Targeting the Orexin System in the Pharmacological Management of Insomnia and Other Diseases: Suvorexant, Lemborexant, Daridorexant, and Novel Experimental Agents
Abstract
1. Introduction
2. Mechanism of Action of Orexin System
2.1. Classical Neurochemistry of Wakefulness
2.2. Orexin Peptides and Receptors
2.2.1. Differential Functions of OX1R and OX2R in Sleep and Arousal Regulation
2.2.2. Orexin Receptor Specificity in Reward and Addiction
2.2.3. Selective Orexin Receptor Modulation and Therapeutic Progress
2.3. Regional Brain Activity and Orexin Stimulation
Inhibition of Sleep-Promoting Centers
2.4. Orexin, Narcolepsy, and Autoimmune Involvement
2.5. Orexin and the Hypothalamic–Pituitary–Adrenal (HPA) Axis
Herbal Modulation of Orexin Signaling Pathways
2.6. Orexin Dysregulation Across Neuropsychiatric and Neurodegenerative Disorders
2.7. The Influence of Orexins on the Development of Schizophrenia
2.8. Other Disorders Associated with the Orexin System
2.8.1. Anxiety Disorders, Post-Traumatic Stress Disorder, and Bipolar Disorder (BD)
2.8.2. Addictions
2.8.3. Eating Disorders—Binge Eating Disorder
2.8.4. Epilepsy
3. Description of Selected Representatives of the Dual Orexin Receptor Antagonists (DORAs) with Side Effects
3.1. Suvorexant
3.1.1. Drug Characteristics
3.1.2. Pharmacokinetics
3.1.3. Safety and Adverse Effects
3.1.4. Clinical Efficacy
3.2. Lemborexant
3.2.1. Drug Characteristics
3.2.2. Pharmacokinetics
3.2.3. Safety and Adverse Effects
3.2.4. Clinical Efficacy
3.3. Daridorexant
3.3.1. Drug Characteristics
3.3.2. Pharmacokinetics
3.3.3. Safety and Adverse Effects
3.3.4. Clinical Efficacy
3.4. Other Agents
4. DORAs in Contrast to GABAergic Hypnotics: Comparison of Clinical, Economic, and Environmental Perspectives
4.1. Impact of DORAs and GABAergic Hypnotics on Sleep Architecture and Neural Pathways
4.2. Question of Healthcare and Economic Impact of DORAs Compared to GABAergic Hypnotics
4.3. Environmental Footprint of GABAergic Hypnotics and Orexin Antagonists
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
OX1R | Orexin Receptor Type 1 |
DORA | Dual Orexin Receptor Antagonist |
PTSD | Post-traumatic Stress Disorder |
HPA | Hypothalamic–Pituitary–Adrenal |
MI | Myocardial infarction |
MDD | Major Depressive Disorder |
ISI | Insomnia Severity Index |
LC | Locus Coeruleus |
VLPO | Ventrolateral Preoptic Nucleus |
NT-1 | Narcolepsy Type 1 |
BD | Bipolar Disorder |
References
- Toor, B.; Ray, L.B.; Pozzobon, A.; Fogel, S.M. Sleep, Orexin and Cognition. Front. Neurol. Neurosci. 2021, 45, 38–51. [Google Scholar] [CrossRef]
- Pizza, F.; Barateau, L.; Dauvilliers, Y.; Plazzi, G. The orexin story, sleep and sleep disturbances. J. Sleep Res. 2022, 31, e13665. [Google Scholar] [CrossRef]
- Kukkonen, J.P.; Jacobson, L.H.; Hoyer, D.; Rinne, M.K.; Borgland, S.L. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol. Rev. 2024, 76, 625–688. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, S. Effect of a dual orexin receptor antagonist on Alzheimer’s disease: Sleep disorders and cognition. Front. Med. 2022, 9, 984227. [Google Scholar] [CrossRef]
