Interaction Between Oxytocin and Dopamine Signaling: Focus on the Striatum
Abstract
1. Introduction
Dopamine | Oxytocin | |||
---|---|---|---|---|
Chemical identity | Monoamine | Nonapeptide | ||
Main sources | Substantia nigra Ventral tegmental area Zona incerta | [1] | Supraoptic nucleus and Paraventricular nucleus of the hypothalamus | [7] |
Main target regions | Dorsal and ventral striatum, Cortex, Hippocampus, Amigdala, Pituitary gland, Hypothalamus, Spinal cord | [4] | Striatum, Prefrontal cortex, Ventral tegmental area, Hippocampus, Amygdala, Brain stem, Spinal cord | [9] |
Receptors | D1-like (D1, D5) D2-like (D2, D3, D4) | [1,27] | OTR | [22] |
Signaling pathway | Gs and Gq proteins (D1-like) Gi/0 protein (D2-like) | [5,28] | Gq protein Gi protein | [22] |
Main effects | Control of organic functions: | Control of organic functions: | ||
● Cardiovascular | [29] | ● Cardiovascular | [30] | |
● Renal | [31] | ● Respiration | [7] | |
● Penile striated muscles | [32] | ● Penile erection | [32] | |
Rewarding | [18] | Rewarding | [18] |
2. Dopamine and Oxytocin in the Striatum
2.1. Dopamine
2.2. Oxytocin
3. Oxytocin–Dopamine Interaction in the Striatum
3.1. Mechanisms of Interaction
3.1.1. Network-Level Mechanism via Interconnected Brain Regions
3.1.2. Indirect Mechanism via Other Neurotransmitters
3.1.3. Direct Molecular Mechanism via Receptor Complexes
4. Oxytocin–Dopamine Interactions Mediated by Striatal Astrocytes and a Potential Role for Microglia
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SON | Supraoptic nucleus |
PVN | Paraventricular nucleus |
SN | Substantia nigra |
VTA | Ventral tegmental area |
ASD | Autism spectrum disorder |
ADHD | Attention deficit hyperactivity disorder |
MSN | Medium spiny neurons |
OTR | Oxytocin receptor |
SHR | Spontaneously hypertensive rats |
TM | Transmembrane domain |
RRI | Receptor-receptor interaction |
PAP | Perisynaptic astrocyte process |
References
- Bentivoglio, M.; Morelli, M. The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In Dopamine (Handbook of Chemical Neuroanatomy); Dunnet, S.B., Bentivoglio, M., Björklund, A., Hökfelt, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 21, pp. 1–107. [Google Scholar]
- Dahlström, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 1964, 62 (Suppl. 232), 1–55. [Google Scholar]
- Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 1965, 247, 37. [Google Scholar]
- Albanese, A.; Altavista, M.C.; Rossi, P. Organization of central nervous system dopaminergic pathways. J. Neural Transm. 1986, 22, 3–17. [Google Scholar]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Function, signaling, and association with neurological diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef]
- Guidolin, D.; Tortorella, C.; Marcoli, M.; Cervetto, C.; De Caro, R.; Maura, G.; Agbati, L.F. Modulation of neurons and astrocyte dopamine receptors via receptor-receptor interactions. Pharmaceuticals 2023, 16, 1427. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Douglas, A.J. Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Florea, T.; Palimariciuc, M.; Cristofor, A.C.; Dobrin, I.; Chirită, R.; Bîrsan, M.; Dobrin, R.P.; Pădurariu, M. Oxytocin: Narrative expert review of current perspectives on the relationship with other neurotransmitters and the impact on the main psychiatric disorders. Medicina 2022, 58, 923. [Google Scholar] [CrossRef]
- Buijs, R.M.; Swaab, D.F.; Dogterom, J.; van Leeuwen, F.W. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978, 186, 423–433. [Google Scholar] [CrossRef]
- Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviors. Nat. Rev. Neurosci. 2006, 7, 126–136. [Google Scholar] [CrossRef]
- Freundmercier, M.J.; Stoeckel, M.E.; Klein, M.J. Oxytocin receptors on oxytocin neurons—Histoautoradiographic detection in the lactating rat. J. Physiol. 1994, 480, 155–161. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Aldag, J.M.; Insel, T.R.; Young, L.J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 2001, 21, 8278–8285. [Google Scholar] [CrossRef]
