From Molecules to Models: miRNAs and Advanced Human Platforms of Neurodegeneration and Repair in Multiple Sclerosis
Abstract
1. Introduction
2. Cellular Basis of Neurodegeneration in MS
Cell Interactions Within CNS
3. microRNAs in MS: Biomarkers and Beyond
3.1. miRNAs as Biomarkers in MS
3.2. miRNAs with Functional Therapeutic Evidence of Repair in MS Models
4. Experimental Models for Studying Neurorepair in MS
4.1. Traditional Models
4.1.1. In Vitro and Ex Vivo Models
4.1.2. In Vivo Models
4.1.3. Advantages and Limitations
4.2. Advanced Human Models
4.2.1. iPSCs and iPSC-Derived Neural Models
4.2.2. Organs-on-a-Chip and Microfluidic Systems
4.2.3. Human Models with MS Samples
4.2.4. Advantages over Traditional Models
5. Therapeutic Strategies for Neurorepair in MS
5.1. miRNAs as Therapeutic Tools
5.2. Application of Human Models to Explore Therapies
5.3. Translational Potential in MS
6. Challenges and Future Perspectives
6.1. Limitations and Challenges in miRNA Therapeutic Application
6.2. Technical and Ethical Obstacles to the Use of Advanced Human Models
6.3. Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Bidimensional |
3D | Tridimensional |
AAV | Adeno-associated virus |
AMOs | Anti-miRNA oligonucleotides |
ASOs | Antisense oligonucleotides |
BBB | Blood brain barrier |
BMECs | Brain microvascular endothelial cells |
BoC | Brain-on-a-chip |
CNS | Central nervous system |
CPZ | Cuprizone |
CSF | Cerebrospinal fluid |
EAE | Experimental autoimmune encephalomyelitis |
EB | Ethidium bromide |
EVs | Extracellular vesicles |
HBSs | Human brain slices |
hfNPCs | Human fetal neural progenitor cells |
iPSCs | Induced pluripotent stem cells |
LPC | Lysolecithin |
LV | Lentivirus |
MBP | Myelin basic protein |
miRNAs | microRNAs |
MRI | Magnetic resonance imaging |
MS | Multiple sclerosis |
MSCs | Mesenchymal stem cells |
NPCs | Neural progenitor cells |
NSCs | Neural stem cells |
OBSs | Organotypic brain slices |
OLs | Oligodendrocytes |
OoAC | Organs-on-a-chip |
OPCs | Oligodendrocyte progenitor cells |
PMS | Progressive forms of MS |
RRMS | Relapsing–remitting MS |
shRNAs | Short hairpin RNAs |
TSBs | Target-site blockers |
References
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in Multiple Sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Bittner, S.; Zivadinov, R.; Morrow, S.A.; Benedict, R.H.; Zipp, F.; Weinstock-Guttman, B. Multiple Sclerosis. Lancet 2024, 403, 183–202. [Google Scholar] [CrossRef]
- Kołtuniuk, A.; Pawlak, B.; Krówczyńska, D.; Chojdak-Łukasiewicz, J. The Quality of Life in Patients with Multiple Sclerosis—Association with Depressive Symptoms and Physical Disability: A Prospective and Observational Study. Front. Psychol. 2023, 13, 1068421. [Google Scholar] [CrossRef]
- Landry, R.L.; Embers, M.E. The Probable Infectious Origin of Multiple Sclerosis. NeuroSci 2023, 4, 211–234. [Google Scholar] [CrossRef]
- Manjunatha, R.T.; Habib, S.; Sangaraju, S.L.; Yepez, D.; Grandes, X.A. Multiple Sclerosis: Therapeutic Strategies on the Horizon. Cureus 2022, 14, e24895. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Chen, X.; Chupel, M.U.; Hollingworth, B.Y.A.; Pallier, P.N.; Jenkins, S.I.; Chen, R. Hypoxic Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Brain Sci. 2025, 15, 248. [Google Scholar] [CrossRef]
- Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr. Issues Mol. Biol. 2023, 45, 1443–1470. [Google Scholar] [CrossRef]
- Duffy, C.P.; McCoy, C.E. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells 2020, 9, 1711. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Rempe, T.; Whitmire, N.; Dunn-Pirio, A.; Graves, J.S. Therapeutic Advances in Multiple Sclerosis. Front. Neurol. 2022, 13, 824926. [Google Scholar] [CrossRef] [PubMed]
- Cunniffe, N.; Coles, A. Promoting Remyelination in Multiple Sclerosis. J. Neurol. 2019, 268, 30–44. [Google Scholar] [CrossRef]
- Gao, Y.; Han, D.; Feng, J. MicroRNA in Multiple Sclerosis. Clin. Chim. Acta 2021, 516, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Prajzlerová, K.; Šenolt, L.; Filková, M. Is There a Potential of Circulating MiRNAs as Biomarkers in Rheumatic Diseases? Genes Dis. 2023, 10, 1263–1278. [Google Scholar] [CrossRef]
- Zhang, J.; Li, A.; Gu, R.; Tong, Y.; Cheng, J. Role and Regulatory Mechanism of MicroRNA Mediated Neuroinflammation in Neuronal System Diseases. Front. Immunol. 2023, 14, 1238930. [Google Scholar] [CrossRef]
- Doghish, A.S.; Elazazy, O.; Mohamed, H.H.; Mansour, R.M.; Ghanem, A.; Faraag, A.H.I.; Elballal, M.S.; Elrebehy, M.A.; Elesawy, A.E.; Abdel Mageed, S.S.; et al. The Role of MiRNAs in Multiple Sclerosis Pathogenesis, Diagnosis, and Therapeutic Resistance. Pathol. Res. Pract. 2023, 251, 154880. [Google Scholar] [CrossRef] [PubMed]
- Shoukeer, K.; Aierxiding, S.; Aisaiti, A.; Haibier, A.; Liu, C.; Jia, Z.; Aili, A.; Shu, L.; Jiang, K.; Muheremu, A. The Role of MicroRNAs in Axon Regeneration after Peripheral Nerve Injury: A Bibliometric Analysis. Front. Neurol. 2024, 15, 1348048. [Google Scholar] [CrossRef]
- Makarova, A.A.; Polilov, A.A.; Chklovskii, D.B. Small Brains for Big Science. Curr. Opin. Neurobiol. 2021, 71, 77–83. [Google Scholar] [CrossRef]
- Torre-Fuentes, L.; Moreno-Jiménez, L.; Pytel, V.; Matías-Guiu, J.A.; Gómez-Pinedo, U.; Matías-Guiu, J. Experimental Models of Demyelination and Remyelination. Neurología 2020, 35, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H.; Bradl, M. Multiple Sclerosis: Experimental Models and Reality. Acta Neuropathol. 2016, 133, 223–244. [Google Scholar] [CrossRef]
- Abels, E.R.; Nieland, L.; Hickman, S.; Broekman, M.L.D.; Khoury, J.E.; Maas, S.L.N. Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. Int. J. Mol. Sci. 2021, 22, 1495. [Google Scholar] [CrossRef]
- Zhang, Y.; Sloan, S.A.; Clarke, L.E.; Caneda, C.; Plaza, C.A.; Blumenthal, P.D.; Vogel, H.; Steinberg, G.K.; Edwards, M.S.B.; Li, G.; et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016, 89, 37–53. [Google Scholar] [CrossRef]
- Dedoni, S.; Scherma, M.; Camoglio, C.; Siddi, C.; Dazzi, L.; Puliga, R.; Frau, J.; Cocco, E.; Fadda, P. An Overall View of the Most Common Experimental Models for Multiple Sclerosis. Neurobiol. Dis. 2023, 184, 106230. [Google Scholar] [CrossRef]
- Clayton, B.L.L.; Barbar, L.; Sapar, M.; Kalpana, K.; Rao, C.; Migliori, B.; Rusielewicz, T.; Paull, D.; Brenner, K.; Moroziewicz, D.; et al. Patient IPSC Models Reveal Glia-Intrinsic Phenotypes in Multiple Sclerosis. Cell Stem Cell 2024, 31, 1701–1713. [Google Scholar] [CrossRef]
- Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef] [PubMed]
- Afzali, A.M.; Korn, T. The Role of the Adaptive Immune System in the Initiation and Persistence of Multiple Sclerosis. Semin. Immunol. 2025, 78, 101947. [Google Scholar] [CrossRef] [PubMed]
- Cencioni, M.T.; Mattoscio, M.; Magliozzi, R.; Bar-Or, A.; Muraro, P.A. B Cells in Multiple Sclerosis—From Targeted Depletion to Immune Reconstitution Therapies. Nat. Rev. Neurol. 2021, 17, 399–414. [Google Scholar] [CrossRef]
- Pukoli, D.; Vécsei, L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int. J. Mol. Sci. 2023, 24, 12631. [Google Scholar] [CrossRef] [PubMed]
- Perdaens, O.; van Pesch, V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int. J. Mol. Sci. 2024, 25, 12637. [Google Scholar] [CrossRef]
- Robinson, R.R.; Dietz, A.K.; Maroof, A.M.; Asmis, R.; Forsthuber, T.G. The Role of Glial—Neuronal Metabolic Cooperation in Modulating Progression of Multiple Sclerosis and Neuropathic Pain. Immunotherapy 2019, 11, 129–147. [Google Scholar] [CrossRef]
- Gruchot, J.; Weyers, V.; Göttle, P.; Förster, M.; Kremer, D.; Hartung, H.P.; Küry, P. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019, 8, 825. [Google Scholar] [CrossRef]
- Cabeza-Fernández, S.; White, J.A.; McMurran, C.E.; Gómez-Sánchez, J.A.; de la Fuente, A.G. Immune-Stem Cell Crosstalk in the Central Nervous System: How Oligodendrocyte Progenitor Cells Interact with Immune Cells. Immunol. Cell Biol. 2023, 101, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Festa, L.K.; Jordan-Sciutto, K.L.; Grinspan, J.B. Neuroinflammation: An Oligodendrocentric View. Glia 2025, 73, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Verkhratsky, A.; Shi, F.D. Astrocytes and Microglia in Multiple Sclerosis and Neuromyelitis Optica. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2025; Volume 210, pp. 133–145. [Google Scholar] [CrossRef]
- Quan, L.; Uyeda, A.; Muramatsu, R. Central Nervous System Regeneration: The Roles of Glial Cells in the Potential Molecular Mechanism Underlying Remyelination. Inflamm. Regen. 2022, 42, 7. [Google Scholar] [CrossRef] [PubMed]
- Coutinho Costa, V.G.; Araújo, S.E.S.; Alves-Leon, S.V.; Gomes, F.C.A. Central Nervous System Demyelinating Diseases: Glial Cells at the Hub of Pathology. Front. Immunol. 2023, 14, 1135540. [Google Scholar] [CrossRef]
- Theophanous, S.; Sargiannidou, I.; Kleopa, K.A. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 9588. [Google Scholar] [CrossRef]
- Franklin, R.J.M.; Simons, M. CNS Remyelination and Inflammation: From Basic Mechanisms to Therapeutic Opportunities. Neuron 2022, 110, 3549–3565. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Zhou, J.W. Neuroinflammation in the Central Nervous System: Symphony of Glial Cells. Glia 2019, 67, 1017–1035. [Google Scholar] [CrossRef]
- Amoriello, R.; Memo, C.; Ballerini, L.; Ballerini, C. The Brain Cytokine Orchestra in Multiple Sclerosis: From Neuroinflammation to Synaptopathology. Mol. Brain 2024, 17, 4. [Google Scholar] [CrossRef]
- Arneth, B. Contributions of T Cells in Multiple Sclerosis: What Do We Currently Know? J. Neurol. 2021, 268, 4587–4593. [Google Scholar] [CrossRef]
- Camargo, N.; Goudriaan, A.; van Deijk, A.L.F.; Otte, W.M.; Brouwers, J.F.; Lodder, H.; Gutmann, D.H.; Nave, K.A.; Dijkhuizen, R.M.; Mansvelder, H.D.; et al. Oligodendroglial Myelination Requires Astrocyte-Derived Lipids. PLoS Biol. 2017, 15, e1002605. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Quah, S.; Subramanian, G.; Tan, J.S.L.; Utami, K.H.; Sampath, P. MicroRNAs: A Symphony Orchestrating Evolution and Disease Dynamics. Trends Mol. Med. 2025, 31, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Guerau-de-Arellano, M.; Liu, Y.; Meisen, W.H.; Pitt, D.; Racke, M.K.; Lovett-Racke, A.E. Analysis of MiRNA in Normal Appearing White Matter to Identify Altered CNS Pathways in Multiple Sclerosis. J. Autoimmune Disord. 2015, 1, 6. [Google Scholar] [CrossRef]
- Noorbakhsh, F.; Ellestad, K.K.; Maingat, F.; Warren, K.G.; Han, M.H.; Steinman, L.; Baker, G.B.; Power, C. Impaired Neurosteroid Synthesis in Multiple Sclerosis. Brain 2011, 134, 2703–2721. [Google Scholar] [CrossRef]
- Tripathi, A.; Volsko, C.; Datta, U.; Regev, K.; Dutta, R. Expression of Disease-Related MiRNAs in White-Matter Lesions of Progressive Multiple Sclerosis Brains. Ann. Clin. Transl. Neurol. 2019, 6, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Pandit, I.; Perles, A.; Zhou, Y.; Cheng, F.; Dutta, R. Identifying MiRNAs in Multiple Sclerosis Gray Matter Lesions That Correlate with Atrophy Measures. Ann. Clin. Transl. Neurol. 2021, 8, 1279–1291. [Google Scholar] [CrossRef]
- Fritsche, L.; Teuber-Hanselmann, S.; Soub, D.; Harnisch, K.; Mairinger, F.; Junker, A. MicroRNA Profiles of MS Gray Matter Lesions Identify Modulators of the Synaptic Protein Synaptotagmin-7. Brain Pathol. 2019, 30, 524–540. [Google Scholar] [CrossRef]