- Palagini, L.; Geoffroy, P.A.; Balestrieri, M.; Miniati, M.; Biggio, G.; Liguori, C.; Menicucci, D.; Ferini-Strambi, L.; Nobili, L.; Riemann, D.; et al. Current models of insomnia disorder: A theoretical review on the potential role of the orexinergic pathway with implications for insomnia treatment. J. Sleep Res. 2023, 32, e13825. [Google Scholar] [CrossRef]
- Muehlan, C.; Vaillant, C.; Zenklusen, I.; Kraehenbuehl, S.; Dingemanse, J. Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders. Expert Opin. Drug Metab. Toxicol. 2020, 16, 1063–1078. [Google Scholar] [CrossRef]
- Gilley, R.R. The Role of Sleep in Cognitive Function: The Value of a Good Night’s Rest. Clin. EEG Neurosci. 2023, 54, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Kong, J.; Li, X.; Ren, Q. Sex differences in the effects of sleep disorders on cognitive dysfunction. Neurosci. Biobehav. Rev. 2023, 146, 105067. [Google Scholar] [CrossRef] [PubMed]
- Mason, G.M.; Lokhandwala, S.; Riggins, T.; Spencer, R.M.C. Sleep and human cognitive development. Sleep Med. Rev. 2021, 57, 101472. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; Walhovd, K.B. Individual sleep need is flexible and dynamically related to cognitive function. Nat. Hum. Behav. 2024, 8, 422–430. [Google Scholar] [CrossRef]
- Palagini, L.; Geoffroy, P.A.; Gehrman, P.R.; Miniati, M.; Gemignani, A.; Riemann, D. Potential genetic and epigenetic mechanisms in insomnia: A systematic review. J. Sleep Res. 2023, 32, e13868. [Google Scholar] [CrossRef]
- Palagini, L.; Hertenstein, E.; Riemann, D.; Nissen, C. Sleep, insomnia and mental health. J. Sleep Res. 2022, 31, e13628. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Benz, F.; Dressle, R.J.; Espie, C.A.; Johann, A.F.; Blanken, T.F.; Leerssen, J.; Wassing, R.; Henry, A.L.; Kyle, S.D.; et al. Insomnia disorder: State of the science and challenges for the future. J. Sleep Res. 2022, 31, e13604. [Google Scholar] [CrossRef] [PubMed]
- McNamara, S.; Spurling, B.C.; Bollu, P.C. Chronic Insomnia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK526136/ (accessed on 28 August 2025).
- Sutton, E.L. Insomnia. Ann. Intern. Med. 2021, 174, ITC33–ITC48. [Google Scholar] [CrossRef]
- Johnson, K.A.; Gordon, C.J.; Chapman, J.L.; Hoyos, C.M.; Marshall, N.S.; Miller, C.B.; Grunstein, R.R. The association of insomnia disorder characterised by objective short sleep duration with hypertension, diabetes and body mass index: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 59, 101456. [Google Scholar] [CrossRef]
- Li, X.; Sotres-Alvarez, D.; Gallo, L.C.; Ramos, A.R.; Aviles-Santa, L.; Perreira, K.M.; Isasi, C.R.; Zee, P.C.; Savin, K.L.; Schneiderman, N.; et al. Associations of Sleep-disordered Breathing and Insomnia with Incident Hypertension and Diabetes. The Hispanic Community Health Study/Study of Latinos. Am. J. Respir. Crit. Care Med. 2021, 203, 356–365. [Google Scholar] [CrossRef]
