Real-Time Kinetics of Internalization of Anti-EGFR DNA Aptamers and Aptamer Constructs into Cells Derived from Glioblastoma Patients as Indicated by Doxorubicin
Abstract
1. Introduction
1.1. Covalent MoRE–Drug Conjugates
1.2. Non-Covalent MoRE–DOX Complexes
2. Results and Discussion
2.1. Models of Putative Secondary Structures of Anti-EGFR DNA Aptamers and ACCO Design for the U31 Family
Proton Magnetic Resonance Spectrometry of the Aptamer GR20
2.2. Assembly of the Aptamer Construct with the Complementary Oligonucleotide—The ACCO GR20hh’
2.3. Thermal Stability of 18 Base Pair Duplexes Both Alone and as Part of the ACCO GR20hh’
2.4. Measuring Affinities of the Anti-EGFR DNA Aptamer GR20 and the ACCO GR20hh’ to the Recombinant Extracellular Domain of Human EGFR (EGFR*) Using Biolayer Interferometry (BLI)
2.5. Interactions of the Aptamer GR20 and the ACCO GR20hh’ with Conventional GB Cell Line U87 and CCGBP 107
2.6. Binding of DOX to the Aptamer GR20 and the ACCO GR20hh’
2.7. A Real-Time Analysis of the Kinetics of Uptake of the Complexes: DOX–Aptamers U31 and GR20 and DOX–ACCO GR20hh’, by Measuring the CI with xCELLigence Real-Time Cell Analysis (RTCA)usingh Cell Lines A-431, MCF-7, and Cells CCGBP 107
3. Materials and Methods
3.1. Aptamers and Oligonucleotides
3.2. Generation of the ACCO GR20hh’ and the 18-Bp Duplex hh’
3.3. UV Spectroscopy
3.4. Size-Exclusion HPLC
3.5. Evaluation of DOX Intercalation into Aptamer via Fluorimetry Titration
3.6. Cell Cultivation
3.7. Monitoring of Interactions of Fluorescent Aptamers with Cells via Flow Cytometry
3.8. Cell Viability Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-431 | Human epidermoid carcinoma cell line |
ACCO | Aptamer Construct with Complementary Oligonucleotide |
ADC | Antibody Drug Conjugate |
ApDC | Aptamer Drug Conjugate |
BLI | Biolayer Interferometry |
CCGBP | Continuous Culture from GB Patient |
CI | Cell Index |
DB | Database |
DOX | Doxorubicin |
EGFR | Epidermal Growth Factor Receptor |
EGFR* | recombinant extracellular domain of human EGFR |
GB | Glioblastoma |
mAb | Monoclonal Antibody |
MCF-7 | breast cancer adeno-carcinoma |
MFI | Mean Fluorescence Intensities |
MoREs | Molecular Recognition Elements |
nTPM | Transcripts per million |
RTCA | Real-Time Cell Analysis |
U87 | human glioblastoma cell line |
References
- Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef]
- Wen, P.Y.; Weller, M.; Lee, E.Q.; Alexander, B.M.; Barnholtz-Sloan, J.S.; Barthel, F.P.; Batchelor, T.T.; Bindra, R.S.; Chang, S.M.; Chiocca, E.A.; et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncol. 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, J.; Lapointe, S.; Roberge, D. Tumor-Treating Fields and Related Treatments in the Management of Pediatric Brain Tumors. Curr. Oncol. 2025, 32, 185. [Google Scholar] [CrossRef]
- Kolesnikova, V.; Revishchin, A.; Fab, L.; Alekseeva, A.; Ryabova, A.; Pronin, I.; Usachev, D.Y.; Kopylov, A.; Pavlova, G. GQIcombi application to subdue glioma via differentiation therapy. Front. Oncol. 2024, 14, 1322795. [Google Scholar] [CrossRef]
- Tang, J.; Amin, M.A.; Campian, J.L. Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance. Cells 2025, 14, 562. [Google Scholar] [CrossRef]