- Grinevich, V.; Knobloch-Bollmann, H.S.; Eliava, M.; Busnelli, M.; Chini, B. Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biol. Psych. 2016, 79, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Fuxe, K.; Zoli, M.; Ozini, I.; Toffano, G.; Ferraguti, F. A correlation analysis of the regional distribution of central enkephalin and beta endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: The volume transmission and the wiring transmission. Acta Physiol. Scand. 1986, 28, 201–207. [Google Scholar]
- Fuxe, K.; Borroto-Escuela, D.O.; Romero-Fernandez, W.; Ciruela, F.; Manger, P.; Leo, G.; Diaz-Cabiale, Z.; Agnati, L.F. On the role of volume transmission and receptor-receptor interactions in social behavior: Focus on central catecholamine and oxytocin neurons. Brain Res. 2012, 1476, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Guidolin, D.; Marcoli, M.; Maura, G.; Agnati, L.F. New dimensions of connectomics and network plasticity in the central nervous system. Rev. Neurosci. 2017, 28, 113–132. [Google Scholar] [CrossRef]
- Bakos, J.; Srancikova, A.; Havranek, T.; Bacova, Z. Molecular mechanisms of oxytocin signaling at the synaptic connection. Neural Plast. 2018, 2018, 4864107. [Google Scholar] [CrossRef]
- Petersson, M.; Uvnäs-Moberg, K. Interactions of oxytocin and dopamine—Effects on behavior in health and disease. Biomedicines 2024, 12, 2440. [Google Scholar] [CrossRef]
- Veronneau-Longueville, F.; Rampin, O.; Freund-Mercier, M.J.; Tang, Y.; Calas, A.; Marson, L.; McKenna, K.E.; Stoeckel, M.E.; Benoît, G.; Giuliano, F. Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience 1999, 93, 1437–1447. [Google Scholar] [CrossRef]
- Smeltzer, M.D.; Curtis, J.T.; Aragona, B.J.; Wang, Z.X. Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci. Lett. 2006, 394, 146–151. [Google Scholar] [CrossRef]
- Buijs, R.M.; Geffard, M.; Pool, C.W.; Hoorneman, E.M. The dopaminergic innervation of the supraoptic and paraventricular nucles. A light and electron microscopical study. Brain Res. 1984, 323, 65–72. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Roeling, T.A.; Veening, J.G.; Peters, J.P.; Vermelis, M.E.; Nieuwenhuys, R. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 1993, 56, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.R.; Succu, S.; Sanna, F.; Boi, A.; Argiolas, A. Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats. Eur. J. Neurosci. 2009, 30, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- de La Mora, M.; Perez-Carrera, D.; Crespo-Ramirez, M.; Tarakanov, A.; Fuxe, K.; Borroto-Escuela, D.O. Signaling in dopamine D2 receptor-oxytocin receptor heterocompexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim. Biophys. Acta 2016, 1862, 2075–2085. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.; Cuesta-Marti, C.; Lopez-Salas, A.; Chruscicka-Smaga, B.; Crespo-Ramirez, M.; Tesoro-Cruz, E.; Palacios-Lagunas, D.A.; Perez de la Mora, M.; Schellekens, H.; Fuxe, K. The oxytocin receptor represents a key hub in the GPCR heteroceptor network: Potential relevance for brain and behavior. Front. Mol. Neurosci. 2022, 15, 1055344. [Google Scholar] [CrossRef]
- Baik, J.-H. Dopamine Signaling in reward-related behaviors. Front. Neural Circuits 2013, 7, 152. [Google Scholar] [CrossRef]
- Rashid, A.; O’Dowd, B.F.; Verma, V.; George, S.R. Neuromal Gq/11-coupled dopamine receptors: An uncharted role for dopamine. Trends Pharmacol. Sci. 2007, 28, 551–555. [Google Scholar] [CrossRef]
- Neumann, J.; Hofmann, B.; Dhein, S.; Gergs, U. Role of dopamine in the heart in health and disease. Int. J. Mol. Sci. 2023, 24, 5042. [Google Scholar] [CrossRef]
- Jankowski, M.; Broderick, T.L.; Gutkowska, J. The role of oxytocin in cardiovascular protection. Front. Psychol. 2020, 11, 2139. [Google Scholar] [CrossRef]
- Choi, M.R.; Kouyoumdzian, N.M.; Rukavina Mikusic, N.L.; Kravetz, M.C.; Rosón, M.I.; Rodríguez Fermepin, M.; Fernández, B.E. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J. Nephrol. 2015, 4, 196–212. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Allard, J.; Wayman, C.; Douglas, A.J. Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 2009, 30, 2151–2164. [Google Scholar] [CrossRef]
- Arsalidou, M.; Duerden, E.G.; Taylor, M.J. The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum. Brain Mapp. 2013, 34, 3031–3054. [Google Scholar] [CrossRef]