- Shan, W.; Peng, X.; Tan, W.; Zhou, Z.; Xie, H.; Wang, S. Prevalence of insomnia and associations with depression, anxiety among adults in guangdong, China: A large-scale cross-sectional study. Sleep Med. 2024, 115, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bard, H.A.; O’Driscoll, C.; Miller, C.B.; Henry, A.L.; Cape, J.; Espie, C.A. Insomnia, depression, and anxiety symptoms interact and individually impact functioning: A network and relative importance analysis in the context of insomnia. Sleep Med. 2023, 101, 505–514. [Google Scholar] [CrossRef]
- Riemann, D.; Dressle, R.J.; Benz, F.; Spiegelhalder, K.; Johann, A.F.; Nissen, C.; Hertenstein, E.; Baglioni, C.; Palagini, L.; Krone, L.; et al. Chronic insomnia, REM sleep instability and emotional dysregulation: A pathway to anxiety and depression? J. Sleep Res. 2025, 34, e14252. [Google Scholar] [CrossRef]
- Morin, C.M.; Bertisch, S.M.; Pelayo, R.; Watson, N.F.; Winkelman, J.W.; Zee, P.C.; Krystal, A.D. What Should Be the Focus of Treatment When Insomnia Disorder Is Comorbid with Depression or Anxiety Disorder? J. Clin. Med. 2023, 12, 1975. [Google Scholar] [CrossRef]
- Meaklim, H.; Saunders, W.J.; Byrne, M.L.; Junge, M.F.; Varma, P.; Finck, W.A.; Jackson, M.L. Insomnia is a key risk factor for persistent anxiety and depressive symptoms: A 12-month longitudinal cohort study during the COVID-19 pandemic. J. Affect. Disord. 2023, 322, 52–62. [Google Scholar] [CrossRef]
- Cox, R.C.; Olatunji, B.O. Sleep in the anxiety-related disorders: A meta-analysis of subjective and objective research. Sleep Med. Rev. 2020, 51, 101282. [Google Scholar] [CrossRef]
- Richards, A.; Kanady, J.C.; Neylan, T.C. Sleep disturbance in PTSD and other anxiety-related disorders: An updated review of clinical features, physiological charac-teristics, and psychological and neurobiological mechanisms. Neuropsychopharmacology 2020, 45, 55–73, Erratum in: Neuropsychopharmacology 2020, 45, 240–241. https://doi.org/10.1038/s41386-019-0529-y. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weber, F.C.; Wetter, T.C. The Many Faces of Sleep Disorders in Post-Traumatic Stress Disorder: An Update on Clinical Features and Treatment. Neuropsychobiology 2022, 81, 85–97. [Google Scholar] [CrossRef]
- Lancel, M.; van Marle, H.J.F.; Van Veen, M.M.; van Schagen, A.M. Disturbed Sleep in PTSD: Thinking Beyond Nightmares. Front. Psychiatry 2021, 12, 767760. [Google Scholar] [CrossRef]
- Sun, X.; Liu, B.; Liu, S.; Wu, D.J.H.; Wang, J.; Qian, Y.; Ye, D.; Mao, Y. Sleep disturbance and psychiatric disorders: A bidirectional Mendelian randomisation study. Epidemiol. Psychiatr. Sci. 2022, 31, e26. [Google Scholar] [CrossRef]
- Álamo, C.; Ruiz, J.S.; Arnáez, C.Z. Orexinergic Receptor Antagonists as a New Therapeutic Target to Overcome Limitations of Current Pharmacological Treatment of Insomnia Disorder. Actas Esp. Psiquiatr. 2024, 52, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.-L.; Chang, X.-W.; Zheng, J.-W.; Shi, L.; Xiang, Y.-J.; Que, J.-Y.; Yuan, K.; Deng, J.-H.; Teng, T.; Li, Y.-Y.; et al. Efficacy and tolerability of pharmacological treatments for insomnia in adults: A systematic review and network meta-analysis. Sleep Med. Rev. 2023, 68, 101746. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, Y.; Ye, C.; Guo, L.; Luo, S.; Dai, S.; Chen, N.; Wang, E. A network meta-analysis of the long- and short-term efficacy of sleep medicines in adults and older adults. Neurosci. Biobehav. Rev. 2021, 131, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Muehlan, C.; Roch, C.; Vaillant, C.; Dingemanse, J. The orexin story and orexin receptor antagonists for the treatment of insomnia. J. Sleep Res. 2023, 32, e13902. [Google Scholar] [CrossRef]