- Ge, M.; Zhu, Y.; Wei, M.; Piao, H.; He, M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim. Biophys. Acta (BBA)–Rev. Cancer 2023, 1878, 188996. [Google Scholar] [CrossRef]
- Ezzati, S.; Salib, S.; Balasubramaniam, M.; Aboud, O. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int. J. Mol. Sci. 2024, 25, 2316. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Pande, A.H. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies. Life Sci. 2024, 345, 122593. [Google Scholar] [CrossRef] [PubMed]
- Karsten, L.; Janson, N.; Le Joncour, V.; Alam, S.; Müller, B.; Ramanathan, J.T.; Laakkonen, P.; Sewald, N.; Müller, K.M. Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int. J. Mol. Sci. 2022, 23, 2468. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, J.R.H.; Koch, V.; Lauer, U.M.; Mühlebach, M.D. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. Mol. Ther. Oncolytics 2019, 15, 186–200. [Google Scholar] [CrossRef]
- Karankar, V.S.; Awasthi, S.; Srivastava, N. Peptide-driven strategies against lung cancer. Life Sci. 2025, 366–367, 123453. [Google Scholar] [CrossRef]
- Stoup, N.; Liberelle, M.; Lebègue, N.; Van Seuningen, I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol. Sci. 2024, 45, 552–576. [Google Scholar] [CrossRef]
- Tang, H.; Pan, Y.; Zhang, Y.; Tang, H. Challenges for the application of EGFR-targeting peptide GE11 in tumor diagnosis and treatment. J. Control. Release 2022, 349, 592–605. [Google Scholar] [CrossRef]
- Cheng, S.; Jacobson, O.; Zhu, G.; Chen, Z.; Liang, S.H.; Tian, R.; Yang, Z.; Niu, G.; Zhu, X.; Chen, X. PET imaging of EGFR expression using an 18F-labeled RNA aptamer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 948–956. [Google Scholar] [CrossRef]
- Esposito, C.L.; Passaro, D.; Longobardo, I.; Condorelli, G.; Marotta, P.; Affuso, A.; de Franciscis, V.; Cerchia, L.; Yang, P.-C. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS ONE 2011, 6, e24071. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.L.; Song, Y.L.; Zhu, Z.; Li, X.-L.; Zou, Y.; Yang, H.-T.; Wang, J.-J.; Yao, P.-S.; Pan, R.-J.; Yang, C.J.; et al. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem. Biophys. Res. Commun. 2014, 453, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, S.; Ryu, S.; Han, D. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay. Biochem. Biophys. Res. Commun. 2014, 448, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Damase, T.R.; Allen, P.B. Idiosyncrasies of thermofluorimetric aptamer binding assays. BioTechniques 2019, 66, 121–127. [Google Scholar] [CrossRef]
- Mair, M.J.; Bartsch, R.; Le Rhun, E.; Berghoff, A.S.; Brastianos, P.K.; Cortes, J.; Gan, H.K.; Lin, N.U.; Lassman, A.B.; Wen, P.Y.; et al. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat. Rev. Clin. Oncol. 2023, 20, 372–389. [Google Scholar] [CrossRef]
- Coy, S.; Lee, J.S.; Chan, S.J.; Woo, T.; Jones, J.; Alexandrescu, S.; Wen, P.Y.; Sorger, P.K.; Ligon, K.L.; Santagata, S. Systematic characterization of antibody-drug conjugate targets in central nervous system tumors. Neuro-Oncol. 2024, 26, 458–472. [Google Scholar] [CrossRef]
- Gan, H.K.; Parakh, S.; Osellame, L.D.; Cher, L.; Uccellini, A.; Hafeez, U.; Menon, S.; Scott, A.M. Antibody drug conjugates for glioblastoma: Current progress towards clinical use. Expert Opin. Biol. Ther. 2023, 23, 1089–1102. [Google Scholar] [CrossRef]