- Haber, S.N. Corticostriatal circuitry. Dialogs Clin. Neurosci. 2016, 18, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Hart, G.; Burton, T.J.; Balleine, B.W. What role does striatal dopamine play in goal directed action? Neuroscience 2024, 546, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. 1971, 82 (Suppl. 367), 1–48. [Google Scholar] [CrossRef] [PubMed]
- Arbuthnott, G.W.; Crow, T.J. Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. Exp. Neurol. 1971, 30, 484–491. [Google Scholar] [CrossRef]
- Robbins, T.W.; Everitt, B.J. Functions of dopamine in the dorsal and ventral striatum. Semin. Neurosci. 1992, 4, 119–127. [Google Scholar] [CrossRef]
- Howe, M.W.; Dombeck, D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016, 535, 505–510. [Google Scholar] [CrossRef]
- Glickstein, M.; Stein, J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991, 14, 480–482. [Google Scholar] [CrossRef]
- Long, C.; Masmanidis, S.C. The learning primacy hypothesis of dopamine: Reconsidering dopamine’s dual functions. Front. Cell Neurosci. 2025, 19, 1538500. [Google Scholar] [CrossRef]
- Balleine, B.W.; Peak, J.; Matamales, M.; Bertran-Gonzalez, J.; Hart, G. The dorsomedial striatum: An optimal cellular environment for encoding and updating goal-directed learning. Curr. Opin. Behav. Sci. 2021, 41, 38–44. [Google Scholar] [CrossRef]
- Hart, G.; Burton, T.J.; Nolan, C.; Balleine, B.W. Striatal dopamine release tracks the relationship between actions and their consequences. Cell Rep. 2024, 43, 113828. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef]
- Gingrich, J.A.; Caron, M.G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 1993, 16, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Dal Toso, R.; Sommer, B.; Ewert, M.; Herb, A.; Pritchett, D.B.; Bach, A.; Shivers, B.D.; Seeburg, P.H. The dopamine D2 receptor: Two molecular forms generated by alternative splicing. EMBO J. 1989, 8, 4025–4034. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M. Unveiling the differences in signaling and regulatory mechanisms between dopamine D2 and D3 receptors and their impact on behavioral sensitization. Int. J. Mol. Sci. 2023, 24, 6742. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Tyeryar, K.R.; Vongtau, H.O.; Sibley, D.R.; Undieh, A.S. D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol. Pharmacol. 2009, 75, 447–453. [Google Scholar] [CrossRef]
- Tarazi, F.I.; Campbell, A.; Yeghiayan, S.K.; Baldessarini, R.J. Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: Comparison of D1-, D2- and D4-like receptors. Neuroscience 1997, 83, 169–176. [Google Scholar] [CrossRef]
- Ferré, S.; Belcher, A.M.; Bonaventura, J.; Quiroz, C.; Sánchez-Soto, M.; Casadó-Anguera, V.; Cai, N.S.; Moreno, E.; Boateng, C.A.; Keck, T.M.; et al. Functional and pharmacological role of the dopamine D4 receptor and its polymorphic variants. Front. Endocrinol. 2022, 13, 1014678. [Google Scholar] [CrossRef]
- Castello, J.; Cortés, M.; Malave, L.; Kottmann, A.; Sibley, D.R.; Friedman, E.; Rebholz, H. The dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci. Rep. 2020, 10, 2542. [Google Scholar]
- Khan, Z.U.; Gutierrez, A.; Martin, R.; Penafiel, A.; Rivera, A.; De La Calle, A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comparat. Neurol. 1998, 402, 353–371. [Google Scholar] [CrossRef]
- Lapointe, T.; Baidoo, N.; Renda, B.; Leri, F. Role of the dopamine D3 receptor in the core and shell of the nucleus accumbens in conditioned modulation of memory consolidation. Neuropharmacology 2025, in press. [Google Scholar] [CrossRef]
- Soares-Cunha, C.; Coimbra, B.; Sousa, N.; Rodrigues, A.J. Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci. Biobehav. Rev. 2016, 68, 370–386. [Google Scholar] [CrossRef]
- Aizman, O.; Brismar, H.; Uhlen, P.; Zettergren, E.; Levey, A.I.; Forssberg, H.; Greengard, P.; Aperia, A. Anatomical and physiological evidence for D1 and D2 dopamine receptor co-localization in neostriatal neurons. Nat. Neurosci. 2000, 3, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002, 67, 53–83. [Google Scholar] [CrossRef] [PubMed]
- Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. The dopamine D1-D2 receptor heteromer in striatal medium spiny neurons: Evidence for a third distinct neuronal pathway in basal ganglia. Front. Neuroanat. 2011, 5, 31. [Google Scholar] [CrossRef]
- Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology 2014, 39, 156–168. [Google Scholar] [CrossRef]
- Smith, Y.; Kieval, J.Z. Anatomy of the dopamine system in the basal ganglia. TINS 2000, 23 (Suppl. 1), S28–S33. [Google Scholar] [CrossRef]
- Lemoine, C.; Bloch, B. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: Comparison with the D1 and D2 dopamine receptor. Neuroscience 1996, 73, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.; Mutti, V.; Tomasoni, Z.; Sbrini, G.; Missale, C.; Fiorentini, C. Recent advances in dopamine D3 receptor heterodimers: Focus on dopamine D3 and D1 receptor-receptor interaction and striatal function. Curr. Top. Behav. Neurosci. 2023, 60, 47–72. [Google Scholar]
- Maggio, R.; Millan, M.J. Dopamine D2-D3 receptor heteromers: Pharmacological properties and theraputic significance. Curr. Opin. Pharmacol. 2010, 10, 100–107. [Google Scholar] [CrossRef]
- Thibault, D.; Loustalot, F.; Fortin, G.M.; Bourque, M.J.; Trudeau, L. Evaluation of D1 and D2 dopamine receptor segregation in the developing striatum using BAC transgenic mice. PLoS ONE 2013, 8, e67219. [Google Scholar] [CrossRef]
- Zinsmaier, A.K.; Dong, Y.; Huang, Y.H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol. Psychiatry 2022, 27, 669–686. [Google Scholar] [CrossRef]
- Gayden, J.; Puig, S.; Srinivasan, C.; Phan, B.N.; Abdelhady, G.; Buck, S.A.; Gamble, M.C.; Tejeda, H.A.; Dong, Y.; Pfenning, A.R.; et al. Integrative multi-dimensional characterization of striatal projection neuron heterogeneity in adult brain. bioRxiv 2023, preprint. [Google Scholar] [CrossRef] [PubMed]
- De Vries, G.J.; Buijs, R.M. The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 1983, 273, 307–317. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.B. General introduction to vasopressin and oxytocin: Structure/metabolism, evolutionary aspects, neural pathway/receptor distribution, and functional aspects relevant to memory processing. Adv. Pharmacol. 2004, 50, 655–708. [Google Scholar]
- Liao, P.-Y.; Chlu, Y.-M.; Ju, J.-H.; Chen, S.-K. Mapping central projections of oxytocin neurons in unmated mice using cre and alkaline phosphatase reporter. Front. Neuroanat. 2020, 14, 559402. [Google Scholar] [CrossRef]
- Froemke, R.C.; Young, L.J. Oxytocin, neural plasticity and social behavior. Annu. Rev. Neurosci. 2021, 44, 359–381. [Google Scholar] [CrossRef]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef]
- Borland, J.M. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front. Neuroendocrinol. 2025, 77, 101175. [Google Scholar] [CrossRef]
- Moaddab, M.; Hyland, B.I.; Brown, C.H. Oxytocin excites nucleus accumbens shell neurons in vivo. Mol. Cell. Neurosci. 2015, 68, 323–330. [Google Scholar] [CrossRef]
- King, L.B.; Walum, H.; Inoue, K.; Eyrich, N.W.; Young, L.J. Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol. Psychiatr. 2016, 80, 160–169. [Google Scholar] [CrossRef]
- Amadei, E.A.; Johnson, Z.V.; Jun Kwon, Y.; Shpiner, A.C.; Saravanan, V.; Mays, W.D.; Ryan, S.J.; Walum, H.; Rainnie, D.G.; Young, L.J.; et al. Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles. Nature 2017, 546, 297–301. [Google Scholar] [CrossRef]
- Beery, A.K.; Zucker, I. Oxytocin and same-sex social behavior in female meadow voles. Neuroscience 2010, 169, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.E.M.; Neumann, I.D.; de Jong, T.R. Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology 2019, 156, 107504. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Sun, X.; Wang, Z.; Song, M.; Zhang, Z. Regulation of social behaviors by p-Stat3 via oxytocin and its receptor in the nucleus accumbens of male Brandt’s voles (Lasiopodomys brandtii). Horm Behav. 2020, 119, 104638. [Google Scholar] [CrossRef] [PubMed]
- Grieb, Z.A.; Ross, A.P.; McCann, K.E.; Lee, S.; Welch, M.; Gomez, M.G.; Norvelle, A.; Michopoulos, V.; Huhman, K.L.; Albers, H.E. Sex-Dependent Effects of Social Status on the Regulation of Arginine-Vasopressin (AVP) V1a, Oxytocin (OT), and Serotonin (5-HT) 1A Receptor Binding and Aggression in Syrian Hamsters (Mesocricetus auratus). Horm. Behav. 2021, 127, 104878. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Geng, Y.; Zhao, W.; Zhou, F.; Wang, J.; Markett, S.; Biswal, B.B.; Ma, Y.; Kendrick, K.M.; et al. Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions. Neuroimage 2019, 184, 781–789. [Google Scholar] [CrossRef]