- Waters, K. Review of the Efficacy and Safety of Lemborexant, a Dual Receptor Orexin Antagonist (DORA), in the Treatment of Adults with Insomnia Disorder. Ann. Pharmacother. 2022, 56, 213–221. [Google Scholar] [CrossRef]
- Di Marco, T.; Scammell, T.E.; Meinel, M.; Seboek Kinter, D.; Datta, A.N.; Zammit, G.; Dauvilliers, Y. Number, Duration, and Distribution of Wake Bouts in Patients with Insomnia Disorder: Effect of Daridorexant and Zolpidem. CNS Drugs 2023, 37, 639–653. [Google Scholar] [CrossRef]
- Arnold, V.; Ancoli-Israel, S.; Dang-Vu, T.T.; Mishima, K.; Pinner, K.; Malhotra, M.; Moline, M. Efficacy of Lemborexant in Adults ≥ 65 Years of Age with Insomnia Disorder. Neurol. Ther. 2024, 13, 1081–1098. [Google Scholar] [CrossRef]
- Fietze, I.; Bassetti, C.L.A.; Mayleben, D.W.; Pain, S.; Seboek Kinter, D.; McCall, W.V. Efficacy and Safety of Daridorexant in Older and Younger Adults with Insomnia Disorder: A Secondary Analysis of a Randomised Placebo-Controlled Trial. Drugs Aging 2022, 39, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Kushida, C.A.; Zammit, G.K.; Cheng, J.Y.; Kumar, D.; Moline, M. Effect of lemborexant on sleep architecture in participants with insomnia disorder and mild obstructive sleep apnea. Sleep Med. 2025, 127, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Boof, M.-L.; Dingemanse, J.; Lederer, K.; Fietze, I.; Ufer, M. Effect of the New Dual Orexin Receptor Antagonist Daridorexant on Nighttime Respiratory Function and Sleep in Patients with Mild and Moderate Obstructive Sleep Apnea|SLEEP|Oxford Academic. Available online: https://academic.oup.com/sleep/article/44/6/zsaa275/6030922 (accessed on 2 August 2025).
- Jiang, M.; Li, H.; Kong, L. Data mining and safety analysis of dual orexin receptor antagonists (DORAs): A real-world pharmacovigilance study based on the FAERS database. Front. Pharmacol. 2024, 15, 1436405. [Google Scholar] [CrossRef]
- Kärppä, M.; Yardley, J.; Pinner, K.; Filippov, G.; Zammit, G.; Moline, M.; Perdomo, C.; Inoue, Y.; Ishikawa, K.; Kubota, N. Long-term efficacy and tolerability of lemborexant compared with placebo in adults with insomnia disorder: Results from the phase 3 randomized clinical trial SUNRISE 2. Sleep 2020, 43, zsaa123. [Google Scholar] [CrossRef]
- Gotfried, M.H.; Auerbach, S.H.; Dang-Vu, T.T.; Mishima, K.; Kumar, D.; Moline, M.; Malhotra, M. Efficacy and safety of insomnia treatment with lemborexant in older adults: Analyses from three clinical trials. Drugs Aging 2024, 41, 741–752. [Google Scholar] [CrossRef]
- Bonifazi, A.; Del Bello, F.; Giorgioni, G.; Piergentili, A.; Saab, E.; Botticelli, L.; Cifani, C.; Micioni Di Bonaventura, E.; Micioni Di Bonaventura, M.V.; Quaglia, W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med. Res. Rev. 2023, 43, 1607–1667. [Google Scholar] [CrossRef]