- Atwell, B.; Chalasani, P.; Schroeder, J. Nuclear epidermal growth factor receptor as a therapeutic target. Explor. Target. Antitumor Ther. 2023, 4, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Martins-Teixeira, M.B.; Carvalho, I. Antitumour anthracyclines: Progress and perspectives. ChemMedChem 2020, 15, 933–948. [Google Scholar] [CrossRef]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.N.; Yang, J.T.; Hsieh, M.J.; Huang, C.; Huang, H.-C.; Ku, Y.-J.; Wu, Y.-P.; Huang, K.-C.; Chen, J.-C. Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. J. Mol. Neurosci. 2020, 70, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- MacDiarmid, J.A.; Langova, V.; Bailey, D.; Pattison, S.T.; Pattison, S.L.; Christensen, N.; Armstrong, L.R.; Brahmbhatt, V.N.; Smolarczyk, K.; Harrison, M.T.; et al. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model. PLoS ONE 2016, 11, e0151832. [Google Scholar] [CrossRef]
- Bisht, A.; Avinash, D.; Sahu, K.K.; Patel, P.; Das Gupta, G.; Das Kurmi, B. A comprehensive review on doxorubicin: Mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv. Transl. Res. 2024, 15, 102–133. [Google Scholar] [CrossRef]
- Dardevet, L.; Najlaoui, F.; Aroui, S.; Collot, M.; Tisseyre, C.; Pennington, M.W.; Mallet, J.-M.; De Waard, M. A Conjugate between Lqh-8/6, a Natural Peptide Analogue of Chlorotoxin, and Doxorubicin Efficiently Induces Glioma Cell Death. Biomedicines 2022, 10, 2605. [Google Scholar] [CrossRef]
- He, J.; Duan, Q.; Ran, C.; Fu, T.; Liu, Y.; Tan, W. Recent progress of aptamer—Drug conjugates in cancer therapy. Acta Pharm. Sin. B 2023, 13, 1358–1370. [Google Scholar] [CrossRef]
- Kratschmer, C.; Levy, M. Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol. Ther. Nucleic Acids 2018, 10, 227–236. [Google Scholar] [CrossRef]
- Seo, K.; Hwang, K.; Nam, K.M.; Kim, M.J.; Song, Y.-K.; Kim, C.-Y. Nucleolin-Targeting AS141 Aptamer-Conjugated Nanospheres for Targeted Treatment of Glioblastoma. Pharmaceutics 2024, 16, 566. [Google Scholar] [CrossRef]
- Sliman, Y.A.; Samoylenkova, N.S.; Antipova, O.M.; Brylev, V.A.; Veryutin, D.A.; Sapozhnikova, K.A.; Alekseeva, A.I.; Pronin, I.N.; Kopylov, A.M.; Pavlova, G.V. Covalently conjugate DNA aptamer with doxorubicin as in vitro model for effective targeted dru delivery to human glioblastoma tumor cells. Zhurnal Vopr. Neirokhirurgii Im. NN Burdenko 2024, 88, 48–55. (In Russian) [Google Scholar] [CrossRef]
- Liu, T.; Song, P.; Märcher, A.; Kjems, J.; Yang, C.; Gothelf, K.V. Selective Delivery of Doxorubicin to EGFR+ Cancer Cells by Cetuximab-DNA Conjugates. Chembiochem 2019, 20, 1014–1018. [Google Scholar] [CrossRef]
- Zavyalova, E.; Turashev, A.; Novoseltseva, A.; Legatova, V.; Antipova, O.; Savchenko, E.; Balk, S.; Golovin, A.; Pavlova, G.; Kopylov, A. Pyrene-Modified DNA Aptamers with High Affinity to Wild-Type EGFR and EGFRvIII. Nucleic Acid. Ther. 2020, 30, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liang, H.; Tan, Y.; Yuan, C.; Li, S.; Li, X.; Li, G.; Shi, Y.; Zhang, X.; Debinski, W. Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo. PLoS ONE 2014, 9, e90752. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, V.L.; Antipova, O.M.; Rybina, A.A.; Mukhametova, L.I.; Eremin, S.A.; Pavlova, G.V.; Kopylov, A.M. Post-Selection Design of Aptamers: Comparative Study of Affinity of the DNA Aptamers to Recombinant Extracellular Domain of Human Epidermal Growth Factor Receptors. Biochemistry 2024, 89, 2183–2193. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [PubMed]