- O’Doherty, J.P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Curr. Opin. Neurobiol. 2004, 14, 769–776. [Google Scholar] [CrossRef]
- Kringelbach, M.L.; Berridge, K.C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cognit. Sci. 2009, 13, 479–487. [Google Scholar] [CrossRef]
- Yin, H.H.; Knowlton, B.J.; Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 2004, 19, 181–189. [Google Scholar] [CrossRef]
- Habas, C.; Kamdar, N.; Nguyen, D.; Prater, K.; Beckmann, C.F.; Menon, V.; Greicius, M.D. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 2009, 29, 8586–8594. [Google Scholar] [CrossRef] [PubMed]
- Busnelli, M.; Saulière, A.; Manning, M.; Bouvier, M.; Galés, C.; Chini, B. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J. Biol. Chem. 2012, 287, 3617–3629. [Google Scholar] [CrossRef] [PubMed]
- Rappenau, V.; Castillo Dìaz, F. Convergence of oxytocin and dopamine signaling in neuronal circuits: Insight into the neurobiology of social interactions across species. Neurosci. Biobehav. Rev. 2024, 161, 105675. [Google Scholar] [CrossRef]
- Bàez-Mendoza, R.; Schultz, W. The role of the striatum in social behavior. Front. Neurosci. 2013, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Hollerman, J.R.; Tremblay, L.; Schultz, W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol. 1998, 80, 947–963. [Google Scholar] [CrossRef]
- Schultz, W.; Apicella, P.; Scarnati, E.; Ljungberg, T. Neuronal activity in monkey ventral striatum related to the expectation of reward. J. Neurosci. 1992, 12, 4595–4610. [Google Scholar] [CrossRef]
- Koepp, M.J.; Gunn, R.N.; Lawrence, A.D.; Cunningham, V.J.; Dagher, A.; Jones, T.; Brooks, D.J.; Bench, C.J.; Grasby, P.M. Evidence for striatal dopamine release during a video game. Nature 1998, 393, 266–268. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotions. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef]
- Ooishi, Y.; Mukai, H.; Watanabe, K.; Kawato, S.; Kashino, M. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLoS ONE 2017, 12, e0189075. [Google Scholar] [CrossRef]
- Friedman, J.H. Punding on levodopa. Biol. Psychiatry 1994, 36, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, K.M. Oxytocin, motherhood and bonding. Exp. Physiol. 2000, 85, 111S–124S. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Andrade, G.; Kendrick, K.M. The main olfactory system and social learning in mammals. Behav. Brain Res. 2009, 200, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z. Nucleus Accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 2003, 121, 537–544. [Google Scholar] [CrossRef]
- Stolzenberg, D.S.; McKenna, J.B.; Keough, S.; Hancock, R.; Numan, M.J.; Numan, M. Dopamine D1 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. Behav. Neurosci. 2007, 121, 907–919. [Google Scholar] [CrossRef]
- Shahrokh, D.K.; Zhang, T.Y.; Diorio, J.; Gratton, A.; Meaney, M.J. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 2010, 151, 2276–2286. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, G.; Cascio, C.; Liu, Y.; Gingrich, B.; Insel, T.R. Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus ochrogaster): A mechanism for pair bonding? Behav. Neurosci. 1999, 113, 602–611. [Google Scholar] [CrossRef]
- Aragona, B.J.; Liu, Y.; Curtis, T.; Stephan, F.K.; Wang, Z.X. A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J. Neurosci. 2003, 23, 3483–3490. [Google Scholar] [CrossRef]
- Aragona, B.J.; Liu, Y.; Yu, Y.J.; Curtis, J.T.; Detwiler, J.M.; Insel, T.R.; Wang, Z. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat. Neurosci. 2006, 9, 133–139. [Google Scholar] [CrossRef]
- Ross, H.E.; Freeman, S.M.; Spiegel, L.L.; Ren, X.; Terwilliger, E.F.; Young, L.J. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J. Neurosci. 2009, 29, 1312–1318. [Google Scholar] [CrossRef]
- Love, T.M. Oxytocin, motivation and the role of dopamine. Pharmacol. Biochem. Behav. 2014, 119, 49–60. [Google Scholar] [CrossRef]