- Junker, A.; Krumbholz, M.; Eisele, S.; Mohan, H.; Augstein, F.; Bittner, R.; Lassmann, H.; Wekerle, H.; Hohlfeld, R.; Meinl, E. MicroRNA Profiling of Multiple Sclerosis Lesions Identifies Modulators of the Regulatory Protein CD47. Brain 2009, 132, 3342–3352. [Google Scholar] [CrossRef]
- Tripathi, A.; Volsko, C.; Garcia, J.P.; Agirre, E.; Allan, K.C.; Tesar, P.J.; Trapp, B.D.; Castelo-Branco, G.; Sim, F.J.; Dutta, R. Oligodendrocyte Intrinsic MiR-27a Controls Myelination and Remyelination. Cell Rep. 2019, 29, 904–919.e9. [Google Scholar] [CrossRef]
- Wang, L.; Liang, Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front. Mol. Neurosci. 2022, 15, 865529. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, A.; Pappolla, A.; Comabella, M.; Montalban, X.; Malhotra, S. MiRNA-Based Therapeutic Potential in Multiple Sclerosis. Front. Immunol. 2024, 15, 1441733. [Google Scholar] [CrossRef]
- Yañez-Esparza, A.; Corona-Meraz, F.I.; Mireles-Ramírez, M.A.; Reyes-Mata, M.P.; Martínez-Fernández, C.; Pallàs, M.; Griñan-Ferré, C.; Pavón, L.; Guerrero-García, J.d.J.; Ortuño-Sahagún, D. Alterations in the MiR-145/143 Cluster Expression in Multiple Sclerosis Patients and Their Correlation with Clinical Variables. Mult. Scler. Relat. Disord. 2025, 96, 106344. [Google Scholar] [CrossRef]
- Maimaitijiang, G.; Kira, J.-i.; Nakamura, Y.; Watanabe, M.; Takase, E.O.; Nagata, S.; Sakoda, A.; Zhang, X.; Masaki, K.; Yamasaki, R.; et al. Blood Exosome Connexins and Small RNAs Related to Demyelinating Disease Activity. Ann. Clin. Transl. Neurol. 2025, 12, 538–555. [Google Scholar] [CrossRef]
- Agostini, S.; Mancuso, R.; Citterio, L.A.; Caputo, D.; Oreni, L.; Nuzzi, R.; Pasanisi, M.B.; Rovaris, M.; Clerici, M. Serum MiR-34a-5p, MiR-103a-3p, and MiR-376a-3p as Possible Biomarkers of Conversion from Relapsing-Remitting to Secondary Progressive Multiple Sclerosis. Neurobiol. Dis. 2024, 200, 106648. [Google Scholar] [CrossRef]
- Domínguez-Mozo, M.I.; Casanova, I.; Monreal, E.; Costa-Frossard, L.; Sainz-de-la-Maza, S.; Sainz-Amo, R.; Aladro-Benito, Y.; Lopez-Ruiz, P.; De-Torres, L.; Abellán, S.; et al. Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 10012. [Google Scholar] [CrossRef]
- Al-Dahimavi, S.; Safaralizadeh, R.; Khalaj-Kondori, M. Evaluating the Serum Level of ACTH and Investigating the Expression of MiR-26a, MiR-34a, MiR-155-5p, and MiR-146a in the Peripheral Blood Cells of Multiple Sclerosis Patients. Biochem. Genet. 2024. [Google Scholar] [CrossRef]
- Tan, I.L.; Modderman, R.; Stachurska, A.; Almeida, R.; De Vries, R.; Heersema, D.J.; Gacesa, R.; Wijmenga, C.; Jonkers, I.H.; Meilof, J.F.; et al. Potential Biomarkers for Multiple Sclerosis Stage from Targeted Proteomics and MicroRNA Sequencing. Brain Commun. 2024, 6, fcae209. [Google Scholar] [CrossRef] [PubMed]
- Abusree Ahmed, A.; Fayez Hasa, S.; Ahmed Rashed, L.; Ragab Abd ELAzem, N.; Shehata Mohamed, R.; Mostafa Gharib Mohamed, D. The Potential Association Between MicroRNA 135-5P and P62 and Their Effect on NRF2 Pathway in Multiple Sclerosis. Rep. Biochem. Mol. Biol. 2024, 12, 512–521. [Google Scholar] [CrossRef]
- Mohammadinasr, M.; Montazersaheb, S.; Molavi, O.; Kahroba, H.; Talebi, M.; Ayromlou, H.; Hejazi, M.S. Multiplex Analysis of Cerebrospinal Fluid and Serum Exosomes MicroRNAs of Untreated Relapsing Remitting Multiple Sclerosis (RRMS) and Proposing Noninvasive Diagnostic Biomarkers. Neuromolecular Med. 2023, 25, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Martinez, A.; Patel, R.; Healy, B.C.; Lokhande, H.; Paul, A.; Saxena, S.; Polgar-Turcsanyi, M.; Weiner, H.L.; Chitnis, T. MiRNA 548a-3p as Biomarker of NEDA-3 at 2 Years in Multiple Sclerosis Patients Treated with Fingolimod. J. Neuroinflamm. 2023, 20, 131. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Bose, G.; Lokhande, H.; Saxena, S.; Healy, B.C.; Polgar-Turcsanyi, M.; Weiner, H.L.; Chitnis, T. Early MiR-320b and MiR-25-3p MiRNA Levels Correlate with Multiple Sclerosis Severity at 10 Years: A Cohort Study. J. Neuroinflamm. 2023, 20, 136. [Google Scholar] [CrossRef]
- Geiger, L.; Orsi, G.; Cseh, T.; Gombos, K.; Illés, Z.; Czéh, B. Circulating MicroRNAs Correlate with Structural and Functional MRI Parameters in Patients with Multiple Sclerosis. Front. Mol. Neurosci. 2023, 16, 1173212. [Google Scholar] [CrossRef]
- Casanova, I.; Domínguez-Mozo, M.I.; De Torres, L.; Aladro-Benito, Y.; García-Martínez, Á.; Gómez, P.; Abellán, S.; De Antonio, E.; Álvarez-Lafuente, R. MicroRNAs Associated with Disability Progression and Clinical Activity in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Biomedicines 2023, 11, 2760. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-San Martín, M.; Gómez, I.; Quiroga-Varela, A.; Río, M.G.-d.; Cedeño, R.R.; Álvarez, G.; Buxó, M.; Miguela, A.; Villar, L.M.; Castillo-Villalba, J.; et al. MiRNA Signature in CSF from Patients with Primary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200069. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, R.; Agostini, S.; Hernis, A.; Caputo, D.; Galimberti, D.; Scarpini, E.; Clerici, M. Alterations of the MiR-126-3p/POU2AF1/Spi-B Axis and JCPyV Reactivation in Multiple Sclerosis Patients Receiving Natalizumab. Front. Neurol. 2022, 13, 819911. [Google Scholar] [CrossRef]
- Vistbakka, J.; Sumelahti, M.L.; Lehtimäki, T.; Hagman, S. Temporal Variability of Serum MiR-191, MiR-223, MiR-128, and MiR-24 in Multiple Sclerosis: A 4-Year Follow-up Study. J. Neurol. Sci. 2022, 442, 120395. [Google Scholar] [CrossRef]
- Dominguez-Mozo, M.I.; Casanova, I.; De Torres, L.; Aladro-Benito, Y.; Perez-Perez, S.; Garcia-Martínez, A.; Gomez, P.; Abellan, S.; De Antonio, E.; Lopez-De-Silanes, C.; et al. MicroRNA Expression and Its Association with Disability and Brain Atrophy in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Front. Immunol. 2022, 13, 904683. [Google Scholar] [CrossRef]
- Saridas, F.; Tezcan Unlu, H.; Cecener, G.; Egeli, U.; Sabour Takanlou, M.; Sabour Takanlou, L.; Tunca, B.; Zarifoglu, M.; Turan, O.F.; Taskapilioglu, O. The Expression and Prognostic Value of MiR-146a and MiR-155 in Turkish Patients with Multiple Sclerosis. Neurol. Res. 2022, 44, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Cuomo-Haymour, N.; Bergamini, G.; Russo, G.; Kulic, L.; Knuesel, I.; Martin, R.; Huss, A.; Tumani, H.; Otto, M.; Pryce, C.R. Differential Expression of Serum Extracellular Vesicle MiRNAs in Multiple Sclerosis: Disease-Stage Specificity and Relevance to Pathophysiology. Int. J. Mol. Sci. 2022, 23, 1664. [Google Scholar] [CrossRef]
- Khedr, A.M.B.; Shaker, O.G.; Hassan, A.; Hussein, M.; Kamal, Y.S.; Azouz, T.A. MicroRNA-22 Level in Patients with Multiple Sclerosis and Its Relationship with Vitamin D and Vitamin D Receptor Levels. Neuroimmunomodulation 2022, 29, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Perdaens, O.; Anh Dang, H.; D’Auria, L.; van Pesch, V. CSF MicroRNAs Discriminate MS Activity and Share Similarity to Other Neuroinflammatory Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e673. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Mozo, M.I.; Nieto-Guerrero, A.; Pérez-Pérez, S.; García-Martínez, M.A.; Arroyo, R.; Alvarez-Lafuente, R. MicroRNAs of Human Herpesvirus 6A and 6B in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Front. Immunol. 2020, 11, 2142. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, M.; Orlandi, E.; Rossetti, G.; Turatti, M.; Calabrese, M.; Gomez Lira, M.; Gajofatto, A. Upregulated Serum MiR-128-3p in Progressive and Relapse-Free Multiple Sclerosis Patients. Acta Neurol. Scand. 2020, 142, 511–516. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; El-Mehdawy, K.M.; Seleem, M.; El-Sawalhi, M.M.; Shaheen, A.A. Serum ROCK2, MiR-300 and MiR-450b-5p Levels in Two Different Clinical Phenotypes of Multiple Sclerosis: Relation to Patient Disability and Disease Progression. J. Neuroimmunol. 2020, 347, 577356. [Google Scholar] [CrossRef]
- Sharaf-Eldin, W.; Kishk, N.; Sakr, B.; El-Hariri, H.; Refeat, M.; ElBagoury, N.; Essawi, M. Potential Value of MiR-23a for Discriminating Neuromyelitis Optica Spectrum Disorder from Multiple Sclerosis. Arch. Iran. Med. 2020, 23, 678–687. [Google Scholar] [CrossRef]
- Shademan, B.; Nourazarian, A.; Nikanfar, M.; Biray Avci, C.; Hasanpour, M.; Isazadeh, A. Investigation of the MiRNA146a and MiRNA155 Gene Expression Levels in Patients with Multiple Sclerosis. J. Clin. Neurosci. 2020, 78, 189–193. [Google Scholar] [CrossRef]
- Senousy, M.A.; Shaker, O.G.; Sayed, N.H.; Fathy, N.; Kortam, M.A. LncRNA GAS5 and MiR-137 Polymorphisms and Expression Are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem. Neurosci. 2020, 11, 1651–1660. [Google Scholar] [CrossRef]
- Ebrahimkhani, S.; Beadnall, H.N.; Wang, C.; Suter, C.M.; Barnett, M.H.; Buckland, M.E.; Vafaee, F. Serum Exosome MicroRNAs Predict Multiple Sclerosis Disease Activity after Fingolimod Treatment. Mol. Neurobiol. 2020, 57, 1245–1258. [Google Scholar] [CrossRef]
- Hemond, C.C.; Healy, B.C.; Tauhid, S.; Mazzola, M.A.; Quintana, F.J.; Gandhi, R.; Weiner, H.L.; Bakshi, R. MRI Phenotypes in MS: Longitudinal Changes and MiRNA Signatures. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e530. [Google Scholar] [CrossRef]
- Vistbakka, J.; Sumelahti, M.L.; Lehtimäki, T.; Elovaara, I.; Hagman, S. Evaluation of Serum MiR-191-5p, MiR-24-3p, MiR-128-3p, and MiR-376c-3 in Multiple Sclerosis Patients. Acta Neurol. Scand. 2018, 138, 130–136. [Google Scholar] [CrossRef]
- Regev, K.; Healy, B.C.; Paul, A.; Diaz-Cruz, C.; Mazzola, M.A.; Raheja, R.; Glanz, B.I.; Kivisäkk, P.; Chitnis, T.; Jagodic, M.; et al. Identification of MS-Specific Serum MiRNAs in an International Multicenter Study. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e491. [Google Scholar] [CrossRef]
- Manna, I.; Iaccino, E.; Dattilo, V.; Barone, S.; Vecchio, E.; Mimmi, S.; Filippelli, E.; Demonte, G.; Polidoro, S.; Granata, A.; et al. Exosome-Associated MiRNA Profile as a Prognostic Tool for Therapy Response Monitoring in Multiple Sclerosis Patients. FASEB J. 2018, 32, 4241–4246. [Google Scholar] [CrossRef]
- Wang, Y.F.; He, D.D.; Liang, H.W.; Yang, D.; Yue, H.; Zhang, X.M.; Wang, R.; Li, B.; Yang, H.X.; Liu, Y.; et al. The Identification of Up-Regulated Ebv-MiR-BHRF1-2-5p Targeting MALT1 and Ebv-MiR-BHRF1-3 in the Circulation of Patients with Multiple Sclerosis. Clin. Exp. Immunol. 2017, 189, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Regev, K.; Healy, B.C.; Khalid, F.; Paul, A.; Chu, R.; Tauhid, S.; Tummala, S.; Diaz-Cruz, C.; Raheja, R.; Mazzola, M.A.; et al. Association between Serum MicroRNAs and Magnetic Resonance Imaging Measures of Multiple Sclerosis Severity. JAMA Neurol. 2017, 74, 275–285. [Google Scholar] [CrossRef]
- Niwald, M.; Migdalska-Sęk, M.; Brzeziańska-Lasota, E.; Miller, E. Evaluation of Selected MicroRNAs Expression in Remission Phase of Multiple Sclerosis and Their Potential Link to Cognition, Depression, and Disability. J. Mol. Neurosci. 2017, 63, 275–282. [Google Scholar] [CrossRef]