- Melancon, M.P.; Zhou, M.; Zhang, R.; Xiong, C.; Allen, P.; Wen, X.; Huang, Q.; Wallace, M.; Myers, J.N.; Stafford, R.J.; et al. Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer. ACS Nano 2014, 8, 4530–4538. [Google Scholar] [CrossRef]
- Li, N.; Nguyen, H.H.; Byrom, M.; Ellington, A.D.; Lewin, A. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 2011, 6, e20299. [Google Scholar] [CrossRef]
- Li, N.; Larson, T.; Nguyen, H.H.; Sokolov, K.V.; Ellington, A.D. Directed evolution of gold nanoparticle delivery to cells. Chem. Commun. 2010, 46, 392–394, Erratum in Chem. Commun. 2020, 56, 4368. https://doi.org/10.1039/d0cc90149k. [Google Scholar] [CrossRef]
- Sakamoto, T. NMR study of aptamers. Aptamers 2017, 1, 13–18. [Google Scholar]
- Ngoc Nguyen, T.Q.; Lim, K.W.; Phan, A.T. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res. 2020, 48, 10567–10575. [Google Scholar] [CrossRef]
- Alieva, R.; Novikov, R.; Tashlitsky, V.; Arutyunyan, A.; Kopylov, A.; Zavyalova, E. Bimodular thrombin aptamers with two types of non-covalent locks. Nucleosides Nucleic Acids 2021, 40, 559–577. [Google Scholar] [CrossRef]
- Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998–8003. [Google Scholar] [CrossRef]
- Antipova, O.; Moiseenko, V.; Dzarieva, F.; Savchenko, E.; Pronin, I.; Pavlova, G.; Kopylov, A. Varieties of interactions of anti-CD133 aptamers with cell cultures from patient glioblastoma. SLAS Discov. 2024, 29, 100195, Erratum in SLAS Discov. 2024, 29, 100199. https://doi.org/10.1016/j.slasd.2024.100199. [Google Scholar] [CrossRef]
- Kopylov, A.M.; Fab, L.V.; Antipova, O.M.; Savchenko, E.A.; Revishchin, A.V.; Parshina, V.V.; Pavlova, S.V.; Kireev, I.I.; Golovin, A.V.; Usachev, D.Y.; et al. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. Biochemistry 2021, 86, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Bouchalova, P.; Bouchal, P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 2022, 22, 394. [Google Scholar] [CrossRef]
- Yan, G.; Du, Q.; Wei, X.; Miozzi, J.; Kang, C.; Wang, J.; Han, X.; Pan, J.; Xie, H.; Chen, J.; et al. Application of Real-Time Cell Electronic Analysis System in Modern Pharmaceutical Evaluation and Analysis. Molecules 2018, 23, 3280. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz-Hajduk, J.; Ochocka, J.R. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol. Rep. 2020, 7, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Huang, B.; Zhang, W.; Gabos, S.; Huang, D.Y.; Devendran, V. Cytotoxicity assessment based on the AUC50 using multi-concentration time-dependent cellular response curves. Anal. Chim. Acta 2013, 764, 44–52. [Google Scholar] [CrossRef]