- Bartels, A.; Zeki, S. The chronoarchitecture of the human brain—Natural viewing conditions reveal a time-based anatomy of the brain. Neuroimage 2004, 22, 419–433. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Vecsernyes, M.; Laczi, F.; Biro, E.; Szabo, G.; Kovacs, G.L. Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats. Neuropeptides 1992, 23, 27–31. [Google Scholar] [CrossRef]
- Kim, D.; Yaday, D.; Song, M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl. Psychiatry 2024, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, G.; Antonio, G.; Mak, Y.; Rudd, J.A.; Fan, M.; Yew, D.T. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem. Int. 2007, 50, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Van Tol, H.H.; van den Buuse, M.; de Jong, W.; Burbach, J.P. Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Brain Res. 1988, 464, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Hersey, M.; Bacon, A.K.; Bailey, L.G.; Lee, M.R.; Chen, A.Y.; Leggio, L.; Tanda, G. Oxytocin receptors mediate oxytocin potentiation of methylphenidate-induced stimulation of accumbens dopamine in rats. J. Neurochem. 2023, 164, 613–623. [Google Scholar] [CrossRef]
- Jones, C.A.; Watson, D.J.G.; Fone, K.C.R. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef]
- Kruppa, J.A.; Gossen, A.; Oberwelland, E.W.; Kohls, G.; Grosheinrich, N.; Cholemkery, H.; Freitag, C.M.; Karges, W.; Wölfle, E.; Sinzig, J.; et al. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: A randomized trial. Neuropsychopharmacology 2019, 44, 749–756. [Google Scholar] [CrossRef]
- El-Ansary, A.K.; Bacha, A.B.; Al-Ayahdi, L. Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clin. Biochem. 2011, 44, 1116–1120. [Google Scholar] [CrossRef]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. Association of social and cognitive impairment and biomarkers in autisms pectrum disorders. J. Neuroinflamm. 2014, 11, 4. [Google Scholar] [CrossRef]
- Björklund, A.; Lindvall, O.; Nobin, A. Evidence of an incertohypothalamic dopamine neurone system in the rat. Brain Res. 1975, 89, 29–42. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Alster, P.; Svensson, T.H. Amperozide and clozapine but not haloperidol or raclopride increase the secretion of oxytocin in rats. Psychopharmacology 1992, 109, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Sawchenko, P.E.; Swanson, L.W. Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. J. Steroid Biochem. Mol. Biol. 1984, 20, 87–103. [Google Scholar] [CrossRef]
- Whitman, D.C.; Albers, H.E. Oxytocin immunoreactivity in the hypothalamus of female hamsters. Cell Tissue Res. 1998, 291, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Warfvinge, K.; Krause, D.; Edvinsson, L. The distribution of oxytocin and the oxytocin receptor in rat brain: Relation to regions active in migraine. J. Headache Pain 2020, 21, 10. [Google Scholar] [CrossRef]
- Clow, D.W.; Jhamandas, K. Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen. J. Pharmacol. Exp. Ther. 1989, 248, 722–728. [Google Scholar] [CrossRef]
- Desce, J.M.; Godeheu, G.; Galli, T.; Artaud, F.; Ch’eramy, A.; Glowinski, J. L-glutamate-evoked release of dopamine from synaptosomes of the rat striatum: Involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience 1992, 47, 333–339. [Google Scholar] [CrossRef]
- Krebs, M.O.; Kemel, M.L.; Gauchy, C.; Desban, M.; Glowinski, J. Glycine potentiates the NMDA-induced release of dopamine through a strychnine-insensitive site in the rat striatum. Eur. J. Pharmacol. 1989, 166, 567–570. [Google Scholar] [CrossRef]
- Galli, T.; Godeheu, G.; Artaud, F.; Desce, J.M.; Pittaluga, A.; Barbeito, L.; Glowsinki, J.; Chéramy, A. Specific role of N-acetyl-aspartyl-glutamate in the in vivo regulation of dopamine release from dendrites and nerve terminals of nigrostriatal dopaminergic neurons in the cat. Neuroscience 1991, 42, 19–28. [Google Scholar] [CrossRef]
- Young, K.A.; Liu, Y.; Gobrogge, K.L.; Wang, H.; Wang, Z. Oxytocin reverses amphetamine-induced deficits in social bonding: Evidence for an interaction with nucleus accumbens dopamine. J. Neurosci. 2014, 34, 8499–8506. [Google Scholar] [CrossRef]
- Romero-Fernandez, W.; Borroto-Escuela, D.O.; Agnati, L.F.; Fuxe, K. Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol. Psychiatry 2013, 18, 849–850. [Google Scholar] [CrossRef]
