduction Markers
2.5. Oxidative Stress Regulator Results
3. Discussion
Strengths and Limitations
- Despite its limitations, to our knowledge, this is the first study comparing oxidative stress markers and regulators across different endometriosis phenotypes in infertile patients close and far from the oocyte, and in both cellular and liquid samples.
- The study successfully identified an elevation of SIRT3 in PBMCs in patients with advanced endometriosis who had undergone surgical intervention.
- The absence of a control group limits the ability to make direct comparisons and draws attention to the need for caution in interpreting and generalizing the findings.
- The small sample size is a significant limitation that may impact the statistical power and generalizability of the study results, emphasizing the importance of larger cohorts in future investigations.
4. Materials and Methods
4.1. Sample Preparation and Analyses (Figure 4)
4.2. Criteria for Deciding the Quality of Embryo
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, S.; Bergqvist, A.; Chapron, C.; D’Hooghe, T.; Dunselman, G.; Greb, R.; Hummelshoj, L.; Prentice, A.; Saridogan, E.; Koninckx, P.; et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum. Reprod. 2005, 20, 2698–2704. [Google Scholar] [CrossRef]
- Corte, L.D.; Di Filippo, C.; Gabrielli, O.; Reppuccia, S.; La Rosa, V.L.; Ragusa, R.; Fichera, M.; Commodari, E.; Bifulco, G.; Giampaolino, P. The burden of endometriosis on women’s lifespan: A narrative overview on quality of life and psychosocial wellbeing. Int. J. Environ. Res. Public Health 2020, 17, 4683. [Google Scholar] [CrossRef]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef]
- Tomassetti, C.; D’Hooghe, T. Endometriosis and infertility: Insights into the causal link and management strategies. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 51, 25–33. [Google Scholar] [CrossRef]
- Fiscus, J.; Fraison, É.; Renault, L.; Salle, B.; Panthu, B.; Labrune, E. Metabolic signature of follicular fluid to understand infertility-related diseases: A narrative review. Reprod. Biomed. Online 2023, 48, 103762. [Google Scholar] [CrossRef]
- Donnez, J.; Binda, M.M.; Donnez, O.; Dolmans, M.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil. Steril. 2016, 106, 1011–1017. [Google Scholar] [CrossRef]
- Cacciottola, L.; Donnez, J.; Dolmans, M.M. Can endometriosis-related oxidative stress pave the way for new treatment targets? Int. J. Mol. Sci. 2021, 22, 7138. [Google Scholar] [CrossRef]
- Tatone, C.; di Emidio, G.; Barbonetti, A.; Carta, G.; Luciano, A.M.; Falone, S.; Amicarelli, F. Sirtuins in gamete biology and reproductive physiology: Emerging roles and therapeutic potential in female and male infertility. Hum. Reprod. Update 2018, 24, 267–289. [Google Scholar] [CrossRef] [PubMed]
- Kaleler, İ.; Acikgoz, A.S.; Gezer, A.; Uslu, E. A potential role of Sirtuin3 and its target enzyme activities in patients with ovarian endometrioma. Gynecol. Endocrinol. 2021, 37, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Teasley, H.E.; Beesley, A.; Kim, T.H.; Risinger, J.; Young, S.L.; Jeong, J.W.; Schammel, D.P.; Lessey, B.A.; Elder, J.W.; Puls, L. Differential Expression of KRAS and SIRT1 in Ovarian Cancers with and Without Endometriosis. Reprod. Sci. 2020, 27, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Kim, T.H.; Fazleabas, A.T.; Palomino, W.A.; Ahn, S.H.; Tayade, C.; Schammel, D.P.; Young, S.L.; Jeong, J.W.; Lessey, B.A. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci. Rep. 2017, 7, 6765. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, H.; Liu, J.; Chen, Y.; He, R.R.; Liu, B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics 2020, 10, 8315–8342. [Google Scholar] [CrossRef]