- Carpi, M.; Palagini, L.; Fernandes, M.; Calvello, C.; Geoffroy, P.A.; Miniati, M.; Pini, S.; Gemignani, A.; Mercuri, N.B.; Liguori, C. Clinical usefulness of dual orexin receptor antagonism beyond insomnia: Neurological and psychiatric comorbidities. Neuropharmacology 2024, 245, 109815. [Google Scholar] [CrossRef]
- Grandjean, C.M.; Kiry, M.; Vaillant, C.; Nayler, O.; Gatfield, J. 059 Daridorexant: A dual, equipotent, and insurmountable antagonist of both orexin-1 and orexin-2 receptors. Sleep 2021, 44 (Suppl. 2), A25. [Google Scholar] [CrossRef]
- Summers, C.H.; Yaeger, J.D.W.; Staton, C.D.; Arendt, D.H.; Summers, T.R. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res. 2020, 1731, 146085. [Google Scholar] [CrossRef] [PubMed]
- Shariq, A.S.; Rosenblat, J.D.; Alageel, A.; Mansur, R.B.; Rong, C.; Ho, R.C.; Ragguett, R.-M.; Pan, Z.; Brietzke, E.; McIntyre, R.S. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 1–7. [Google Scholar] [CrossRef]
- Salvadore, G.; Bonaventure, P.; Shekhar, A.; Johnson, P.L.; Lord, B.; Shireman, B.T.; Lebold, T.P.; Nepomuceno, D.; Dugovic, C.; Brooks, S.; et al. Translational evaluation of novel selective orexin-1 receptor antagonist JNJ-61393215 in an experimental model for panic in rodents and humans. Transl. Psychiatry 2020, 10, 308. [Google Scholar] [CrossRef]
- Kaplan, G.B.; Lakis, G.A.; Zhoba, H. Sleep-wake and arousal dysfunctions in post-traumatic stress disorder: Role of orexin systems. Brain Res. Bull. 2022, 186, 106–122. [Google Scholar] [CrossRef]
- Schöne, C.; Burdakov, D. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. In Behavioral Neuroscience of Orexin/Hypocretin; Lawrence, A.J., de Lecea, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 51–74. ISBN 978-3-319-57535-3. [Google Scholar]
- Chatterjee, O.; Gopalakrishnan, L.; Pullimamidi, D.; Raj, C.; Yelamanchi, S.; Gangadharappa, B.S.; Nair, B.; Mahadevan, A.; Raju, R.; Keshava Prasad, T.S. A molecular network map of orexin-orexin receptor signaling system. J. Cell Commun. Signal. 2023, 17, 217–227. [Google Scholar] [CrossRef]
- Yin, J.; Kang, Y.; McGrath, A.P.; Chapman, K.; Sjodt, M.; Kimura, E.; Okabe, A.; Koike, T.; Miyanohana, Y.; Shimizu, Y.; et al. Molecular mechanism of the wake-promoting agent TAK-925. Nat. Commun. 2022, 13, 2902. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.; Chen, M.; Yu, X.; Chen, C.; Chen, Y.; Zhang, L.; Shu, Y. A comprehensive study on the regulation of Compound Zaoren Granules on cAMP/CREB signaling pathway and metabolic disorder in CUMS-PCPA induced insomnia rats. J. Ethnopharmacol. 2024, 332, 118401. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-L.; Peng, X.-M.; Li, G.-B.; Ding, W.-S.; Wang, K.-Z.; Wang, X.-L.; Xiong, Y.-Y.; Xiong, W.-J.; Li, F.; Song, M. Chaihu-Longgu-Muli decoction improves sleep disorders by restoring orexin-A function in CKD mice. Front. Endocrinol. 2023, 14, 1206353. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Y.; Xiong, H.; Wang, L.; Shi, Y.; Wang, D.; Wang, Z.; Ren, J.; Wang, S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. J. Ethnopharmacol. 2025, 337 Pt 2, 118907. [Google Scholar] [CrossRef]