- Amato, S.; Averna, M.; Guidolin, D.; Ceccoli, C.; Gatta, E.; Candiani, S.; Pedrazzi, M.; Capraro, M.; Maura, G.; Agnati, L.F.; et al. Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int. J. Mol. Sci. 2023, 24, 4677. [Google Scholar] [CrossRef]
- Cavaccini, A.; Durkee, C.; Kofuji, P.; Tonini, R.; Araque, A. Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway. J. Neurosci. 2020, 40, 5757–5768. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Bajo-Grañeras, R.; Moratalla, R.; Perea, G.; Araque, A. circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 2015, 349, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Corkrum, M.; Araque, A. Astrocyte-neuron signaling in the mesolimbic dopamine system: The hidden stars of dopamine signaling. Neuropsychopharmacology 2021, 46, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- Cervetto, C.; Venturini, A.; Passalacqua, M.; Guidolin, D.; Genedani, S.; Fuxe, K.; Borroto-Esquela, D.O.; Cortelli, P.; Woods, A.; Maura, G.; et al. A2A-D2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J. Neurochem. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Cervetto, C.; Venturini, A.; Guidolin, D.; Maura, G.; Passalacqua, M.; Tacchetti, C.; Cortelli, P.; Genedani, S.; Candiani, S.; Ramoino, P.; et al. Homocysteine and A2A-D2 receptor-receptor interaction at striatal astrocyte processes. J. Mol. Neurosci. 2018, 65, 456–466. [Google Scholar] [CrossRef]
- Trifilieff, P.; Rives, M.-L.; Urizar, E.; Piskorowski, R.A.; Vishwasrao, H.D.; Castrillon, J.; Schmauss, C.; Slättman, M.; Gullberg, M.; Javitch, J.A. Detection of antigen interactions Ex Vivo by proximity ligation assay: Endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 2011, 51, 111–118. [Google Scholar] [CrossRef]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef]
- Theodosis, D.T.; Poulain, D.A. Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 1993, 57, 501–535. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Hatton, G.I. Astrocytic plasticity and patterned oxytocin neuronal activity: Dynamic interactions. J. Neurosci. 2009, 29, 1743–1754. [Google Scholar] [CrossRef]
- Meinung, C.-P. Oxytocin Receptor-Mediated Signaling in Astrocytes. Ph.D. Thesis, Universitat Regensburg, Regensburg, Germany, 2020. [Google Scholar]
- Agnati, L.F.; Genedani, S.; Spano, P.F.; Guidolin, D.; Fuxe, K. Volume Transmission and the Russian-doll Organization of Brain Cell Networks: Aspects of their Integrative Actions. Neuronal Networks. In Brain Function, CNS Disorders and Therapeutics; Faingold, C.L., Blumenfeld, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 103–119. [Google Scholar]
- Bjelke, B.; Stromberg, I.; O’Connor, W.T.; Andbjer, B.; Agnati, L.F.; Fuxe, K. Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment. Brain Res. 1994, 662, 11–24. [Google Scholar] [CrossRef]
- Jansson, A.; Goldstein, M.; Tinner, B.; Zoli, M.; Meador-Woodruff, J.H.; Lew, J.Y.; Levey, A.I.; Watson, S.; Agnati, L.F.; Fuxe, K. On the distribution patterns of D1, D2, tyrosine hydroxylase and dopamine transporter immunoreactivities in the ventral striatum of the rat. Neuroscience 1999, 89, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, K.; Agnati, L.F.; Marcoli, M.; Borroto-Escuela, D.O. Volume Transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem. Res. 2015, 40, 2600–2614. [Google Scholar] [CrossRef]
- Mairesse, J.; Zinni, M.; Pansiot, J.; Hassan-Abdi, R.; Demene, C.; Colella, M.; Charriaut-Marlangue, C.; Rideau Batista Novais, A.; Tanter, M.; Maccari, S.; et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia 2019, 67, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Färber, K.; Pannasch, U.; Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell Neurosci. 2005, 29, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, S.; Bai, X.; Gao, Y.; Liu, G.; Wang, X.; Liu, D.; Li, T.; Hao, A.; Wang, Z. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflamm. 2016, 13, 77. [Google Scholar] [CrossRef]
- Loth, M.K.; Donaldson, Z.R. Oxytocin, dopamine, and opioid interactions underlying pair bonding: Highlighting a potential role for microglia. Endocrinology 2021, 162, bqaa223. [Google Scholar] [CrossRef]
- Eggen, B.J.L.; Raj, D.; Hanisch, U.K.; Boddeke, H.W. Microglial phenotype and adaptation. J. Neuroimmune Pharmacol. 2013, 8, 807–823. [Google Scholar] [CrossRef]