- Bagalkot, V.; Farokhzad, O.C.; Langer, R.; Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl. 2006, 45, 8149–8152. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Duan, J.H.; Song, Y.M.; Ma, J.; Wang, F.-D.; Lu, X.; Yang, X.-D. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 2012, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Bayrac, A.T.; Akca, O.E.; Eyidogan, F.I.; Öktem, H.A. Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J. Biosci. 2018, 43, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, B.M.; Antipova, O.M.; Sliman, Y.A.; Samoylenkova, N.S.; Pronin, I.N.; Pavlova, G.V.; Kopylov, A.M. Use of Anti-EGFR Aptamer Construct GR20hh for Controlled Delivery of Doxorubicin into Patient-Derived Glioblastoma Cells. Neurosci. Behav. Physiol. 2024, 54, 923–928. [Google Scholar] [CrossRef]
Name | Number of Pairs in the Proposed Structure (G-C Pairs) | Experimental Tm, °C | Calculated Tm, °C |
---|---|---|---|
GR20 | 4 + 5 + 2 (4) | 20–30 | |
hh’ | 18 (7) | 61 | 60 |
ACCO GR20hh’ | 4 + 5 + 2 + 18 (4 + 7) | 59 |
Name | kon × 10−5 (M × s)−1 | koff × 104 s−1 | KD, nM |
---|---|---|---|
U31 | 2.0 ± 0.2 | 29 ± 5 | 15.0 ± 1.7 |
GR20 | 4.3 ± 0.3 | 61 ± 2 | 14.2 ± 0.5 |
ACCO GR20hh’ | 3.7 ± 0.5 | 40 ± 2 | 10.8 ± 1.4 |
Cells | Experimental EGFR mRNA Amount (Relative Units) | Taken From DB EGFR mRNA Amount (nTPM) <https://www.proteinatlas.org accessed on 28 August 2025> |
---|---|---|
A-431 | 494 ± 5 | 2978.0 |
U87 | 14.3 ± 0.5 | 37.0 |
MCF-7 | 0.16 ± 0.03 | 1.4 |
CCGBP 107 | 13.8 ± 0.7 |
Name | Coligo, a.u. | Approximate Amount of DOX per Molecule of Aptamer/Construct |
---|---|---|
GR20 | 0.41 | 7 |
U31 | 0.44 | 7 |
hh’ | 0.47 | 6 |
ACCO GR20hh’ | 0.17 | 11 |
Name | aKd, nM | n |
---|---|---|
hh’ | 124 ± 3 | 0.96 ± 0.03 |
GR20 | 90 ± 3 | 1.13 ± 0.03 |
U31 | 47 ± 3 | 0.95 ± 0.04 |
ACCO GR20hh’ | 26 ± 1 | 1.58 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivko, V.; Antipova, O.; Ivanov, B.; Tashlitsky, V.; Dzarieva, F.; Samoylenkova, N.; Usachev, D.; Pavlova, G.; Kopylov, A. Real-Time Kinetics of Internalization of Anti-EGFR DNA Aptamers and Aptamer Constructs into Cells Derived from Glioblastoma Patients as Indicated by Doxorubicin. Int. J. Mol. Sci. 2025, 26, 8712. https://doi.org/10.3390/ijms26178712
Ivko V, Antipova O, Ivanov B, Tashlitsky V, Dzarieva F, Samoylenkova N, Usachev D, Pavlova G, Kopylov A. Real-Time Kinetics of Internalization of Anti-EGFR DNA Aptamers and Aptamer Constructs into Cells Derived from Glioblastoma Patients as Indicated by Doxorubicin. International Journal of Molecular Sciences. 2025; 26(17):8712. https://doi.org/10.3390/ijms26178712
Chicago/Turabian StyleIvko, Valeria, Olga Antipova, Boris Ivanov, Vadim Tashlitsky, Fatima Dzarieva, Nadezhda Samoylenkova, Dmitry Usachev, Galina Pavlova, and Alexey Kopylov. 2025. "Real-Time Kinetics of Internalization of Anti-EGFR DNA Aptamers and Aptamer Constructs into Cells Derived from Glioblastoma Patients as Indicated by Doxorubicin" International Journal of Molecular Sciences 26, no. 17: 8712. https://doi.org/10.3390/ijms26178712
APA StyleIvko, V., Antipova, O., Ivanov, B., Tashlitsky, V., Dzarieva, F., Samoylenkova, N., Usachev, D., Pavlova, G., & Kopylov, A. (2025). Real-Time Kinetics of Internalization of Anti-EGFR DNA Aptamers and Aptamer Constructs into Cells Derived from Glioblastoma Patients as Indicated by Doxorubicin. International Journal of Molecular Sciences, 26(17), 8712. https://doi.org/10.3390/ijms26178712