- Di Emidio, G.; Falone, S.; Artini, P.G.; Amicarelli, F.; D’alessandro, A.M.; Tatone, C. Mitochondrial sirtuins in reproduction. Antioxidants 2021, 10, 1047. [Google Scholar] [CrossRef]
- Santulli, P.; Chouzenoux, S.; Fiorese, M.; Marcellin, L.; Lemarechal, H.; Millischer, A.E.; Batteux, F.; Borderie, D.; Chapron, C. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum. Reprod. 2015, 30, 49–60. [Google Scholar] [CrossRef]
- Koninckx, P.R.; Fernandes, R.; Ussia, A.; Schindler, L.; Wattiez, A.; Al-Suwaidi, S.; Amro, B.; Al-Maamari, B.; Hakim, Z.; Tahlak, M. Pathogenesis Based Diagnosis and Treatment of Endometriosis. Front. Endocrinol. 2021, 12, 745548. [Google Scholar] [CrossRef]
- Marquardt, R.M.; Kim, T.H.; Shin, J.H.; Jeong, J.W. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis? Int. J. Mol. Sci. 2019, 20, 3822. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Zhong, Z.; Wei, C.; Liu, Y.; Zhu, X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front. Immunol. 2023, 14, 1134663. [Google Scholar] [CrossRef] [PubMed]
- Didziokaite, G.; Biliute, G.; Gudaite, J.; Kvedariene, V. Oxidative Stress as a Potential Underlying Cause of Minimal and Mild Endometriosis-Related Infertility. Int. J. Mol. Sci. 2023, 24, 3809. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, W.; Iwase, A.; Goto, M.; Takikawa, S.; Nagatomo, Y.; Nakahara, T.; Bayasula, B.; Nakamura, T.; Manabe, S.; Kikkawa, F. The post-operative decline in serum anti-Mllerian hormone correlates with the bilaterality and severity of endometriosis. Hum. Reprod. 2011, 26, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.M.; Bokor, A.; Heikinheimo, O.; Horne, A.; Jansen, F.; Kiesel, L.; King, K.; Kvaskoff, M.; Nap, A.; Petersen, K.; et al. ESHRE guideline: Endometriosis. Hum. Reprod. 2022, 2022, hoac009. [Google Scholar] [CrossRef]
- Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [Google Scholar] [CrossRef]
- Várnagy, Á.; Kőszegi, T.; Györgyi, E.; Szegedi, S.; Sulyok, E.; Prémusz, V.; Bódis, J. Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: Focusing on endometriosis. Hum. Fertil. 2020, 23, 200–208. [Google Scholar] [CrossRef]
- Polak, G.; Wertel, I.; Barczyński, B.; Kwaśniewski, W.; Bednarek, W.; Kotarski, J. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 187–190. [Google Scholar] [CrossRef]
- Prieto, L.; Quesada, J.F.; Cambero, O.; Pacheco, A.; Pellicer, A.; Codoceo, R.; Garcia-Velasco, J.A. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil. Steril. 2012, 98, 126–130. [Google Scholar] [CrossRef]
- Da Broi, M.G.; Navarro, P.A. Oxidative stress and oocyte quality: Ethiopathogenic mechanisms of minimal/mild endometriosis-related infertility. Cell Tissue Res. 2016, 364, 1–7. [Google Scholar] [CrossRef]
- Saito, H.; Seino, T.; Kaneko, T.; Nakahara, K.; Toya, M.; Kurachi, H. Endometriosis and oocyte quality. Gynecol. Obstet. Investig. 2002, 53 (Suppl. S1), 46–51. [Google Scholar] [CrossRef] [PubMed]
- Biasioli, A.; Xholli, A.; Previtera, F.; Balzano, A.; Capodicasa, V.; Tassi, A.; Londero, A.P.; Cagnacci, A. Systemic Oxidative Stress in Women with Ovarian and Pelvic Endometriosis: Role of Hormonal Therapy. J. Clin. Med. 2022, 11, 7460. [Google Scholar] [CrossRef] [PubMed]