- Sharaf-Eldin, W.E.; Kishk, N.A.; Gad, Y.Z.; Hassan, H.; Ali, M.A.M.; Zaki, M.S.; Mohamed, M.R.; Essawi, M.L. Extracellular MiR-145, MiR-223 and MiR-326 Expression Signature Allow for Differential Diagnosis of Immune-Mediated Neuroinflammatory Diseases. J. Neurol. Sci. 2017, 383, 188–198. [Google Scholar] [CrossRef]
- Ebrahimkhani, S.; Vafaee, F.; Young, P.E.; Hur, S.S.J.; Hawke, S.; Devenney, E.; Beadnall, H.; Barnett, M.H.; Suter, C.M.; Buckland, M.E. Exosomal MicroRNA Signatures in Multiple Sclerosis Reflect Disease Status. Sci. Rep. 2017, 7, 14293. [Google Scholar] [CrossRef] [PubMed]
- Selmaj, I.; Cichalewska, M.; Namiecinska, M.; Galazka, G.; Horzelski, W.; Selmaj, K.W.; Mycko, M.P. Global Exosome Transcriptome Profiling Reveals Biomarkers for Multiple Sclerosis. Ann. Neurol. 2017, 81, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Vistbakka, J.; Elovaara, I.; Lehtimäki, T.; Hagman, S. Circulating MicroRNAs as Biomarkers in Progressive Multiple Sclerosis. Mult. Scler. J. 2017, 23, 403–412. [Google Scholar] [CrossRef]
- Regev, K.; Paul, A.; Healy, B.; von Glenn, F.; Diaz-Cruz, C.; Gholipour, T.; Antonietta Mazzola, M.; Raheja, R.; Nejad, P.; Glanz, B.I.; et al. Comprehensive Evaluation of Serum MicroRNAs as Biomarkers in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e267, Erratum in Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e296. [Google Scholar] [CrossRef]
- Ahlbrecht, J.; Martino, F.; Pul, R.; Skripuletz, T.; Sühs, K.W.; Schauerte, C.; Yildiz, Ö.; Trebst, C.; Tasto, L.; Thum, S.; et al. Deregulation of MicroRNA-181c in Cerebrospinal Fluid of Patients with Clinically Isolated Syndrome Is Associated with Early Conversion to Relapsing-Remitting Multiple Sclerosis. Mult. Scler. J. 2016, 22, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, R.; Hernis, A.; Agostini, S.; Rovaris, M.; Caputo, D.; Clerici, M. MicroRNA-572 Expression in Multiple Sclerosis Patients with Different Patterns of Clinical Progression. J. Transl. Med. 2015, 13, 148. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Cui, W.; Li, M.; Li, B.; Guo, L. MicroRNA-155 Modulates Th1 and Th17 Cell Differentiation and Is Associated with Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2014, 266, 56–63. [Google Scholar] [CrossRef]
- Ridolfi, E.; Fenoglio, C.; Cantoni, C.; Calvi, A.; De Riz, M.; Pietroboni, A.; Villa, C.; Serpente, M.; Bonsi, R.; Vercellino, M.; et al. Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis. Int. J. Mol. Sci. 2013, 14, 4375–4384. [Google Scholar] [CrossRef]
- Fenoglio, C.; Ridolfi, E.; Cantoni, C.; De Riz, M.; Bonsi, R.; Serpente, M.; Villa, C.; Pietroboni, A.M.; Naismith, R.T.; Alvarez, E.; et al. Decreased Circulating MiRNA Levels in Patients with Primary Progressive Multiple Sclerosis. Mult. Scler. J. 2013, 19, 1938–1942. [Google Scholar] [CrossRef]
- Elsayed, R.; Fayez, S.; Rashed, L.A.; Farghali, M.; AbdelHamid, M.; Alkaffas, M. Relation between MicroRNA-155 and Inflammatory Mediators in Multiple Sclerosis. J. Biochem. Mol. Toxicol. 2024, 38, e23555. [Google Scholar] [CrossRef]
- Al-Temaimi, R.; Alshammari, N.; Alroughani, R. Analysis of Potential MicroRNA Biomarkers for Multiple Sclerosis. Exp. Mol. Pathol. 2024, 137, 104903. [Google Scholar] [CrossRef] [PubMed]
- Al-Temaimi, R.; Alroughani, R. MiR-24-3p and MiR-484 Are Potential Biomarkers for Neurodegeneration in Multiple Sclerosis. Heliyon 2024, 10, e32685. [Google Scholar] [CrossRef] [PubMed]
- Scaroni, F.; Visconte, C.; Serpente, M.; Golia, M.T.; Gabrielli, M.; Huiskamp, M.; Hulst, H.E.; Carandini, T.; De Riz, M.; Pietroboni, A.; et al. MiR-150-5p and Let-7b-5p in Blood Myeloid Extracellular Vesicles Track Cognitive Symptoms in Patients with Multiple Sclerosis. Cells 2022, 11, 1551. [Google Scholar] [CrossRef]
- Zheleznyakova, G.Y.; Piket, E.; Needhamsen, M.; Hagemann-Jensen, M.; Ekman, D.; Han, Y.; James, T.; Khademi, M.; Al Nimer, F.; Scicluna, P.; et al. Small Noncoding RNA Profiling across Cellular and Biofluid Compartments and Their Implications for Multiple Sclerosis Immunopathology. Proc. Natl. Acad. Sci. USA 2021, 118, e2011574118. [Google Scholar] [CrossRef]
- Balkan, E.; Bilge, N. Expression Levels of IL-17/IL-23 Cytokine-Targeting MicroRNAs 20, 21, 26, 155, and Let-7 in Patients with Relapsing-Remitting Multiple Sclerosis. Neurol. Res. 2021, 43, 778–783. [Google Scholar] [CrossRef]
- Giuliani, A.; Lattanzi, S.; Ramini, D.; Graciotti, L.; Danni, M.C.; Procopio, A.D.; Silvestrini, M.; Olivieri, F.; Sabbatinelli, J. Potential Prognostic Value of Circulating Inflamma-MiR-146a-5p and MiR-125a-5p in Relapsing-Remitting Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 54, 103126. [Google Scholar] [CrossRef]
- Muñoz-San Martín, M.; Torras, S.; Robles-Cedeño, R.; Buxó, M.; Gomez, I.; Matute-Blanch, C.; Comabella, M.; Villar, L.M.; Perkal, H.; Quintana, E.; et al. Radiologically Isolated Syndrome: Targeting MiRNAs as Prognostic Biomarkers. Epigenomics 2020, 12, 2065–2076. [Google Scholar] [CrossRef]
- Muñoz-San Martín, M.; Reverter, G.; Robles-Cedeño, R.; Buxò, M.; Ortega, F.J.; Gómez, I.; Tomàs-Roig, J.; Celarain, N.; Villar, L.M.; Perkal, H.; et al. Analysis of MiRNA Signatures in CSF Identifies Upregulation of MiR-21 and MiR-146a/b in Patients with Multiple Sclerosis and Active Lesions. J. Neuroinflamm. 2019, 16, 220. [Google Scholar] [CrossRef]
- Kimura, K.; Hohjoh, H.; Fukuoka, M.; Sato, W.; Oki, S.; Tomi, C.; Yamaguchi, H.; Kondo, T.; Takahashi, R.; Yamamura, T. Circulating Exosomes Suppress the Induction of Regulatory T Cells via Let-7i in Multiple Sclerosis. Nat. Commun. 2018, 9, 17. [Google Scholar] [CrossRef]
- Sáenz-Cuesta, M.; Alberro, A.; Muñoz-Culla, M.; Osorio-Querejeta, I.; Fernandez-Mercado, M.; Lopetegui, I.; Tainta, M.; Prada, Á.; Castillo-Triviño, T.; Falcón-Pérez, J.M.; et al. The First Dose of Fingolimod Affects Circulating Extracellular Vesicles in Multiple Sclerosis Patients. Int. J. Mol. Sci. 2018, 19, 2448. [Google Scholar] [CrossRef]
- Basnyat, P.; Virtanen, E.; Elovaara, I.; Hagman, S.; Auvinen, E. JCPyV MicroRNA in Plasma Inversely Correlates with JCPyV Seropositivity among Long-Term Natalizumab-Treated Relapsing-Remitting Multiple Sclerosis Patients. J. Neurovirol. 2017, 23, 734–741. [Google Scholar] [CrossRef]
- Kacperska, M.J.; Jastrzebski, K.; Tomasik, B.; Walenczak, J.; Konarska-Krol, M.; Glabinski, A. Selected Extracellular MicroRNA as Potential Biomarkers of Multiple Sclerosis Activity—Preliminary Study. J. Mol. Neurosci. 2015, 56, 154–163. [Google Scholar] [CrossRef]
- Giovannelli, I.; Martelli, F.; Repice, A.; Massacesi, L.; Azzi, A.; Giannecchini, S. Detection of JCPyV MicroRNA in Blood and Urine Samples of Multiple Sclerosis Patients under Natalizumab Therapy. J. Neurovirol. 2015, 21, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.; Healy, B.; Gholipour, T.; Egorova, S.; Musallam, A.; Hussain, M.S.; Nejad, P.; Patel, B.; Hei, H.; Khoury, S.; et al. Circulating MicroRNAs as Biomarkers for Disease Staging in Multiple Sclerosis. Ann. Neurol. 2013, 73, 729–740. [Google Scholar] [CrossRef]
- Søndergaard, H.B.; Hesse, D.; Krakauer, M.; Sørensen, P.S.; Sellebjerg, F. Differential MicroRNA Expression in Blood in Multiple Sclerosis. Mult. Scler. J. 2013, 19, 1849–1857. [Google Scholar] [CrossRef]
- Siege, S.R.; MacKenzie, J.; Chaplin, G.; Jablonski, N.G.; Griffiths, L. Circulating MicroRNAs Involved in Multiple Sclerosis. Mol. Biol. Rep. 2012, 39, 6219–6225. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, I.; Axling, F.; Nazir, F.H.; Müller, M.; Wiberg, A.; Burman, J. Micro-RNA Signature in CSF Before and After Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200345. [Google Scholar] [CrossRef]
- Mohammadinasr, M.; Montazersaheb, S.; Hosseini, V.; Kahroba, H.; Talebi, M.; Molavi, O.; Ayromlou, H.; Hejazi, M.S. Epstein-Barr Virus-Encoded BART9 and BART15 MiRNAs Are Elevated in Exosomes of Cerebrospinal Fluid from Relapsing-Remitting Multiple Sclerosis Patients. Cytokine 2024, 179, 156624. [Google Scholar] [CrossRef] [PubMed]
- Dolcetti, E.; Musella, A.; Balletta, S.; Gilio, L.; Bruno, A.; Stampanoni Bassi, M.; Lauritano, G.; Buttari, F.; Fresegna, D.; Tartacca, A.; et al. Interaction between MiR-142-3p and BDNF Val/Met Polymorphism Regulates Multiple Sclerosis Severity. Int. J. Mol. Sci. 2024, 25, 5253. [Google Scholar] [CrossRef]
- Shademan, B.; Zakeri, M.; Abbasi, S.; Biray Avci, C.; Karamad, V.; Sogutlu, F.; Laghousi, D.; Nouri, M.; Hassanpour, M.; Nourazarian, A. Relationship between MiRNA-21, MiRNA-155, and MiRNA-182 Expression and Inflammatory Factors in Cerebrospinal Fluid from Patients with Multiple Sclerosis. Clin. Neurol. Neurosurg. 2023, 232, 107873. [Google Scholar] [CrossRef]
- Zanghì, A.; Manuti, V.; Serviddio, G.; D’Amico, E.; Avolio, C. MiRNA 106a-5p in Cerebrospinal Fluid as Signature of Early Relapsing Remitting Multiple Sclerosis: A Cross Sectional Study. Front. Immunol. 2023, 14, 1226130. [Google Scholar] [CrossRef] [PubMed]
- De Vito, F.; Balletta, S.; Caioli, S.; Musella, A.; Guadalupi, L.; Vanni, V.; Fresegna, D.; Bassi, M.S.; Gilio, L.; Sanna, K.; et al. MiR-142-3p Is a Critical Modulator of TNF-Mediated Neuronal Toxicity in Multiple Sclerosis. Curr. Neuropharmacol. 2023, 21, 2567–2582. [Google Scholar] [CrossRef]
- De Vito, F.; Musella, A.; Fresegna, D.; Rizzo, F.R.; Gentile, A.; Stampanoni Bassi, M.; Gilio, L.; Buttari, F.; Procaccini, C.; Colamatteo, A.; et al. MiR-142-3p Regulates Synaptopathy-Driven Disease Progression in Multiple Sclerosis. Neuropathol. Appl. Neurobiol. 2022, 48, e12765. [Google Scholar] [CrossRef]
- Mandolesi, G.; Rizzo, F.R.; Balletta, S.; Bassi, M.S.; Gilio, L.; Guadalupi, L.; Nencini, M.; Moscatelli, A.; Ryan, C.P.; Licursi, V.; et al. The Microrna Let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells 2021, 10, 330. [Google Scholar] [CrossRef]
- Li, L.; Ma, X.; Zhao, Y.F.; Zhang, C. MiR-1-3p Facilitates Th17 Differentiation Associating with Multiple Sclerosis via Targeting ETS1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6881–6892. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.; Haghikia, A.; Bang, C.; Scherf, K.; Pfanne, A.; Duscha, A.; Kaisler, J.; Gisevius, B.; Gold, R.; Thum, T.; et al. Elevated Levels of MiR-181c and MiR-633 in the CSF of Patients with MS: A Validation Study. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e623. [Google Scholar] [CrossRef]
- Bruinsma, I.B.; van Dijk, M.; Bridel, C.; van de Lisdonk, T.; Haverkort, S.Q.; Runia, T.F.; Steinman, L.; Hintzen, R.Q.; Killestein, J.; Verbeek, M.M.; et al. Regulator of Oligodendrocyte Maturation, MiR-219, a Potential Biomarker for MS. J. Neuroinflamm. 2017, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, Q.; Zhang, Y.; Li, Z.; Mei, X. MicroRNA-590 Promotes Pathogenic Th17 Cell Differentiation through Targeting Tob1 and Is Associated with Multiple Sclerosis. Biochem. Biophys. Res. Commun. 2017, 493, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; He, Q.; Chen, H.; Xu, M.; Zhao, N.; Xiao, Y.; Tu, Q.-Q.; Zhang, W.; Bi, X. MicroRNA-448 Promotes Multiple Sclerosis Development through Induction of Th17 Response through Targeting Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2). Biochem. Biophys. Res. Commun. 2017, 486, 759–766. [Google Scholar] [CrossRef]
- Mandolesi, G.; De Vito, F.; Musella, A.; Gentile, A.; Bullitta, S.; Fresegna, D.; Sepman, H.; Di Sanza, C.; Haji, N.; Mori, F.; et al. MiR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. J. Neurosci. 2017, 37, 546–561. [Google Scholar] [CrossRef]