- Guidolin, D.; Tortorella, C.; Marcoli, M.; Cervetto, C.; De Caro, R.; Maura, G.; Agnati, L.F. Possible roles of heteroreceptor complexes in exitotoxic processes. Exlor. Neuroprot. Ther. 2024, 4, 366–391. [Google Scholar] [CrossRef]
- Uvnas-Moberg, K. Role of efferent and afferent vagal nerve activity during reproduction: Integrating function of oxytocin on metabolism and behavior. Psychoneuroendocrinology 1994, 19, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Hernandez-Reif Diego, M.; Schanberg, S.; Kuhn, C. Cortisol decreases and serotonin and dopamine increase following massage therapy. Int. J. Neurosci. 2005, 115, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, D.C.; Hanson, L.R.; Carson, D.S.; Tunstall, B.J.; Lee, M.R.; Tzabazis, A.Z.; Jacobs, D.; Frey, W.H. Nasal oxytocin for the treatment of psychiatric disorders and pain: Achieving meaningful brain concentrations. Transl. Psychiatry 2021, 11, 388. [Google Scholar] [CrossRef]
- Gamal-Eltrabily, M.; Manzano-García, A. Role of central oxytocin and dopamine systems in nociception and their POSSIBLE interactions: Suggested hypotheses. Rev. Neurosci. 2018, 29, 377–386. [Google Scholar] [CrossRef]
- Almansoub, H.A.M.M.; Tang, H.; Wu, Y.; Wang, D.-Q.; Mahaman, Y.A.R.; Salissou, M.T.M.; Lu, Y.; Hu, F.; Zhou, L.-T.; Almansob, Y.A.M.; et al. Oxytocin alleviates MPTP-induced neurotoxicity in mice by targeting MicroRNA-26a/death-associated protein kinase 1 pathway. J. Alzheimers Dis. 2020, 74, 883–901. [Google Scholar] [CrossRef]
- Love, T.M.; Enoch, M.A.; Hodgkinson, C.A.; Pecina, M.; Mickey, B.; Koeppe, R.A.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol. Psychiatry 2012, 72, 198–206. [Google Scholar] [CrossRef]
- Farsetti, E.; Amato, S.; Averna, M.; Guidolin, D.; Pedrazzi, M.; Maura, G.; Agnati, L.F.; Cervetto, C.; Marcoli, M. Dual oxytocin signals in striatal astrocytes. Biomolecules 2025, 15, 1122. [Google Scholar] [CrossRef]
- Agnati, L.F.; Marcoli, M.; Maura, G.; Woods, A.; Guidolin, D. The brain as a “hyper-network”: The key role of neural networks as main producers of the integrated brain actions especially via the “broadcasted” connectomics. J. Neural Transm. 2018, 125, 883–897. [Google Scholar] [CrossRef]
- Scarselli, M.; Novi, F.; Schallmach, E.; Lin, R.; Baragli, A.; Colzi, A.; Griffon, N.; Corsini, G.U.; Sokoloff, P.; Levenson, R.; et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem. 2001, 276, 30308–30314. [Google Scholar] [CrossRef]
- Torvinen, M.; Marcellino, D.; Canals, M.; Agnati, L.F.; Lluis, C.; Franco, R.; Fuxe, K. Adenosine A2A receptor and dopamine D3 receptor interactions: Evidence of functional A2A/D3 heteromeric complexes. Mol. Pharmacol. 2005, 67, 400–407. [Google Scholar] [CrossRef]
- Fiorentini, C.; Busi, C.; Gorruso, E.; Gotti, C.; Spano, P.; Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol. Pharmacol. 2008, 74, 59–69. [Google Scholar] [CrossRef]
- Guidolin, D.; Tortorella, C.; Marcoli, M.; Cervetto, C.; Maura, G.; Agnati, L.F. Receptor-receptor interactions and glial cell functions with a special focus on G protein-coupled receptors. Int. J. Mol. Sci. 2021, 22, 8656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidolin, D.; Tortorella, C.; Cervetto, C.; Marcoli, M.; Maura, G.; Agnati, L.F. Interaction Between Oxytocin and Dopamine Signaling: Focus on the Striatum. Int. J. Mol. Sci. 2025, 26, 8711. https://doi.org/10.3390/ijms26178711
Guidolin D, Tortorella C, Cervetto C, Marcoli M, Maura G, Agnati LF. Interaction Between Oxytocin and Dopamine Signaling: Focus on the Striatum. International Journal of Molecular Sciences. 2025; 26(17):8711. https://doi.org/10.3390/ijms26178711
Chicago/Turabian StyleGuidolin, Diego, Cinzia Tortorella, Chiara Cervetto, Manuela Marcoli, Guido Maura, and Luigi F. Agnati. 2025. "Interaction Between Oxytocin and Dopamine Signaling: Focus on the Striatum" International Journal of Molecular Sciences 26, no. 17: 8711. https://doi.org/10.3390/ijms26178711
APA StyleGuidolin, D., Tortorella, C., Cervetto, C., Marcoli, M., Maura, G., & Agnati, L. F. (2025). Interaction Between Oxytocin and Dopamine Signaling: Focus on the Striatum. International Journal of Molecular Sciences, 26(17), 8711. https://doi.org/10.3390/ijms26178711