- León-Barriera, R.; Chaplin, M.M.; Kaur, J.; Modesto-Lowe, V. Insomnia in older adults: A review of treatment options. Cleve. Clin. J. Med. 2025, 92, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Porwal, A.; Yadav, Y.C.; Pathak, K.; Yadav, R. An Update on Assessment, Therapeutic Management, and Patents on Insomnia. BioMed Res. Int. 2021, 2021, 6068952. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, M.; Mishima, K.; Yagi, T.; Yoshihara, T.; Eto, T.; Muehlan, C.; Togo, O.; Inoue, Y. Pharmacokinetics, safety, and efficacy of daridorexant in Japanese subjects: Results from phase 1 and 2 studies. J. Sleep Res. 2025, 34, e14302. [Google Scholar] [CrossRef]
- Landry, I.; Hall, N.; Aluri, J.; Filippov, G.; Reyderman, L.; Setnik, B.; Henningfield, J.; Moline, M. Abuse Potential of Lemborexant, a Dual Orexin Receptor Antagonist, Compared with Zolpidem and Suvorexant in Recreational Sedative Users. J. Clin. Psychopharmacol. 2022, 42, 365–373. [Google Scholar] [CrossRef]
- Han, A.H.; Burroughs, C.R.; Falgoust, E.P.; Hasoon, J.; Hunt, G.; Kakazu, J.; Lee, T.; Kaye, A.M.; Kaye, A.D.; Ganti, L. Suvorexant, a Novel Dual Orexin Receptor Antagonist, for the Management of Insomnia. Health Psychol. Res. 2022, 10, 67898. [Google Scholar] [CrossRef]
- Yasuda, K.; Hirano, Y.; Takeda, R.; Ikeda, R.; Ishida, Y. Characteristics of psychiatric patients with nightmares after suvorexant administration: A retrospective study. Neuropsychopharmacol. Rep. 2025, 45, e12506. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Murphy, P.; Zammit, G.; Mayleben, D.; Kumar, D.; Dhadda, S.; Filippov, G.; LoPresti, A.; Moline, M. Comparison of Lemborexant with Placebo and Zolpidem Tartrate Extended Release for the Treatment of Older Adults with Insomnia Disorder: A Phase 3 Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e1918254, Erratum in: JAMA Netw. Open 2020, 3, e206497. https://doi.org/10.1001/jamanetworkopen.2020.6497. Erratum in: JAMA Netw. Open 2021, 4, e2127643. https://doi.org/10.1001/jamanetworkopen.2021.27643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katzman, M.A.; Katzman, M.P. Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sci. 2022, 12, 150. [Google Scholar] [CrossRef]
- Hopf, F.W. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020, 168, 108013. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nagumo, Y.; Ishikawa, Y.; Irukayama-Tomobe, Y.; Namekawa, Y.; Nemoto, T.; Tanaka, H.; Takahashi, G.; Tokuda, A.; Saitoh, T.; et al. OX2R-selective orexin agonism is sufficient to ameliorate cataplexy and sleep/wake fragmentation without inducing drug-seeking behavior in mouse model of narcolepsy. PLoS ONE 2022, 17, e0271901. [Google Scholar] [CrossRef]
- Sun, Y.; Tisdale, R.K.; Kilduff, T.S. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. Available online: https://karger.com/books/book/380/chapter/5563796/Hypocretin-Orexin-Receptor-Pharmacology-and-Sleep (accessed on 2 August 2025).