- Quintana, E.; Ortega, F.J.; Robles-Cedeño, R.; Villar, M.L.; Buxó, M.; Mercader, J.M.; Alvarez-Cermeño, J.C.; Pueyo, N.; Perkal, H.; Fernández-Real, J.M.; et al. MiRNAs in Cerebrospinal Fluid Identify Patients with MS and Specifically Those with Lipid-Specific Oligoclonal IgM Bands. Mult. Scler. J. 2017, 23, 1716–1726. [Google Scholar] [CrossRef]
- Lecca, D.; Marangon, D.; Coppolino, G.T.; Méndez, A.M.; Finardi, A.; Costa, G.D.; Martinelli, V.; Furlan, R.; Abbracchio, M.P. MiR-125a-3p Timely Inhibits Oligodendroglial Maturation and Is Pathologically up-Regulated in Human Multiple Sclerosis. Sci. Rep. 2016, 6, 34503. [Google Scholar] [CrossRef]
- Bergman, P.; Piket, E.; Khademi, M.; James, T.; Brundin, L.; Olsson, T.; Piehl, F.; Jagodic, M. Circulating MiR-150 in CSF Is a Novel Candidate Biomarker for Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e219. [Google Scholar] [CrossRef]
- Haghikia, A.; Haghikia, A.; Hellwig, K.; Baraniskin, A.; Holzmann, A.; Décard, B.F.; Thum, T.; Gold, R. Regulated MicroRNAs in the CSF of Patients with Multiple Sclerosis: A Case-Control Study. Neurology 2012, 79, 2166–2170. [Google Scholar] [CrossRef]
- Agostini, S.; Mancuso, R.; Costa, A.S.; Caputo, D.; Clerici, M. Jcpyv Mir-J1-5p in Urine of Natalizumab-Treated Multiple Sclerosis Patients. Viruses 2021, 13, 468. [Google Scholar] [CrossRef]
- Kornfeld, S.F.; Cummings, S.E.; Yaworski, R.; De Repentigny, Y.; Gagnon, S.; Zandee, S.; Fathi, S.; Prat, A.; Kothary, R. Loss of MiR-145 Promotes Remyelination and Functional Recovery in a Model of Chronic Central Demyelination. Commun. Biol. 2024, 7, 813. [Google Scholar] [CrossRef]
- Marangon, D.; Boda, E.; Parolisi, R.; Negri, C.; Giorgi, C.; Montarolo, F.; Perga, S.; Bertolotto, A.; Buffo, A.; Abbracchio, M.P.; et al. In Vivo Silencing of MiR-125a-3p Promotes Myelin Repair in Models of White Matter Demyelination. Glia 2020, 68, 2001–2014. [Google Scholar] [CrossRef]
- Nguyen, L.; Ong, W.; Wang, K.; Wang, M.; Nizetic, D.; Chew, S. Effects of MiR-219/MiR-338 on Microglia and Astrocyte Behaviors and Astrocyte-Oligodendrocyte Precursor Cell Interactions. Neural Regen. Res. 2020, 15, 739–747. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.G.; Lu, M.; Zhang, Y.; Shang, X.; Chopp, M. MiR-146a Promotes Oligodendrocyte Progenitor Cell Differentiation and Enhances Remyelination in a Model of Experimental Autoimmune Encephalomyelitis. Neurobiol. Dis. 2019, 125, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Nazari, B.; Soleimani, M.; Ebrahimi-Barough, S.; Enderami, S.E.; Kazemi, M.; Negahdari, B.; Sadroddiny, E.; Ai, J. Overexpression of MiR-219 Promotes Differentiation of Human Induced Pluripotent Stem Cells into Pre-Oligodendrocyte. J. Chem. Neuroanat. 2018, 91, 8–16. [Google Scholar] [CrossRef]
- Martin, N.A.; Molnar, V.; Szilagyi, G.T.; Elkjaer, M.L.; Nawrocki, A.; Okarmus, J.; Wlodarczyk, A.; Thygesen, E.K.; Palkovits, M.; Gallyas, F.; et al. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice. Front. Immunol. 2018, 9, 490. [Google Scholar] [CrossRef]
- Ghasemi-Kasman, M.; Zare, L.; Baharvand, H.; Javan, M. In Vivo Conversion of Astrocytes to Myelinating Cells by MiR-302/367 and Valproate to Enhance Myelin Repair. J. Tissue Eng. Regen. Med. 2018, 12, e462–e472. [Google Scholar] [CrossRef]
- Wang, H.; Moyano, A.L.; Ma, Z.; Deng, Y.; Lin, Y.; Zhao, C.; Zhang, L.; Jiang, M.; He, X.; Ma, Z.; et al. MiR-219 Cooperates with MiR-338 in Myelination and Promotes Myelin Repair in the CNS. Dev. Cell 2017, 40, 566–582.e5. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.G.; Lu, M.; Wang, X.; Shang, X.; Elias, S.B.; Chopp, M. MiR-146a Promotes Remyelination in a Cuprizone Model of Demyelinating Injury. Neuroscience 2017, 348, 252–263. [Google Scholar] [CrossRef]
- Fan, H.-B.; Chen, L.X.; Qu, X.-B.; Ren, C.L.; Wu, X.X.; Dong, F.X.; Zhang, B.L.; Gao, D.S.; Yao, R.Q. Transplanted MiR-219-Overexpressing Oligodendrocyte Precursor Cells Promoted Remyelination and Improved Functional Recovery in a Chronic Demyelinated Model. Sci. Rep. 2017, 7, 41407. [Google Scholar] [CrossRef]
- Liu, S.; Ren, C.; Qu, X.; Wu, X.; Dong, F.; Chand, Y.K.; Fan, H.; Yao, R.; Geng, D. MiR-219 Attenuates Demyelination in Cuprizone-Induced Demyelinated Mice by Regulating Monocarboxylate Transporter 1. Eur. J. Neurosci. 2017, 45, 249–259. [Google Scholar] [CrossRef]
- Kuypers, N.J.; Bankston, A.N.; Howard, R.M.; Beare, J.E.; Whittemore, S.R. Remyelinating Oligodendrocyte Precursor Cell MiRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation. J. Neurosci. 2016, 36, 1698–1710. [Google Scholar] [CrossRef]
- Ebrahimi-Barough, S.; Kouchesfehani, H.M.; Ai, J.; Mahmoodinia, M.; Tavakol, S.; Massumi, M. Programming of Human Endometrial-Derived Stromal Cells (EnSCs) into Pre-Oligodendrocyte Cells by Overexpression of MiR-219. Neurosci. Lett. 2013, 537, 65–70. [Google Scholar] [CrossRef]
- Czpakowska, J.; Kałuża, M.; Szpakowski, P.; Głąbiński, A. An Overview of Multiple Sclerosis In Vitro Models. Int. J. Mol. Sci. 2024, 25, 7759. [Google Scholar] [CrossRef]
- Janabi, N.; Peudenier, S.; Héron, B.; Ng, K.H.; Tardieu, M. Establishment of Human Microglial Cell Lines after Transfection of Primary Cultures of Embryonic Microglial Cells with the SV40 Large T Antigen. Neurosci. Lett. 1995, 195, 105–108. [Google Scholar] [CrossRef]
- Dittmer, M.; Young, A.; O’Hagan, T.; Eleftheriadis, G.; Bankhead, P.; Dombrowski, Y.; Medina, R.J.; Fitzgerald, D.C. Characterization of a Murine Mixed Neuron-Glia Model and Cellular Responses to Regulatory T Cell-Derived Factors. Mol. Brain 2018, 11, 25. [Google Scholar] [CrossRef]
- Thomson, C.E.; McCulloch, M.; Sorenson, A.; Barnett, S.C.; Seed, B.V.; Griffiths, I.R.; McLaughlin, M. Myelinated, Synapsing Cultures of Murine Spinal Cord-Validation as an in Vitro Model of the Central Nervous System. Eur. J. Neurosci. 2008, 28, 1518–1535. [Google Scholar] [CrossRef]
- Bijland, S.; Thomson, G.; Euston, M.; Michail, K.; Thümmler, K.; Mücklisch, S.; Crawford, C.L.; Barnett, S.C.; McLaughlin, M.; Anderson, T.J.; et al. An in Vitro Model for Studying CNS White Matter: Functional Properties and Experimental Approaches. F1000Research 2019, 8, 117. [Google Scholar] [CrossRef]
- Notterpek, L.M.; Bullock, P.N.; Malek-Hedayat, S.; Fisher, R.; Rome, L.H. Myelination in Cerebellar Slice Cultures: Development of a System Amenable to Biochemical Analysis. J. Neurosci. Res. 1993, 36, 621–634. [Google Scholar] [CrossRef]
- Slanzi, A.; Iannoto, G.; Rossi, B.; Zenaro, E.; Constantin, G. In Vitro Models of Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020, 8, 534138. [Google Scholar] [CrossRef]
- Pritchard, A.J.; Mir, A.K.; Dev, K.K. Fingolimod Attenuates Splenocyte-Induced Demyelination in Cerebellar Slice Cultures. PLoS ONE 2014, 9, e99444. [Google Scholar] [CrossRef]
- Ayzenberg, I.; Hoepner, R.; Kleiter, I. Fingolimod for Multiple Sclerosis and Emerging Indications: Appropriate Patient Selection, Safety Precautions, and Special Considerations. Ther. Clin. Risk Manag. 2016, 12, 261–272. [Google Scholar] [CrossRef]
- Miron, V.E.; Ludwin, S.K.; Darlington, P.J.; Jarjour, A.A.; Soliven, B.; Kennedy, T.E.; Antel, J.P. Fingolimod (FTY720) Enhances Remyelination Following Demyelination of Organotypic Cerebellar Slices. Am. J. Pathol. 2010, 176, 2682–2694. [Google Scholar] [CrossRef]
- Tan, G.A.; Furber, K.L.; Thangaraj, M.P.; Sobchishin, L.R.; Doucette, J.R.; Nazarali, A.J. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo. Cell Mol. Neurobiol. 2018, 38, 317–328. [Google Scholar] [CrossRef]
- Qi, X.R.; Verwer, R.W.H.; Bao, A.M.; Balesar, R.A.; Luchetti, S.; Zhou, J.N.; Swaab, D.F. Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds. Neurosci. Bull. 2019, 35, 244–252. [Google Scholar] [CrossRef]
- Plug, B.C.; Revers, I.M.; Breur, M.; González, G.M.; Timmerman, J.A.; Meijns, N.R.C.; Hamberg, D.; Wagendorp, J.; Nutma, E.; Wolf, N.I.; et al. Human Post-Mortem Organotypic Brain Slice Cultures: A Tool to Study Pathomechanisms and Test Therapies. Acta Neuropathol. Commun. 2024, 12, 83. [Google Scholar] [CrossRef]
- Packer, D.; Fresenko, E.E.; Harrington, E.P. Remyelination in Animal Models of Multiple Sclerosis: Finding the Elusive Grail of Regeneration. Front. Mol. Neurosci. 2023, 16, 1207007. [Google Scholar] [CrossRef]
- Carlton, W.W. Response of Mice to the Chelating Agents Sodium Diethyldithiocarbamate, α-Benzoinoxime, and Biscyclohexanone Oxaldihydrazone. Toxicol. Appl. Pharmacol. 1966, 8, 512–521. [Google Scholar] [CrossRef]
- Buckley, C.E.; Goldsmith, P.; Franklin, R.J.M. Zebrafish Myelination: A Transparent Model for Remyelination? Dis. Model. Mech. 2008, 1, 221–228. [Google Scholar] [CrossRef]
- Maktabi, B.; Collins, A.; Safee, R.; Bouyer, J.; Wisner, A.S.; Williams, F.E.; Schiefer, I.T. Zebrafish as a Model for Multiple Sclerosis. Biomedicines 2024, 12, 2354. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, P.; Zheng, M.; Zhang, W.; Yang, F.; Hong, L.; Yu, X.; Xu, H. Cuprizone-Induced Dopaminergic Hyperactivity and Locomotor Deficit in Zebrafish Larvae. Brain Res. 2022, 1780, 147802. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Guo, S.Y.; Xia, B.; Li, C.Q.; Wang, L.; Wang, Y.H. Development of Zebrafish Demyelination Model for Evaluation of Remyelination Compounds and RORγt Inhibitors. J. Pharmacol. Toxicol. Methods 2019, 98, 106585. [Google Scholar] [CrossRef]
- Münzel, E.J.; Becker, C.G.; Becker, T.; Williams, A. Zebrafish Regenerate Full Thickness Optic Nerve Myelin after Demyelination, but This Fails with Increasing Age. Acta Neuropathol. Commun. 2014, 2, 77. [Google Scholar] [CrossRef]
- Jagessar, S.A.; Dijkman, K.; Dunham, J.; ’T Hart, B.A.; Kap, Y.S. Experimental Autoimmune Encephalomyelitis in Marmosets. Methods Mol. Biol. 2016, 1304, 171–186. [Google Scholar] [CrossRef]
- Donadieu, M.; Lee, N.J.; Gaitán, M.I.; Ha, S.K.; Luciano, N.J.; Roy, S.; Ineichen, B.; Leibovitch, E.C.; Yen, C.C.; Pham, D.L.; et al. In Vivo MRI Is Sensitive to Remyelination in a Nonhuman Primate Model of Multiple Sclerosis. Elife 2023, 12, e73786. [Google Scholar] [CrossRef]
- Ogaki, A.; Ikegaya, Y.; Koyama, R. Replacement of Mouse Microglia with Human Induced Pluripotent Stem Cell (HiPSC)-Derived Microglia in Mouse Organotypic Slice Cultures. Front. Cell Neurosci. 2022, 16, 918442. [Google Scholar] [CrossRef]
- Huntemann, N.; Rolfes, L.; Pawlitzki, M.; Ruck, T.; Pfeuffer, S.; Wiendl, H.; Meuth, S.G. Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015–2020. Drugs 2021, 81, 1031–1063. [Google Scholar] [CrossRef]
- Wachsmuth, L.; Mensen, A.; Barca, C.; Wiart, M.; Tristão-Pereira, C.; Busato, A.; Waiczies, S.; Himmelreich, U.; Millward, J.M.; Reimann, H.M.; et al. Contribution of Preclinical MRI to Responsible Animal Research: Living up to the 3R Principle. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 469–474. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Marotta, D.; Rao, C.; Fossati, V. Human Induced Pluripotent Stem Cell (IPSC) Handling Protocols: Maintenance, Expansion, and Cryopreservation. Methods Mol. Biol. 2022, 2454, 1–15. [Google Scholar] [CrossRef]
- Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L. Highly Efficient Neural Conversion of Human ES and IPS Cells by Dual Inhibition of SMAD Signaling. Nat. Biotechnol. 2009, 27, 275–280, Erratum in Nat. Biotechnol. 2009, 27, 485. [Google Scholar] [CrossRef]
- Tay, S.H.; Winanto; Khong, Z.J.; Koh, Y.H.; Ng, S.Y. Generation of Cortical, Dopaminergic, Motor, and Sensory Neurons from Human Pluripotent Stem Cells. Methods Mol. Biol. 2022, 2549, 359–377. [Google Scholar] [CrossRef]
- Douvaras, P.; Fossati, V. Generation and Isolation of Oligodendrocyte Progenitor Cells from Human Pluripotent Stem Cells. Nat. Protoc. 2015, 10, 1143–1154. [Google Scholar] [CrossRef]
- Barbar, L.; Rusielewicz, T.; Zimmer, M.; Kalpana, K.; Fossati, V. Isolation of Human CD49f+ Astrocytes and In Vitro IPSC-Based Neurotoxicity Assays. STAR Protoc. 2020, 1, 100172. [Google Scholar] [CrossRef]
- Douvaras, P.; Sun, B.; Wang, M.; Kruglikov, I.; Lallos, G.; Zimmer, M.; Terrenoire, C.; Zhang, B.; Gandy, S.; Schadt, E.; et al. Directed Differentiation of Human Pluripotent Stem Cells to Microglia. Stem Cell Rep. 2017, 8, 1516–1524. [Google Scholar] [CrossRef]
- Mohamed, N.-V.; Mathur, M.; da Silva, R.V.; Thomas, R.A.; Lepine, P.; Beitel, L.K.; Fon, E.A.; Durcan, T.M. Generation of Human Midbrain Organoids from Induced Pluripotent Stem Cells. MNI Open Res. 2021, 3, 1. [Google Scholar] [CrossRef]
- Gunti, S.; Hoke, A.T.K.; Vu, K.P.; London, N.R. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers 2021, 13, 874. [Google Scholar] [CrossRef]
- Strong, C.E.; Zhang, J.; Carrasco, M.; Kundu, S.; Boutin, M.; Vishwasrao, H.D.; Liu, J.; Medina, A.; Chen, Y.C.; Wilson, K.; et al. Functional Brain Region-Specific Neural Spheroids for Modeling Neurological Diseases and Therapeutics Screening. Commun. Biol. 2023, 6, 1211. [Google Scholar] [CrossRef]
- Jusop, A.S.; Thanaskody, K.; Tye, G.J.; Dass, S.A.; Wan Kamarul Zaman, W.S.; Nordin, F. Development of Brain Organoid Technology Derived from IPSC for the Neurodegenerative Disease Modelling: A Glance Through. Front. Mol. Neurosci. 2023, 16, 1173433. [Google Scholar] [CrossRef] [PubMed]
- Mulder, L.A.; Depla, J.A.; Sridhar, A.; Wolthers, K.; Pajkrt, D.; Vieira de Sá, R. A Beginner’s Guide on the Use of Brain Organoids for Neuroscientists: A Systematic Review. Stem Cell Res. Ther. 2023, 14, 87. [Google Scholar] [CrossRef]
- Madhavan, M.; Nevin, Z.S.; Shick, H.E.; Garrison, E.; Clarkson-Paredes, C.; Karl, M.; Clayton, B.L.L.; Factor, D.C.; Allan, K.C.; Barbar, L.; et al. Induction of Myelinating Oligodendrocytes in Human Cortical Spheroids. Nat. Methods 2018, 15, 700–706. [Google Scholar] [CrossRef]
- Kalpana, K.; Rao, C.; Semrau, S.; Zhang, B.; Noggle, S.; Fossati, V. Generating Neuroimmune Assembloids Using Human Induced Pluripotent Stem Cell (IPSC)-Derived Cortical Organoids and Microglia. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A Guide to the Organ-on-a-Chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Cao, U.M.N.; Zhang, Y.; Chen, J.; Sayson, D.; Pillai, S.; Tran, S.D. Microfluidic Organ-on-A-Chip: A Guide to Biomaterial Choice and Fabrication. Int. J. Mol. Sci. 2023, 24, 3232. [Google Scholar] [CrossRef]
- Bhatia, S.N.; Ingber, D.E. Microfluidic Organs-on-Chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef]
- Thakur, A. Organ-on-a-Chip Microfluidic Systems for Tracking Exosomal Dynamic Communication. OpenNano 2023, 13, 100179. [Google Scholar] [CrossRef]
- An, L.; Liu, Y.; Liu, Y. Organ-on-a-Chip Applications in Microfluidic Platforms. Micromachines 2025, 16, 201. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Shin, S.R.; Bañobre-López, M. Brain-on-a-Chip: An Emerging Platform for Studying the Nanotechnology-Biology Interface for Neurodegenerative Disorders. J. Nanobiotechnol. 2024, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Foo, G.W.; Aggarwal, N.; Chang, M.W. Organ-on-Chip Technology: Opportunities and Challenges. Biotechnol. Notes 2024, 5, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Novak, R.; Ingram, M.; Marquez, S.; Das, D.; Delahanty, A.; Herland, A.; Maoz, B.M.; Jeanty, S.S.F.; Somayaji, M.R.; Burt, M.; et al. Robotic Fluidic Coupling and Interrogation of Multiple Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Sun, G.; Herszfeld, D.; Sylvain, A.; Campanale, N.V.; Hirst, C.E.; Caine, S.; Parkington, H.C.; Tonta, M.A.; Coleman, H.A.; et al. Neural Differentiation of Patient Specific IPS Cells as a Novel Approach to Study the Pathophysiology of Multiple Sclerosis. Stem Cell Res. 2012, 8, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Fagiani, F.; Pedrini, E.; Taverna, S.; Brambilla, E.; Murtaj, V.; Podini, P.; Ruffini, F.; Butti, E.; Braccia, C.; Andolfo, A.; et al. A Glia-Enriched Stem Cell 3D Model of the Human Brain Mimics the Glial-Immune Neurodegenerative Phenotypes of Multiple Sclerosis. Cell Rep. Med. 2024, 5, 101680. [Google Scholar] [CrossRef]
- Marotta, D.; Ijaz, L.; Barbar, L.; Nijsure, M.; Stein, J.; Pirjanian, N.; Kruglikov, I.; Clements, T.; Stoudemire, J.; Grisanti, P.; et al. Effects of Microgravity on Human IPSC-Derived Neural Organoids on the International Space Station. Stem Cells Transl. Med. 2024, 13, 1186–1197. [Google Scholar] [CrossRef]
- Ionescu, R.B.; Nicaise, A.M.; Reisz, J.A.; Williams, E.C.; Prasad, P.; Willis, C.M.; Simões-Abade, M.B.C.; Sbarro, L.; Dzieciatkowska, M.; Stephenson, D.; et al. Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis. Cell Stem Cell 2024, 31, 1574–1590. [Google Scholar] [CrossRef]
- Gisevius, B.; Duscha, A.; Poschmann, G.; Stühler, K.; Motte, J.; Fisse, A.L.; Augustyniak, S.; Rehm, A.; Renk, P.; Böse, C.; et al. Propionic Acid Promotes Neurite Recovery in Damaged Multiple Sclerosis Neurons. Brain Commun. 2024, 6, fcae182. [Google Scholar] [CrossRef]
- Daviaud, N.; Chen, E.; Edwards, T.; Sadiq, S.A. Cerebral Organoids in Primary Progressive Multiple Sclerosis Reveal Stem Cell and Oligodendrocyte Differentiation Defect. Biol. Open 2023, 12, bio059845. [Google Scholar] [CrossRef]
- Kerkering, J.; Muinjonov, B.; Rosiewicz, K.S.; Diecke, S.; Biese, C.; Schiweck, J.; Chien, C.; Zocholl, D.; Conrad, T.; Paul, F.; et al. IPSC-Derived Reactive Astrocytes from Patients with Multiple Sclerosis Protect Cocultured Neurons in Inflammatory Conditions. J. Clin. Investig. 2023, 133, e164637. [Google Scholar] [CrossRef]
- Lotila, J.; Hyvärinen, T.; Skottman, H.; Airas, L.; Narkilahti, S.; Hagman, S. Establishment of a Human Induced Pluripotent Stem Cell Line (TAUi008-A) Derived from a Multiple Sclerosis Patient. Stem Cell Res. 2022, 63, 102865. [Google Scholar] [CrossRef] [PubMed]
- Begentas, O.C.; Koc, D.; Kiris, E. Establishment of Human Induced Pluripotent Stem Cells from Multiple Sclerosis Patients. Methods Mol. Biol. 2022, 2549, 43–67. [Google Scholar] [CrossRef] [PubMed]
- Fortune, A.J.; Taylor, B.V.; Charlesworth, J.C.; Burdon, K.P.; Blackburn, N.B.; Fletcher, J.L.; Mehta, A.; Young, K.M. Generation and Characterisation of Four Multiple Sclerosis IPSC Lines from a Single Family. Stem Cell Res. 2022, 62, 102828. [Google Scholar] [CrossRef]
- Nishihara, H.; Perriot, S.; Gastfriend, B.D.; Steinfort, M.; Cibien, C.; Soldati, S.; Matsuo, K.; Guimbal, S.; Mathias, A.; Palecek, S.P.; et al. Intrinsic Blood-Brain Barrier Dysfunction Contributes to Multiple Sclerosis Pathogenesis. Brain 2022, 145, 4334–4348. [Google Scholar] [CrossRef]
- Ghirotto, B.; Oliveira, D.F.; Cipelli, M.; Basso, P.J.; de Lima, J.; Breda, C.N.S.; Ribeiro, H.C.; Silva, C.C.C.; Sertié, A.L.; Oliveira, A.E.R.; et al. MS-Driven Metabolic Alterations Are Recapitulated in IPSC-Derived Astrocytes. Ann. Neurol. 2022, 91, 652–669. [Google Scholar] [CrossRef]
- Smith, M.D.; Chamling, X.; Gill, A.J.; Martinez, H.; Li, W.; Fitzgerald, K.C.; Sotirchos, E.S.; Moroziewicz, D.; Bauer, L.; Paull, D.; et al. Reactive Astrocytes Derived From Human Induced Pluripotent Stem Cells Suppress Oligodendrocyte Precursor Cell Differentiation. Front. Mol. Neurosci. 2022, 15, 874299. [Google Scholar] [CrossRef]
- Plastini, M.J.; Desu, H.L.; Ascona, M.C.; Lang, A.L.; Saporta, M.A.; Brambilla, R. Transcriptional Abnormalities in Induced Pluripotent Stem Cell-Derived Oligodendrocytes of Individuals with Primary Progressive Multiple Sclerosis. Front. Cell Neurosci. 2022, 16, 972144. [Google Scholar] [CrossRef]
- Begentas, O.C.; Koc, D.; Yurtogullari, S.; Temel, M.; Akcali, K.C.; Demirkaya, S.; Kiris, E. Generation and Characterization of Human Induced Pluripotent Stem Cell Line METUi001-A from a 25-Year-Old Male Patient with Relapsing-Remitting Multiple Sclerosis. Stem Cell Res. 2021, 53, 102370. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Lu, P.; Taylor, B.V.; Charlesworth, J.; Cook, A.; Burdon, K.; Hewitt, A.; Young, K.M. Generation of MNZTASi001-A, a Human Pluripotent Stem Cell Line from a Person with Primary Progressive Multiple Sclerosis. Stem Cell Res. 2021, 57. [Google Scholar] [CrossRef] [PubMed]
- Mutukula, N.; Man, Z.; Takahashi, Y.; Iniesta Martinez, F.; Morales, M.; Carreon-Guarnizo, E.; Hernandez Clares, R.; Garcia-Bernal, D.; Martinez Martinez, L.; Lajara, J.; et al. Generation of RRMS and PPMS Specific IPSCs as a Platform for Modeling Multiple Sclerosis. Stem Cell Res. 2021, 53, 102319. [Google Scholar] [CrossRef]
- Starost, L.; Lindner, M.; Herold, M.; Xu, Y.K.T.; Drexler, H.C.A.; Heß, K.; Ehrlich, M.; Ottoboni, L.; Ruffini, F.; Stehling, M.; et al. Extrinsic Immune Cell-Derived, but Not Intrinsic Oligodendroglial Factors Contribute to Oligodendroglial Differentiation Block in Multiple Sclerosis. Acta Neuropathol. 2020, 140, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Caraballo, L.; Martorell-Marugan, J.; Carmona-Sáez, P.; Gonzalez-Munoz, E. IPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient in Vitro Cell Migration Stimulation. Cells 2020, 9, 1803. [Google Scholar] [CrossRef]
- Morales Pantoja, I.E.; Smith, M.D.; Rajbhandari, L.; Cheng, L.; Gao, Y.; Mahairaki, V.; Venkatesan, A.; Calabresi, P.A.; Fitzgerald, K.C.; Whartenby, K.A. IPSCs from People with MS Can Differentiate into Oligodendrocytes in a Homeostatic but Not an Inflammatory Milieu. PLoS ONE 2020, 15, e0233980. [Google Scholar] [CrossRef]
- Perriot, S.; Mathias, A.; Perriard, G.; Canales, M.; Jonkmans, N.; Merienne, N.; Meunier, C.; El Kassar, L.; Perrier, A.L.; Laplaud, D.A.; et al. Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Rep. 2018, 11, 1199–1210. [Google Scholar] [CrossRef]
- Miquel-Serra, L.; Duarri, A.; Muñoz, Y.; Kuebler, B.; Aran, B.; Costa, C.; Martí, M.; Comabella, M.; Malhotra, S.; Montalban, X.; et al. Generation of Six Multiple Sclerosis Patient-Derived Induced Pluripotent Stem Cell Lines. Stem Cell Res. 2017, 24, 155–159. [Google Scholar] [CrossRef]
- Nicaise, A.M.; Banda, E.; Guzzo, R.M.; Russomanno, K.; Castro-Borrero, W.; Willis, C.M.; Johnson, K.M.; Lo, A.C.; Crocker, S.J. IPS-Derived Neural Progenitor Cells from PPMS Patients Reveal Defect in Myelin Injury Response. Exp. Neurol. 2017, 288, 114–121. [Google Scholar] [CrossRef]
- Massa, M.G.; Gisevius, B.; Hirschberg, S.; Hinz, L.; Schmidt, M.; Gold, R.; Prochnow, N.; Haghikia, A. Multiple Sclerosis Patient-Specific Primary Neurons Differentiated from Urinary Renal Epithelial Cells via Induced Pluripotent Stem Cells. PLoS ONE 2016, 11, e0155274. [Google Scholar] [CrossRef]