- Tatone, C.; Di Emidio, G.; Vitti, M.; Di Carlo, M.; Santini, S.; D’Alessandro, A.M.; Falone, S.; Amicarelli, F. Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxid. Med. Cell. Longev. 2015, 2015, 659687. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhao, W.; Ren, S.; Fu, Y.; Fang, X.; Wang, X.; Li, B. Roles of SIRT1 in granulosa cell apoptosis during the process of follicular atresia in porcine ovary. Anim. Reprod. Sci. 2014, 151, 34–41. [Google Scholar] [CrossRef]
- Tao, R.; Coleman, M.C.; Pennington, J.D.; Ozden, O.; Park, S.H.; Jiang, H.; Kim, H.S.; Flynn, C.R.; Hill, S.; McDonald, W.H.; et al. Sirt3-Mediated Deacetylation of Evolutionarily Conserved Lysine 122 Regulates MnSOD Activity in Response to Stress. Mol. Cell 2010, 40, 893–904. [Google Scholar] [CrossRef]
- Kokot, I.; Piwowar, A.; Jędryka, M.; Kratz, E.M. Is there a balance in oxidative-antioxidant status in blood serum of patients with advanced endometriosis? Antioxidants 2021, 10, 1097. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, R.; Martín-Ramírez, R.; Rotoli, D.; Hernández, J.; Naftolin, F.; Martín-Vasallo, P.; Palumbo, A.; Ávila, J. Granulosa-lutein cell sirtuin gene expression profiles differ between normal donors and infertile women. Int. J. Mol. Sci. 2020, 21, 295. [Google Scholar] [CrossRef]
- Tseng, A.H.H.; Shieh, S.S.; Wang, D.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med. 2013, 63, 222–234. [Google Scholar] [CrossRef]
- Giralt, A.; Villarroya, F. SIRT3, a pivotal actor in mitochondrial functions: Metabolism, cell death and aging. Biochem. J. 2012, 444, 1–10. [Google Scholar] [CrossRef]
- Kawamura, Y.; Uchijima, Y.; Horike, N.; Tonami, K.; Nishiyama, K.; Amano, T.; Asano, T.; Kurihara, Y.; Kurihara, H. Sirt3 protects in vitro—Fertilized mouse preimplantation embryos against oxidative stress—Induced p53-mediated developmental arrest. J. Clin. Investig. 2010, 120, 2817–2828. [Google Scholar] [CrossRef]
- Zhao, H.C.; Ding, T.; Ren, Y.; Li, T.J.; Li, R.; Fan, Y.; Yan, J.; Zhao, Y.; Li, M.; Yu, Y.; et al. Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. Hum. Reprod. 2016, 31, 607–622. [Google Scholar] [CrossRef]
- Guerriero, S.; Condous, G.; van den Bosch, T.; Valentin, L.; Leone, F.P.G.; Van Schoubroeck, D.; Exacoustos, C.; Installé, A.J.F.; Martins, W.P.; Abrao, M.S.; et al. Systematic approach to sonographic evaluation of the pelvis in women with suspected endometriosis, including terms, definitions and measurements: A consensus opinion from the International Deep Endometriosis Analysis (IDEA) group. Ultrasound Obstet. Gynecol. 2016, 48, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Brison, D.; Calderón, G.; Catt, J.; Conaghan, J.; Cowan, L.; Ebner, T.; Gardner, D.; Hardarson, T.; Lundin, K.; et al. The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 2011, 26, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
Variable | OMA | DE | MIX | p-Value (Kruskal–Wallis) |
---|---|---|---|---|
Number of cycles/patient | 20 | 20 | 20 | |
Age (years) | 34.58 ± 2.59 | 35.67 ± 2.23 | 36.40 ± 0.89 | 0.200 |
BMI (kg/m2) | 22.73 ± 3.39 | 23.38 ± 2.33 | 20.81 ± 0.86 | 0.198 |
AMH (ng/mL) | 3.49 ± 3.08 | 1.91 ± 1.23 | 1.33 ± 1.24 | 0.077 |
AFC | 15.42 ± 7.59 | 9.25 ± 5.15 | 6.60 ± 3.71 | 0.010 |
Variable | OMA | DE | MIX | p-Value |
---|---|---|---|---|
Previous surgery (%) | 2 (10%) | 11 (55%) | 20 (100%) | <0.001 * |
Previous antioxidant intake (%) | 1 (5%) | 3 (15%) | 8 (40%) | 0.128 |
Previous hormonal treatments (%) | <0.001 * | |||
No previous treatment | 14 (70%) | 3 (15%) | 8 (40%) | |
Cyclic oral contraceptive pills | 2 (10%) | 9 (45%) | 4 (20%) | |
Progestogens | 1 (5%) | 3 (15%) | 4 (20%) | |
Continuous oral contraceptive pills | 3 (15%) | 5 (25%) | 0 | |
Levonorgestrel-releasing IUD | 0 | 0 | 4 (20%) | |