- Perrey, D.A.; Zhang, Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res. 2020, 1731, 145922. [Google Scholar] [CrossRef]
- Fragale, J.E.; James, M.H.; Avila, J.A.; Spaeth, A.M.; Aurora, R.N.; Langleben, D.; Aston-Jones, G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front. Neurosci. 2021, 45, 117–127. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, K.; Zheng, Y.; Lu, L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci. Bull. 2020, 36, 432–448. [Google Scholar] [CrossRef]
- Yukitake, H.; Fujimoto, T.; Ishikawa, T.; Suzuki, A.; Shimizu, Y.; Rikimaru, K.; Ito, M.; Suzuki, M.; Kimura, H. TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice. Pharmacol. Biochem. Behav. 2019, 187, 172794. [Google Scholar] [CrossRef]
- Steiner, M.A.; Botticelli, L.; Bergamini, G.; Micioni Di Bonaventura, E.; Gatfield, J.; Williams, J.T.; Treiber, A.; Vaillant, C.; Cifani, C.; Micioni Di Bonaventura, M.V. Evaluating the efficacy of the selective orexin 1 receptor antagonist nivasorexant in an animal model of binge-eating disorder. Int. J. Eat. Disord. 2024, 57, 1418–1432. [Google Scholar] [CrossRef]
- Hung, C.; Yamanaka, A. The role of orexin neuron activity in sleep/wakefulness regulation. Peptides 2023, 165, 171007. [Google Scholar] [CrossRef]
- Li, N.; Huang, L.; Zhang, B.; Zhu, W.; Dai, W.; Li, S.; Xu, H. The mechanism of different orexin/hypocretin neuronal projections in wakefulness and sleep. Brain Res. 2025, 1850, 149408. [Google Scholar] [CrossRef]
- Li, S.-B.; de Lecea, L. The hypocretin (orexin) system: From a neural circuitry perspective. Neuropharmacology 2020, 167, 107993. [Google Scholar] [CrossRef]
- Soya, S.; Sakurai, T. Evolution of Orexin Neuropeptide System: Structure and Function. Front. Neurosci. 2020, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Saito, Y.C.; Yanagisawa, M. Interaction between Orexin Neurons and Monoaminergic Systems. Available online: https://karger.com/books/book/380/chapter/5563735/Interaction-between-Orexin-Neurons-and (accessed on 2 August 2025).
- Saito, Y.C.; Tsujino, N.; Abe, M.; Yamazaki, M.; Sakimura, K.; Sakurai, T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front. Neurosci. 2018, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Barateau, L.; Pizza, F.; Plazzi, G.; Dauvilliers, Y. Narcolepsy. J. Sleep Res. 2022, 31, e13631. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, C.L.A.; Adamantidis, A.; Burdakov, D.; Han, F.; Gay, S.; Kallweit, U.; Khatami, R.; Koning, F.; Kornum, B.R.; Lammers, G.J.; et al. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat. Rev. Neurol. 2019, 15, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, A.C.; Maski, K.; Scammell, T.E.; Tucker, D.; Orban, Z.S.; Koralnik, I.J. Children with Narcolepsy type 1 have increased T-cell responses to orexins. Ann. Clin. Transl. Neurol. 2019, 6, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Kornum, B.R. Narcolepsy type 1: What have we learned from immunology? Sleep 2020, 43, zsaa055. [Google Scholar] [CrossRef]
- Mahoney, C.E.; Cogswell, A.; Koralnik, I.J.; Scammell, T.E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci. 2019, 20, 83–93. [Google Scholar] [CrossRef]
- Sochal, M.; Ditmer, M.; Turkiewicz, S.; Karuga, F.F.; Białasiewicz, P.; Gabryelska, A. The effect of sleep and its restriction on selected inflammatory parameters. Sci. Rep. 2024, 14, 17379. [Google Scholar] [CrossRef]
- Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Abad, C.; Tan, Y.-V. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front. Endocrinol. 2019, 10, 709. [Google Scholar] [CrossRef]