- Douvaras, P.; Wang, J.; Zimmer, M.; Hanchuk, S.; O’Bara, M.A.; Sadiq, S.; Sim, F.J.; Goldman, J.; Fossati, V. Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells. Stem Cell Rep. 2014, 3, 250–259. [Google Scholar] [CrossRef]
- Herszfeld, D.; Payne, N.L.; Sylvain, A.; Sun, G.; Bernard, C.C.; Clark, J.; Sathananthan, H. Fine Structure of Neurally Differentiated IPS Cells Generated from a Multiple Sclerosis (MS) Patient: A Case Study. Microsc. Microanal. 2014, 20, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, M.; Mazzoldi, E.L.; Ferraro, R.M.; Pinelli, M.; Parigi, M.; Aghel, S.A.M.; Bugatti, M.; Collo, G.; Stocco, G.; Vermi, W.; et al. Progesterone Receptor is Constitutively Expressed in induced Pluripotent Stem Cells (iPSCs). Stem Cell Rev. Rep. 2024, 20, 2302–2317. [Google Scholar] [CrossRef] [PubMed]
- Bajan, S.; Hutvagner, G. RNA-Based Therapeutics: From Antisense Oligonucleotides to MiRNAs. Cells 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Keller, A.; Meese, E. Emerging Concepts of MiRNA Therapeutics: From Cells to Clinic. Trends Genet. 2022, 38, 613–626. [Google Scholar] [CrossRef]
- Sun, F.; Chen, H.; Dai, X.; Hou, Y.; Li, J.; Zhang, Y.; Huang, L.; Guo, B.; Yang, D. Liposome-Lentivirus for MiRNA Therapy with Molecular Mechanism Study. J. Nanobiotechnol. 2024, 22, 329. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.K.; Ajit, S.K. MicroRNA Biology and Pain. Prog. Mol. Biol. Transl. Sci. 2015, 131, 215–249. [Google Scholar] [CrossRef] [PubMed]
- De Santi, C.; Nally, F.K.; Afzal, R.; Duffy, C.P.; Fitzsimons, S.; Annett, S.L.; Robson, T.; Dowling, J.K.; Cryan, S.A.; McCoy, C.E. Enhancing Arginase 2 Expression Using Target Site Blockers as a Strategy to Modulate Macrophage Phenotype. Mol. Ther. Nucleic Acids 2022, 29, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Song, Y.; Pan, J.J.; Jiang, Y.; Shi, X.; Liu, C.; Ma, Y.; Luo, L.; Mamtilahun, M.; et al. M2 Microglia-Derived Extracellular Vesicles Promote White Matter Repair and Functional Recovery via MiR-23a-5p after Cerebral Ischemia in Mice. Theranostics 2022, 12, 3553–3573. [Google Scholar] [CrossRef]
- Prada, I.; Gabrielli, M.; Turola, E.; Iorio, A.; D’Arrigo, G.; Parolisi, R.; De Luca, M.; Pacifici, M.; Bastoni, M.; Lombardi, M.; et al. Glia-to-Neuron Transfer of MiRNAs via Extracellular Vesicles: A New Mechanism Underlying Inflammation-Induced Synaptic Alterations. Acta Neuropathol. 2018, 135, 529–550. [Google Scholar] [CrossRef]
- Milbreta, U.; Lin, J.; Pinese, C.; Ong, W.; Chin, J.S.; Shirahama, H.; Mi, R.; Williams, A.; Bechler, M.E.; Wang, J.; et al. Scaffold-Mediated Sustained, Non-Viral Delivery of MiR-219/MiR-338 Promotes CNS Remyelination. Mol. Ther. 2019, 27, 411–423. [Google Scholar] [CrossRef]
- Diao, H.J.; Low, W.C.; Milbreta, U.; Lu, Q.R.; Chew, S.Y. Nanofiber-Mediated MicroRNA Delivery to Enhance Differentiation and Maturation of Oligodendroglial Precursor Cells. J. Control. Release 2015, 208, 85–92. [Google Scholar] [CrossRef]
- Christodoulou, M.V.; Petkou, E.; Atzemoglou, N.; Gkorla, E.; Karamitrou, A.; Simos, Y.V.; Bellos, S.; Bekiari, C.; Kouklis, P.; Konitsiotis, S.; et al. Cell Replacement Therapy with Stem Cells in Multiple Sclerosis, a Systematic Review. Hum. Cell 2023, 37, 9–53. [Google Scholar] [CrossRef]
- Laterza, C.; Merlini, A.; De Feo, D.; Ruffini, F.; Menon, R.; Onorati, M.; Fredrickx, E.; Muzio, L.; Lombardo, A.; Comi, G.; et al. IPSC-Derived Neural Precursors Exert a Neuroprotective Role in Immune-Mediated Demyelination via the Secretion of LIF. Nat. Commun. 2013, 4, 2597. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, J.; Li, X.; Xu, H.; Wang, W.; Wang, L.; Zhao, X.; Li, W.; Jiao, J.; Hu, B.; et al. Treatment of Multiple Sclerosis by Transplantation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells. Sci. China Life Sci. 2016, 59, 950–957. [Google Scholar] [CrossRef]
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; et al. Neural Stem Cell Transplantation in Patients with Progressive Multiple Sclerosis: An Open-Label, Phase 1 Study. Nat. Med. 2023, 29, 75–85. [Google Scholar] [CrossRef]
- Matsui, T.K.; Matsubayashi, M.; Sakaguchi, Y.M.; Hayashi, R.K.; Zheng, C.; Sugie, K.; Hasegawa, M.; Nakagawa, T.; Mori, E. Six-Month Cultured Cerebral Organoids from Human ES Cells Contain Matured Neural Cells. Neurosci. Lett. 2018, 670, 75–82. [Google Scholar] [CrossRef]
- Nicaise, A.M.; Wagstaff, L.J.; Willis, C.M.; Paisie, C.; Chandok, H.; Robson, P.; Fossati, V.; Williams, A.; Crocker, S.J. Cellular Senescence in Progenitor Cells Contributes to Diminished Remyelination Potential in Progressive Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 9030–9039. [Google Scholar] [CrossRef]
- Li, Y.; Darabi, R. Role of Epigenetics in Cellular Reprogramming; from IPSCs to Disease Modeling and Cell Therapy. J. Cell Biochem. 2022, 123, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Douvaras, P.; Rusielewicz, T.; Kim, K.H.; Haines, J.D.; Casaccia, P.; Fossati, V. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes. Int. J. Mol. Sci. 2016, 17, 614. [Google Scholar] [CrossRef]
- Di Ruscio, A.; Patti, F.; Welner, R.S.; Tenen, D.G.; Amabile, G. Multiple Sclerosis: Getting Personal with Induced Pluripotent Stem Cells. Cell Death Dis. 2015, 6, e1806. [Google Scholar] [CrossRef] [PubMed]
- Tiane, A.; Schepers, M.; Reijnders, R.A.; van Veggel, L.; Chenine, S.; Rombaut, B.; Dempster, E.; Verfaillie, C.; Wasner, K.; Grünewald, A.; et al. From Methylation to Myelination: Epigenomic and Transcriptomic Profiling of Chronic Inactive Demyelinated Multiple Sclerosis Lesions. Acta Neuropathol. 2023, 146, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.J.; Yi, C.M.; Traber, G.M.; Yu, A.M. Bioengineered RNA Therapy in Patient-Derived Organoids and Xenograft Mouse Models. Methods Mol. Biol. 2022, 2521, 191–206. [Google Scholar] [CrossRef]
- Sun, Y.; You, Y.; Wu, Q.; Hu, R.; Dai, K. Senescence-Targeted MicroRNA/Organoid Composite Hydrogel Repair Cartilage Defect and Prevention Joint Degeneration via Improved Chondrocyte Homeostasis. Bioact. Mater. 2024, 39, 427–442. [Google Scholar] [CrossRef]
- Parmentier, T.; James, F.M.K.; Hewitson, E.; Bailey, C.; Werry, N.; Sheridan, S.D.; Perlis, R.H.; Perreault, M.L.; Gaitero, L.; Lalonde, J.; et al. Human Cerebral Spheroids Undergo 4-Aminopyridine-Induced, Activity Associated Changes in Cellular Composition and Microrna Expression. Sci. Rep. 2022, 12, 9143. [Google Scholar] [CrossRef]
- Silver, B.B.; Fannin, R.; Gerrish, K.; Tokar, E. Characterization of Extracellular Vesicles and MiRNA Released by Cerebral Organoids. Curr. Res. Toxicol. 2025, 100229. [Google Scholar] [CrossRef]
- Qin, D.; Wang, C.; Li, D.; Guo, S. Exosomal MiR-23a-3p Derived from Human Umbilical Cord Mesenchymal Stem Cells Promotes Remyelination in Central Nervous System Demyelinating Diseases by Targeting Tbr1/Wnt Pathway. J. Biol. Chem. 2024, 300, 105487. [Google Scholar] [CrossRef]
- You, D.; Cohen, J.D.; Pustovalova, O.; Lewis, L.; Shen, L. Profiling Secreted MiRNA Biomarkers of Chemical-Induced Neurodegeneration in Human IPSC-Derived Neurons. Toxicol. Sci. 2022, 186, 221–241. [Google Scholar] [CrossRef]
- Segal, M.; Slack, F.J. Challenges Identifying Efficacious MiRNA Therapeutics for Cancer. Expert Opin. Drug Discov. 2020, 15, 987–992. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Zhou, S.; Mao, J.; Zhan, Z.; Duan, S. MiRNA Interplay: Mechanisms and Therapeutic Interventions in Cancer. MedComm-Oncology 2024, 3, e93. [Google Scholar] [CrossRef]
- O’Carroll, S.J.; Cook, W.H.; Young, D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front. Mol. Neurosci. 2021, 13, 618020. [Google Scholar] [CrossRef] [PubMed]
- Humbel, M.; Ramosaj, M.; Zimmer, V.; Regio, S.; Aeby, L.; Moser, S.; Boizot, A.; Sipion, M.; Rey, M.; Déglon, N. Maximizing Lentiviral Vector Gene Transfer in the CNS. Gene Ther. 2021, 28, 75–88, Erratum in Gene Ther. 2022, 29, 312. [Google Scholar] [CrossRef]
- Yshii, L.; Pasciuto, E.; Bielefeld, P.; Mascali, L.; Lemaitre, P.; Marino, M.; Dooley, J.; Kouser, L.; Verschoren, S.; Lagou, V.; et al. Astrocyte-Targeted Gene Delivery of Interleukin 2 Specifically Increases Brain-Resident Regulatory T Cell Numbers and Protects against Pathological Neuroinflammation. Nat. Immunol. 2022, 23, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Dolan, M.J.; Therrien, M.; Jereb, S.; Kamath, T.; Gazestani, V.; Atkeson, T.; Marsh, S.E.; Goeva, A.; Lojek, N.M.; Murphy, S.; et al. Exposure of IPSC-Derived Human Microglia to Brain Substrates Enables the Generation and Manipulation of Diverse Transcriptional States in Vitro. Nat. Immunol. 2023, 24, 1382–1390. [Google Scholar] [CrossRef]
- Gareev, I.; Beylerli, O.; Tamrazov, R.; Ilyasova, T.; Shumadalova, A.; Du, W.; Yang, B. Methods of MiRNA Delivery and Possibilities of Their Application in Neuro-Oncology. Noncoding RNA Res. 2023, 8, 661–674. [Google Scholar] [CrossRef]
- Osorio-Querejeta, I.; Carregal-Romero, S.; Ayerdi-Izquierdo, A.; Mäger, I.; Nash, L.A.; Wood, M.; Egimendia, A.; Betanzos, M.; Alberro, A.; Iparraguirre, L.; et al. MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently than Liposomes and Polymeric Nanoparticles. Pharmaceutics 2020, 12, 186. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, T.E.; Andrews, P.W.; Barbaric, I.; Benvenisty, N.; Bhattacharyya, A.; Crook, J.M.; Daheron, L.M.; Draper, J.S.; Healy, L.E.; Huch, M.; et al. ISSCR Standards for the Use of Human Stem Cells in Basic Research. Stem Cell Rep. 2023, 18, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, E.; Piraino, F.; Costa, M.; Roch, A.; Norkin, M.; Garnier, V.; Homicsko, K.; Brandenberg, N. IPSC-Derived and Patient-Derived Organoids: Applications and Challenges in Scalability and Reproducibility as Pre-Clinical Models. Curr. Res. Toxicol. 2024, 7, 100197. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Xin, X.; Liu, C.; Li, L.; Mei, X.; Li, M. Merits and Challenges of IPSC-Derived Organoids for Clinical Applications. Front. Cell Dev. Biol. 2023, 11, 1188905. [Google Scholar] [CrossRef]
- Mollaki, V. Ethical Challenges in Organoid Use. BioTech 2021, 10, 12. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Major Findings | Reference |
---|---|---|---|
Serum | |||
Yañez-Esparza et al. | 2025 | RRMS vs. HC: miR-143-5p (↑)/miR-145-5p (↓) | [54] |
Maimaitijiang et al. | 2025 | SPMS vs. HC: miR-133b (↓) | [55] |
Agostini et al. | 2024 | SPMS vs. RRMS: miR-34a-5p, miR-103a-3p and miR-376a-3p (↑). cSPMS vs. RRMS: miR-34a-5p, miR-103a-3p and miR-376a-3p (↑) | [56] |
Domínguez-Mozo et al. | 2024 | miR-126-3p: correlation with EDSS at cognitive status at baseline. miR-126-3p, miR-9: correlation with cognitive deterioration at 1 year. miR-9: correlation with sNFL. miR-146a-5p: association with MS phenotype. | [57] |
Al-Dahimavi et al. | 2024 | MS vs. HC: miR-26a, miR-34a, miR-146a (↑) | [58] |
Tan et al. | 2024 | SPMS vs. RRMS: miR-451a, miR-16-2-3p, miR-9-5p, miR-15a-5p, miR-144-3p, miR-100-5p, miR-210-3p (↑) | [59] |
Ahmed et al. | 2024 | MS vs. HC: miR-135-5p (↑) | [60] |
Mohammadinasr et al. | 2023 | RRMS vs. HC: let-7 g-5p, miR-18a-5p, miR-145-5p, miR-374a-5p, miR-150-5p, miR-342-3p (↑)/miR-132-5p, miR-320a-5p (↓) | [61] |
Gonzalez-Martinez et al. | 2023 | NEDA-3 vs. EDA-3: miR-548a-3p (↑) | [62] |
Gonzalez-Martinez et al. | 2023 | Benign MS vs. Not benign MS: miR-320b (↑)/miR-25-3p (↓) | [63] |