Washout period (%) | <0.001 * | |||
No previous contraceptive pills | 14 (70%) | 3 (15%) | 8 (40%) | |
Direct start | 4 (20%) | 13 (65%) | 4 (20%) | |
3 months | 0 | 2 (10%) | 0 | |
6 months | 1 (5%) | 0 | 0 | |
>12 months | 1 (5%) | 2 (10%) | 8 (40%) |
Variable | OMA | DE | MIX | p-Value |
---|---|---|---|---|
Final E2 (pg/mL) | 2404.69 ± 1043.80 | 1994.82 ± 1250.71 | 1414.40 ± 697.34 | 0.176 |
No. oocytes retrieved | 8.75 ± 4.01 | 7.18 ± 4.14 | 5.00 ± 2.83 | 0.194 |
% Mature oocytes (MII) | 85.98 | 75.13 | 52.67 | 0.039 * |
% Fertilized oocytes | 51.98 | 56.42 | 57.50 | 0.717 |
Average no. embryos transferred | 1.36 ± 0.77 | 1.55 ± 0.78 | 1.33 ± 0.58 | 0.655 |
Transfer day (%) | 0.771 | |||
Day 3 | 16 (80%) | 16 (80%) | 20 (100%) | |
Day 5 | 4 (20%) | 4 (20%) | 0 | |
% Useful embryo | 66.43 | 73.94 | 55.29 | 0.836 |
Pregnancy rate per transfer | 7/20 (35%) | 6/20 (30%) | 5/20 (25%) | 0.787 |
Variable | OMA | DE | MIX | p-Value |
---|---|---|---|---|
Lipid peroxidation (µM MDA + HAE) | ||||
Mean FF | 0.1186 ± 0.05 | 0.1182 ± 0.05 | 0.1187 ± 0.06 | 0.951 |
Mean Serum | 0.13 ± 0.04 | 0.13 ± 0.07 | 0.10 ± 0.06 | 0.384 |
Mean PBMCs | 3.40 ± 1.27 | 3.63 ± 2.05 | 3.05 ± 1.50 | 0.911 |
Mean COCs | 9.29 ± 7.15 | 7.91 ± 7.53 | 17.09 ± 13.43 | 0.439 |
Total oxidant status (µmol H2O2 Equiv./L) | ||||
Mean FF | 4.28 ± 4.28 | 4.24 ± 0.79 | 3.38 ± 0.48 | 0.103 |
Mean SRM | 4.78 ± 1.78 | 5.38 ± 3.17 | 3.83 ± 0.36 | 0.074 |
Total Antioxidant Capacity (µM CRE) | ||||
Mean FF | 60.11 ± 12.53 | 62.18 ± 12.43 | 55.92 ± 20.31 | 0.927 |
Mean SRM | 76.62 ± 12.62 | 85.31 ± 32.72 | 67.93 ± 4.32 | 0.321 |
Variable | OR (Odds Ratio) | CI (Confidence Interval) | p-Value |
---|---|---|---|
Antioxidants | 2.023 | 22.477–18.430 | 0.839 |
Pre-IVF hormonal treatment | 2.880 | 5.5507–11.268 | 0.483 |
Previous surgery | 8.919 | 0.569–17.269 | 0.037 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goday, A.; Valls-Roca, L.; Méndez, M.; Cívico, Y.; Gràcia, M.; Guitart-Mampel, M.; Casals, G.; Peralta, S.; Borrás, A.; Fàbregues, F.; et al. Exploring Oxidative Stress in Different Endometriosis Phenoptypes: Insights from Ovarian and Systemic Perspectives by the Study of SIRT3. Int. J. Mol. Sci. 2025, 26, 9110. https://doi.org/10.3390/ijms26189110
Goday A, Valls-Roca L, Méndez M, Cívico Y, Gràcia M, Guitart-Mampel M, Casals G, Peralta S, Borrás A, Fàbregues F, et al. Exploring Oxidative Stress in Different Endometriosis Phenoptypes: Insights from Ovarian and Systemic Perspectives by the Study of SIRT3. International Journal of Molecular Sciences. 2025; 26(18):9110. https://doi.org/10.3390/ijms26189110
Chicago/Turabian StyleGoday, Anna, Laura Valls-Roca, Marta Méndez, Yolanda Cívico, Meritxell Gràcia, Mariona Guitart-Mampel, Gemma Casals, Sara Peralta, Aina Borrás, Francisco Fàbregues, and et al. 2025. "Exploring Oxidative Stress in Different Endometriosis Phenoptypes: Insights from Ovarian and Systemic Perspectives by the Study of SIRT3" International Journal of Molecular Sciences 26, no. 18: 9110. https://doi.org/10.3390/ijms26189110
APA StyleGoday, A., Valls-Roca, L., Méndez, M., Cívico, Y., Gràcia, M., Guitart-Mampel, M., Casals, G., Peralta, S., Borrás, A., Fàbregues, F., Agustí, I., Barral, Y., Ros, C., Martínez, M. À., Rius, M., Cívico, S., Garrabou, G., Carmona, F., & Manau, D. (2025). Exploring Oxidative Stress in Different Endometriosis Phenoptypes: Insights from Ovarian and Systemic Perspectives by the Study of SIRT3. International Journal of Molecular Sciences, 26(18), 9110. https://doi.org/10.3390/ijms26189110