Geiger et al. | 2023 | miR-92a-3p, miR-486-5p: associated with greater total white matter lesion volumes. miR-142-5p: associated with total creatinine concentration. miR-92a-3p, miR-142-5p, miR-486-5p: associated with functional connectivity strengths | [64] |
Casanova et al. | 2023 | miR-9-5p: associated with EDSS progression at 2 years. Lower levels of miR-138-5p in NEDA-3 at 2 years. Higher levels of miR-146a-5p and miR-126-3p in CDP progression at 2 years | [65] |
Muñoz-San Martín et al. | 2022 | PPMS vs. OND&RRMS: miR-20a-5p (↑)/miR-320b (↓). PPMS vs. RRMS: miR-26a-5p, miR-485-3p (↓). RRMS vs. OND: miR-142-5p (↑) | [66] |
Mancuso et al. | 2022 | miR-126-3p greatly increased in PML | [67] |
Vistbakka et al. | 2022 | RRMS vs. HC: miR-191-5p (↑). PPMS vs. HCS: miR-128-3p (↑). Temporal changes: miR-191-5p (EDSS, MRI activity) and miR-223-3p (relapse) | [68] |
Domínguez-Mozo et al. | 2022 | miR-146a-5p, miR-9-5p: association with EDSS. miR-146a-5p, miR-126-3p: association with SDMT | [69] |
Saridas et al. | 2022 | miR-146a and miR-155 were significant in the RRMS-Control group for the area under the curve | [70] |
Cuomo-Haymour et al. | 2022 | RRMS&CIS&VI vs. Control: miR-21-5p (↑)/miR-6735-3p, miR-6833-5p, miR-510-3p (↓). | [71] |
Khedr et al. | 2022 | MS vs. HCS: miR-22. SPMS vs. RRMS: miR-22 (↑). miRNA-22: associated with EDSS. | [72] |
Perdaens et al. | 2020 | Rel-MS and Rem-MS vs. HC: miR-15a-3p, miR-24-3p, miR-126-3p, miR-146a-5p, miR-181c-5p (↓). Rel-MS vs. HC: miR-214-3p (↓) | [73] |
Domínguez-Mozo et al. | 2020 | Detection of HHV-6A/B miRNAs. Correlation of: hhv6b-miR-Ro6-2 and hhv6b-miR-Ro6−3-5p, hhv6b-miR-Ro6−2 and miR-U86, hhv6b-miR-Ro6−3-5p and miR-U86 | [74] |
Zanoni et al. | 2020 | PMS vs. RRMS: miR-128-3p (↑). No relapses vs. relapses: miR-128-3p (↑) | [75] |
Ibrahim et al. | 2020 | MS vs. HC: miR-300, miR-450b-5p (↓). SPMS vs. RRMS: miR-300, miR-450b-5p (↓). | [76] |
Sharaf-Eldin et al. | 2020 | miR-23a: differentiation of MS from NMOSD and NPSLE | [77] |
Shademan et al. | 2020 | MS vs. HC: miR-146a, miR-155 (↑) | [78] |
Senousy et al. | 2020 | MS vs. HC: miR-137 (↓) | [79] |
Ebrahimkhani et al. | 2020 | miR-150-5p, miR-548e-3p decreased with treatment. miR-130b-3p, miR-654-5p, miR-487b-5p increased after treatment | [80] |
Hemond et al. | 2019 | miR-22-3p, miR-361-5p, miR-345-5p: most valid differentiators of MRI phenotypes | [81] |
Vistbakka et al. | 2018 | RRMS and PPMS vs. HC: miR-24-3p, miR-191-5p (↑). PPMS vs. HC: miR-128-3p (↑) | [82] |
Regev et al. | 2018 | RRMS vs. HC: miR-484 (↑). SPMS vs. HC: miR-320a, miR-320b, miR-320c, miR-484 (↑)/miR-140-5p, miR-142-5p (↓) | [83] |
Manna et al. | 2018 | IFN-MS vs. tn-MS: miR-22-3p, miR-660-5p/let-7b-5p, miR-15b-3p, miR-19-3p, miR-23a-3p, miR-26a-5p, miR-122-5p, miR-142-3p, miR-146a-5p, miR-215-5p, miR-223-3p, miR-320b, miR-320d, miR-451a, miR-486-5p (↓) | [84] |
Wang et al. | 2017 | Rel-MS vs. HC: ebv-miR-BHRF1-2-5p, ebv-miR-BHRF1-3 (↑) | [85] |
Regev et al. | 2017 | miR-142-5p, miR-143-3p, miR-181c-3p, miR-181c-5p: protective correlations with T1:T2. miR-486-5p, miR-92a-3p: pathogenic correlations with T1:T2. miR-375, miR-629-5p: pathogenic correlation with brain atrophy | [86] |
Niwald et al. | 2017 | RRMS vs. HC: miR-326 (↑)/miR-155, miR-301a (↓) | [87] |
Sharaf-Eldin et al. | 2017 | MS vs. HC: miR-145, miR-223 (↑) | [88] |
Ebrahimkhani et al. | 2017 | RRMS vs. HC: miR-15b-5p, miR-30b-5p, miR-342-3p, miR-451a (↑). PMS vs. HC: miR-370-3p, miR-409-3p, miR-432-5p (↑). RRMS vs. PMS: miR-15b-5p, miR-23a-3p, miR-30b-5p, miR-223-3p, miR-342-3p, miR-374a-5p, miR-485-3p (↑)/miR-432-5p, miR-433-3p (↓) | [89] |
Selmaj et al. | 2017 | Rel-MS vs. HC: miR-122-5p, miR-196b-5p, miR-301a-3p, miR-532-5p (↓). Rem-MS vs. HC: miR-122-5p, miR-196b-5p, miR-532-5p (↓). Rem-MS vs. HC: miR-122-5p (↓). | [90] |
Vistbakka et al. | 2017 | PMS vs. HC: miR-26a-5p, miR-191-5p (↑). SPMS vs. HC: miR-26a-5p, miR-191-5p (↑) | [91] |
Regev et al. | 2016 | MS vs. HC: miR-25-3p, miR-140-3p, miR-320b, miR-486-5p (↑)/let-7c-5p, miR-365a-3p (↓). RRMS vs. PMS: miR-27a-3p (↑). RRMS vs. SPMS: miR-27a-3p, miR-376b-3p (↑) | [92] |
Ahlbrecht et al. | 2016 | CIS-MS vs. CIS-CIS: miR-922 (↑) | [93] |
Mancuso et al. | 2015 | MS vs. HC: miR-572 (↓). PPMS vs. HC: miR-572 (↓). Rem-MS vs. HC: miR-572 (↓). SPMS vs. PPMS: miR-572 (↑). Rel-MS vs. Rem-MS: miR-572 (↑) | [94] |
Zhang et al. | 2014 | MS vs. HC: miR-124, miR-146a, miR-210, miR-155, miR-326 (↑). Rel-MS vs. Rem-MS: miR-155 (↑) | [95] |
Ridolfi et al. | 2013 | RRMS vs. HC: miR-15b, miR-23a, miR-223 (↓); PPMS vs. HC: miR-15b (↓) | [96] |
Fenoglio et al. | 2013 | MS vs. HC: miR-15b, miR-223 (↓). PPMS vs. HC: miR-15b, miR-223 (↓) | [97] |
Plasma | |||
Elsayed et al. | 2024 | MS vs. HC: no differences in miR-155. miR-155: positive correlation with TNF-α, INF-ɣ and iNOS, inverse correlation with IL-10, TGF-β and SMAD2 | [98] |
Al-Temaimi et al. | 2024 | RRMS vs. HC: miR-23a-3p (↑)/miR-326 (↓); SPMS vs. RRMS: miR-150-5p, miR-320a-3p (↓) | [99] |
Al-Temaimi et al. | 2024 | MS vs. HC: miR-24-3p (↓). RRMS vs. hC: miR-484 (↑). SPMS vs. RRMS: miR-146-5p, miR-484 (↓) | [100] |
Scaroni et al. | 2022 | CI vs. CP: miR-150-5p (↑)/let-7b-5p (↓) | [101] |
Zheleznyakova et al. | 2021 | RRMS vs. N + INDC: miR-215-5p (↓) | [102] |
Balkan et al. | 2021 | MS vs. HC: miR-20 (↑)/miR-26, miR-155 (↓) | [103] |
Giuliani et al. | 2021 | RRMS vs. HC: miR-34a, miR-125a-5p (↑)/miR-146a-5p (↓). After treatment: reduced miR-125a-5p, miR-146a-5p, miR-155 | [104] |
Muñoz-San Martín et al. | 2020 | RIS-Conversion vs. RIS-RIS: miR-483-3p (↑)/miR-142-3p, miR-338-3p, miR-363-3p, miR-374b-5p, miR-424-5p (↓) | [105] |
Muñoz-San Martín et al. | 2019 | Gd+ RRMS vs. Gd− RRMS: no differences | [106] |
Kimura et al. | 2018 | MS vs. HC: let-7c, miR-19b, miR-25, miR-92a (↑) | [107] |
Saénz-Cuesta et al. | 2018 | Change of miRNA cargo after fingolimod treatment | [108] |
Basnyat et al. | 2017 | NTZ-MS vs. IFN-MS: jcv-miR-J1-5p (↓) | [109] |
Kacperska et al. | 2015 | Rem-MS vs. HC: let-7a, miR-648a (↓) | [110] |
Giovanelli et al. | 2015 | No differences in Polyomavirus JC miRNA | [111] |
Gandhi et al. | 2013 | RRMS vs. HC: miR-22, miR-30e, miR-140-3p, miR-210, miR-500, miR-547-3p (↑). SPMS vs. HC: let-7a (↓). RRMS vs. SPMS: miR-92a-3p*, miR-135a, miR-454, miR-500, miR-574-3p (↑) | [112] |
Søndergaard et al. | 2013 | RRMS vs. HC: miR-145 (↑)/miR-660, miR-939 (↓) | [113] |
Siegel et al. | 2012 | MS vs. HC: miR-22, miR-422a, miR-572, miR-614, miR-648, miR-1826 (↑)/miR-1979 (↓) | [114] |
CSF | |||
Pavlovic et al. | 2025 | pwMS vs. HC: miR-16-5p, miR-21-5p, miR-150-5p, miR-146a-5p, miR-142-5p, miR-148a-3p, miR-222-3p, miR-92a-3p, miR-342-3p, miR-100-5p (↑)/miR-143-3p, miR-27b-3p (↓) | [115] |
Mohammadinasr et al. | 2024 | RRMS vs. HCS: ebv-miR-BART9-3p, ebv-miR-BART15, hsa-miR-21-5p, hsa-miR-146a-5p (↑) | [116] |
Tan et al. | 2024 | No differences | [59] |
Dolcetti et al. | 2024 | miR-142-3p: correlation with MSSS, disease progression, IL-1β. | [117] |
Shademan et al. | 2023 | MS vs. controls: miR-21, miR-155, miR-182 (↑) | [118] |
Mohammadinasr et al. | 2023 | RRMS vs. HC: let-7 g-5p, miR-18a-5p, miR-145-5p, miR-374a-5p, miR-150-5p, miR-342-3p (↑)/miR-132-5p, miR-320a-5p (↓) | [61] |
Zanghì et al. | 2023 | RRMS vs. OND: miR-106a-5p (↑) | [119] |
De Vito et al. | 2023 | High levels of miR-142-3p | [120] |
Muñoz-San Martín et al. | 2022 | PPMS vs. OND: let-7b-5p, miR-143-3p (↑) | [66] |
De Vito et al. | 2022 | miR-142-3p: correlation with clinical progression. Better response to DMF in ‘low-miR-142’ patients | [121] |
Zheleznyakova et al. | 2021 | RRMS vs. N + INDC: miR-146a-5p, miR-148a-3p, miR-150-5p, miR-181a-5p, miR-29a/b-3p, miR-342-3p (↑)/miR-204-5p, miR-371a-3p (↓) | [102] |
Mandolesi et al. | 2021 | PMS vs. RRMS: let-7b-5p (↓) | [122] |
Perdaens et al. | 2020 | MS vs. SC: miR-150-5p, miR-155-5p (↑)/miR-15a-3p, miR-34c-5p, miR-297 (↓). Rel-MS vs. Rem-MS or SC: miR-24-3p, miR-27a-3p, miR-27b-3p, miR-29c-3p, miR-125b-5p, miR-145-5p, miR-21-5p, miR-146a-5p (↑). Rel-MS vs. SC: miR-124-5p (↓). Rem-MS vs. Rel-MS and/or SC: miR-149-3p (↑)/miR-20a-5p, miR-33a-3p, miR-214-3p (↓) | [73] |
Muñoz-San Martín et al. | 2020 | RIS-Conversion vs. RIS-RIS: miR-144-3p, miR-448, miR-653-3p (↑) | [105] |
Domínguez-Mozo et al. | 2020 | Detection of HHV-6A/B miRNAs. Correlation of hhv6b-miR-Ro6-2 and hhv6b-miR-Ro6−3-5p | [74] |
Li et al. | 2020 | Relapse vs. Remmision and Control: miR-1-3p (↑) | [123] |
Kramer et al. | 2019 | MS vs. OND: miR-181c, miR-633 (↑). SPMS vs. PPMS: miR-181c, miR-633 (↑); SPMS vs. RRMS: miR-181c (↑) | [124] |
Muñoz-San Martín et al. | 2019 | Gd+ RRMS vs. Gd− RRMS: miR-21, miR-146a, miR-146b (↑) | [106] |
Bruinsma et al. | 2017 | MS vs. Controls: Absence of miR-219 | [125] |
Liu et al. | 2017 | Rel-MS vs. Rem-MS and HC: miR-590 (↑) | [126] |
Wu et al. | 2017 | Rel-MS vs. Rem-MS and HC: miR-448 (↑) | [127] |
Mandolesi et al. | 2017 | Gd+ RRMS vs. Gd− RRMS and OND: miR-142-3p (↑) | [128] |
Quintana et al. | 2017 | MS vs. OND: miR-30a-5p, miR-150, miR-328, miR-645 (↑)/miR-21, miR-106a, miR-146a, miR-191, miR-199a-3p, miR-365 (↓). LS_OCMB+ RRMS vs. OND: miR-30a-5p, miR-150, miR-645 (↑)/miR-191 (↓) | [129] |
Lecca et al. | 2016 | Active MS vs. Inactive MS and OND: miR-125a-3p (↑) | [130] |
Bergman et al. | 2016 | RRMS vs. NINDC and INDC: miR-150 (↑). CIS vs. NINDC: miR-150 (↑). CIS-CIS vs. CIS-MS: miR-150 (↑) | [131] |
Ahlbrecht et al. | 2016 | CIS-MS vs. CIS-CIS: miR-181c, miR-922 (↑) | [93] |
Haghikia et al. | 2012 | MS vs. OND: miR-181c, miR-633 (↑)/miR-922 (↓). RRMS vs. SPMS: miR-181c, miR-633 (↑) | [132] |
Urine | |||
Agostini et al. | 2021 | miR-J1-5p could be a biomarker to monitor JCPyV infection | [133] |
Giovannelli et al. | 2015 | No differences in Polyomavirus JC miRNAs | [111] |
Study | Year | miRNA | Therapeutic Application | Major Findings | Reference |
---|---|---|---|---|---|
Kornfeld et al. | 2024 | miR-145 | miR-145+/+ and miR-145−/− mice | (1) Loss of miR-145 increased remyelination and functional recovery after chronic demyelination with altered presence of astrocytes and microglia; (2) overexpression of miR-145 stunted OL differentiation and survival | [134] |
Marangon et al. | 2020 | miR-125a-3p | Lentiviral over-expression in vivo and ex vivo after LPC-induced demyelination | (1) miR125a-3p over-expression impaired OPC maturation; (2) miR-125a-3p downregulation accelerated remyelination; (3) direct interaction of miR-125a-3p with Slc8a3 and Gas7 | [135] |
Tripathi et al. | 2019 | miR-27a | Primary murine OPCs transfected with mimic and inhibitor, primary human OPCs transfected with mimic, intranasal administration of mimic in EAE and CPZ model | (1) Increased levels of miR-27a inhibited OPC proliferation and impaired differentiation of OPCs and myelination; (2) in vivo administration of miR-27a suppressed myelinogenic signals | [51] |
Nguyen et al. | 2019 | miR-219/miR-338 | miR-219/miR-338 in microglia and astrocytes from P1–2 neonatal rat cortices | (1) miR-219/miR-338: (a) diminished microglial expression of pro-inflammatory cytokines, (b) suppressed astrocyte activation, (c) enhanced OPC differentiation and maturation | [136] |
Zhang et al. | 2019 | miR-146a | Treatment of EAE mice with miR-146a mimics at day 14 post immunization once a week for 6 consecutive weeks | (1) miR-146a mimic: (a) improved neurological functional outcome, (b) increased the number of newly generated OLs, (c) increased cell number, cytokine level and protein levels of M2 microglia/macrophages, (d) decreased cytokine and protein levels of M1, (e) increased OPC differentiation and remyelination by the reduction of TLR2/IRAK1 signaling pathway activity | [137] |
Nazari et al. | 2018 | miR-219 | miR-219-GFP-expressing lentivirus in hiPSCs | (1) Increased expression of pre-OL markers | [138] |
Martin et al. | 2018 | miR-146a | miR-146a−/− mice and CPZ-induced demyelination model | (1) Absence of miR-146a reduced inflammatory responses, demyelination, axonal loss and the number of infiltrating macrophages and increased the number of myelinating OLs | [139] |
Ghasemi-Kasman et al. | 2018 | miR-302/367 cluster | Administration of lentivirus into the corpus callosum of CPZ-induced demyelination mice | (1) Expression of the miR-302/367 cluster in astrocytes increased the endogenous potential for repairing myelin insults by the generation of oligodendroglia from astrocytes | [140] |
Wang et al. | 2017 | miR-219 | miRNA mutant mice, siRNA transfection in primary OPCs, mimic delivery in vivo injected into white matter of 6- to-8-week-old WT mice containing 1% LPC | (1) Deletion of miR-219 genes leads to OL differentiation defects in the developing CNS and impaired CNS myelination; (2) miR-219 overexpression promotes OL maturation and remyelination; (3) miR-219 targets stage-specific inhibitors to promote OL differentiation; (4) miR-219 mimic promotes remyelination after LPC-induced demyelinating damage | [141] |
Zhang et al. | 2017 | miR-146a | Infusion of mimics into the corpus callosum for 7 days | (1) miR-146a mimics facilitated remyelination associated with augmentation of newly generated mature OLs; (2) miR-146a treatment considerably reduced IRAK1 protein levels | [142] |
Fan et al. | 2017 | miR-219 | Transduction of OPCs with miR-219-GV254 lentivirus and co-culture with spinal cord explant and transplantation in CPZ-induced demyelination model | (1) miR-219 accelerated the differentiation of NPCs into OPCs; (2) after transplantation of miR219-OPCs into CPZ-induced demyelinated mice, OLs migrated and matured to express MBP; (3) the presence of new myelin sheaths was observed; (4) transplanted miR219-OPCs induced the proliferation of endogenous NPCs | [143] |
Liu et al. | 2017 | miR-219 | Administration of miR-219-GV254 lentivirus into the corpus callosum of CPZ-induced demyelination mice | (1) miR-219 decreased the quantity of OPCs; (2) miR-219 increased the number of OLs and the levels of MBP and CNP; (3) miR-219 overexpression attenuated the extent of demyelination | [144] |
Kuypers et al. | 2016 | miR-297c | miR-297c lentivirus transduction in mouse embryonic fibroblasts and rat OPCs | (1) Overexpression of miR-297c-5p promoted G1/G0 arrest; (2) miR-297c-5p transduction increased the number of O1+ rOPCs during differentiation; (3) miR-297c-5p targeted CCNT2 | [145] |
Lecca et al. | 2016 | miR-125a-3p | Mimic/AntagomiR in primary OPCs from rat | (1) miR-125a-3p over-expression impaired OL maturation; (2) miR-125a-3p inhibition stimulated OL maturation | [130] |
Ebrahimi-Barough et al. | 2013 | miR-219 | miR-219-GFP-expressing lentivirus in hOPCs | (1) Overexpression of miR-219 decreased PDGFRa mRNA in OPCs and promoted pre-OL differentiation fate | [147] |
Study | Year | Type of MS | Starting Cell Type | Method of Reprogramming | Induced Cell Type | Major Findings | Reference |
---|---|---|---|---|---|---|---|
Fagiani et al. | 2024 | RRMS | Human fibroblasts | Sendai virus | Organoids containing microglia | (1) Accelerated OL differentiation from hiPSC-derived NPCs to generate forebrain organoids; (2) inclusion of hiPSC-derived microglia to achieve immunocompetence; (3) mimicking macroglia–microglia neurodegenerative phenotypes in organoids after being exposed to inflamed CSF from pwMS | [195] |
Marotta et al. | 2024 | PPMS | Biopsy-derived fibroblast | mRNA | Organoids containing isogenic microglia | (1) Organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes | [196] |
Ionescu et al. | 2024 | PMS | Skin fibroblasts | Non-modified RNA plus microRNA | iNSCs | (1) PMS iNSCs leaded to neurotoxic signaling, which might be pharmacologically rescuable | [197] |
Clayton et al. | 2024 | RRMS + SPMS + PPMS | Skin biopsies | Modified mRNAs | Glia-enriched cultures, cortical neurons | (1) Fewer OLs in PPMS iPSC-derived cultures; (2) increased expression of immune and inflammatory genes in OL lineage cells and astrocytes | [24] |
Gisevius et al. | 2024 | MS | RPTEC | Episomal plasmids | Primary neurons | (1) Promoted neurite recovery by propionic acid in induced primary neurons | [198] |
Daviaud et al. | 2023 | RRMS + SPMS + PPMS | PBMCs | Episomal plasmids | Cerebral organoids | (1) In MS organoids: (a) disrupted stem cell proliferation capacity, (b) reduced stem cell pool, (c) increased NPC and neuronal population and reduced OL population, (d) reduced expression of cell cycle inhibitor p21, (e) senescent and prematurely differentiated NPCs | [199] |
Kerkering et al. | 2023 | RRMS + SPMS + PPMS | PBMCs | Sendai virus | NSCs, neurons, and astrocytes | (1) Increased neurite damage in MS neurons treated with TNF-α/IL-17A; (2) less axonal damage in HC neurons cultured with TNF-α/IL-17A–reactive BMS astrocytes than PMS astrocytes; (3) rescued TNF-α/IL-17–induced neurite damage with supernatants from BMS astrocyte/neuronal cocultures | [200] |
Lotila et al. | 2022 | MS | PBMCs | Sendai virus | (1) Establishment of iPSC line | [201] | |
Begentas et al. | 2022 | MS | PBMCs | Sendai virus | iPSCs | (1) Establishment of iPSC line | [202] |
Fortune et al. | 2022 | RRMS + SPMS | PBMCs | Sendai virus | iPSCs | (1) Generation of 4 MS iPSC lines within a single family | [203] |
Nishihara et al. | 2022 | RRMS | PBMCs | Episomal plasmids | BMECs | (1) In MS-derived BMEC-like cells: (a) impaired junctional integrity, barrier properties and efflux pump activity, (b) inflammatory phenotype with increased adhesion molecule expression and immune cell interactions, (c) enhanced barrier characteristics and reduced inflammatory phenotype when Wnt/β-catenin signaling is activated | [204] |
Ghirotto et al. | 2022 | RRMS | PBMCs | Episomal plasmids | Astrocytes | (1) In MS astrocytes, including (a) enriched expression of genes associated with neurodegeneration, (b) increased mitochondrial fission, (c) increased production of superoxide and MS-related proinflammatory chemokines, (d) altered glutamate uptake/release, (e) increased electron transport capacity and proton leak, (f) distinct metabolic profile | [205] |
Smith et al. | 2022 | MS | PBMCs | Sendai virus | Astrocytes | (1) No differences between MS and control stimulated astrocytes; (2) suppressed OPC differentiation and myelin gene expression in OPCs exposed to ACM; (3) induction of immune pathways in OPCs exposed to ACM | [206] |
Plastini et al. | 2022 | PPMS | Skin biopsies | mRNA/miRNA method | OLs | (1) Differentially expressed genes in PPMS OLs (cell adhesion, apoptosis and inflammation) | [207] |
Begentas et al. | 2021 | RRMS | PBMCs | Sendai virus | iPSCs | (1) Establishment of iPSC line | [208] |
Mehta et al. | 2021 | PPMS | PBMCs | Sendai virus | iPSCs | (1) Establishment of iPSC line | [209] |
Mutukula et al. | 2021 | RRMS + PPMS | PBMCs | Episomal plasmids | iPSCs + NPCs | (1) Elevated expression of senescence hallmarks | [210] |
Starost et al. | 2020 | RRMS | Skin biopsies | Sendai virus | OLs, neurons | (1) No differences between RRMS and control OLs in (a) proliferation and migration capacities, (b) differentiation, (c) ensheathment of 3D nanofibers, (d) stress response, (e) proteome. (2) Impaired differentiation of both OLs with supernatants of supernatants of activated PBMCs | [211] |
Lopez-Caraballo et al. | 2020 | SPMS | Menstrual blood-derived stromal cells | DNA vectors | OLs | (1) Differences between SPMS-OPCs and control-OPCs in (a) transcription products; (b) protein secretion into CM. (2) Deficient capacity to stimulate OPC migration in SPMS-OPC CM. | [212] |
Morales Pantoja et al. | 2020 | PMS | PBMCs | Episomal plasmids | OLs | (1) Exposure to IFNγ might (a) inhibit OPC differentiation, (b) redirect lineage phenotype, (c) upregulate immune response pathways | [213] |
Perriot et al. | 2018 | RRMS | PBMCs | Episomal plasmids | Neurons, Astrocytes | (1) Relevant use of serum-free media to generate resting astrocytes; (2) specific reactivity of astrocytes depending on the triggering inflammatory stimulus | [214] |
Miquel-Serra et al. | 2017 | MS | Skin fibroblasts | Retroviral transduction | iPSCs | (1) Establishment of iPSC line | [215] |
Nicaise et al. | 2017 | PPMS | Blood | Sendai virus | NPCs | (1) PPMS NPCs failed to protect against (a) CPZ-induce demyelination, (b) toxicity; (2) did not support OL differentiation by PPMS NPCs | [216] |
Massa et al. | 2016 | MS | RPTEC | Episomal plasmids | Primary neurons | (1) Establishment of iPSC line with a non-invasive procedure devoid of permanent genetic manipulation | [217] |
Douvaras et al. | 2014 | PPMS | Skin biopsies | mRNA/miRNA method | OLs | (1) Functional PPMS OPCs with myelination capacity | [218] |
Herszfeld et al. | 2014 | MS | Fibroblasts | Retroviral transduction | OLs | (1) Obtention of mixed population of neural cells rather than oligodendroglia of high purity | [219] |
Song et al. | 2012 | RRMS | Fibroblasts | Retroviral transduction | iPSCs | (1) Establishment of iPSC line from a MS patient | [194] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-San Martín, M.; de la Guerra-Sasián, L.; Gárate, G.; Madera, J.; González-Suárez, A.; Cavada-Bustamante, N.C.; González-Quintanilla, V.; Dowling, J.K. From Molecules to Models: miRNAs and Advanced Human Platforms of Neurodegeneration and Repair in Multiple Sclerosis. Int. J. Mol. Sci. 2025, 26, 8740. https://doi.org/10.3390/ijms26178740
Muñoz-San Martín M, de la Guerra-Sasián L, Gárate G, Madera J, González-Suárez A, Cavada-Bustamante NC, González-Quintanilla V, Dowling JK. From Molecules to Models: miRNAs and Advanced Human Platforms of Neurodegeneration and Repair in Multiple Sclerosis. International Journal of Molecular Sciences. 2025; 26(17):8740. https://doi.org/10.3390/ijms26178740
Chicago/Turabian StyleMuñoz-San Martín, María, Lucía de la Guerra-Sasián, Gabriel Gárate, Jorge Madera, Andrea González-Suárez, Nadia C. Cavada-Bustamante, Vicente González-Quintanilla, and Jennifer K. Dowling. 2025. "From Molecules to Models: miRNAs and Advanced Human Platforms of Neurodegeneration and Repair in Multiple Sclerosis" International Journal of Molecular Sciences 26, no. 17: 8740. https://doi.org/10.3390/ijms26178740
APA StyleMuñoz-San Martín, M., de la Guerra-Sasián, L., Gárate, G., Madera, J., González-Suárez, A., Cavada-Bustamante, N. C., González-Quintanilla, V., & Dowling, J. K. (2025). From Molecules to Models: miRNAs and Advanced Human Platforms of Neurodegeneration and Repair in Multiple Sclerosis. International Journal of Molecular Sciences, 26(17), 8740. https://doi.org/10.3390/ijms26178740