- Spinazzi, R.; Andreis, P.G.; Rossi, G.P.; Nussdorfer, G.G. Orexins in the Regulation of the Hypothalamic-Pituitary-Adrenal Axis. Pharmacol. Rev. 2006, 58, 46–57. [Google Scholar] [CrossRef]
- Dong, Y.-J.; Jiang, N.-H.; Zhan, L.-H.; Teng, X.; Fang, X.; Lin, M.-Q.; Xie, Z.-Y.; Luo, R.; Li, L.-Z.; Li, B.; et al. Soporific effect of modified Suanzaoren Decoction on mice models of insomnia by regulating Orexin-A and HPA axis homeostasis. Biomed. Pharmacother. 2021, 143, 112141. [Google Scholar] [CrossRef]
- Steward, T.; Mestre-Bach, G.; Granero, R.; Sánchez, I.; Riesco, N.; Vintró-Alcaraz, C.; Sauchelli, S.; Jiménez-Murcia, S.; Agüera, Z.; Fernández-García, J.C.; et al. Reduced Plasma Orexin-A Concentrations are Associated with Cognitive Deficits in Anorexia Nervosa. Sci. Rep. 2019, 9, 7910. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Qian, J.; Chen, X.; Li, D.; Song, C. Correlation of serum Orexin-A level with cognitive function and serum inflammatory cytokines in epileptic patients. Am. J. Transl. Res. 2023, 15, 4110–4117. [Google Scholar] [PubMed]
- Liguori, C.; Nuccetelli, M.; Izzi, F.; Sancesario, G.; Romigi, A.; Martorana, A.; Amoroso, C.; Bernardini, S.; Marciani, M.G.; Mercuri, N.B.; et al. Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s disease. Neurobiol. Aging 2016, 40, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Yu, K.-Y.; Cui, Y.-J.; Wang, Z.-J.; Cai, H.-Y.; Cao, J.-M.; Wu, M.-N. Orexin-A aggravates cognitive deficits in 3xTg-AD mice by exacerbating synaptic plasticity impairment and affecting amyloid β metabolism. Neurobiol. Aging 2023, 124, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cao, F.; Wu, Y. Orexinergic System in Neurodegenerative Diseases. Front. Aging Neurosci. 2021, 13, 713201. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, W.-J.; Lian, T.-H.; Zhang, W.-J.; He, M.-Y.; Zhang, Y.-N.; Huang, Y.; Ding, D.-Y.; Guan, H.-Y.; Li, J.-H.; et al. Alzheimer’s disease with sleep insufficiency: A cross-sectional study on correlations among clinical characteristics, orexin, its receptors, and the blood-brain barrier. Neural Regen. Res. 2022, 18, 1757–1762. [Google Scholar] [CrossRef]
- Treu, S.P.; Plante, D.T. Cerebrospinal fluid orexin in Alzheimer’s disease: A systematic review and meta-analysis. Sleep Med. 2021, 85, 230–238. [Google Scholar] [CrossRef]
- Lucey, B.P.; Liu, H.; Toedebusch, C.D.; Freund, D.; Redrick, T.; Chahin, S.L.; Mawuenyega, K.G.; Bollinger, J.G.; Ovod, V.; Barthélemy, N.R.; et al. Suvorexant Acutely Decreases Tau Phosphorylation and Aβ in the Human CNS. Ann. Neurol. 2023, 94, 27–40. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front. Mol. Neurosci. 2018, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Possovre, M.-L.; Bandarabadi, M.; Moseholm, K.F.; Justinussen, J.L.; Bozic, I.; Lemcke, R.; Arribat, Y.; Amati, F.; Silahtaroglu, A.; et al. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc. Natl. Acad. Sci. USA 2022, 119, e2112225119. [Google Scholar] [CrossRef]
- Mogavero, M.P.; Silvani, A.; Lanza, G.; DelRosso, L.M.; Ferini-Strambi, L.; Ferri, R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat. Sci. Sleep 2023, 15, 17–38. [Google Scholar] [CrossRef]
- Michelson, D.; Snyder, E.; Paradis, E.; Chengan-Liu, M.; Snavely, D.B.; Hutzelmann, J.; Walsh, J.K.; Krystal, A.D.; Benca, R.M.; Cohn, M.; et al. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: A phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014, 13, 461–471. [Google Scholar] [CrossRef]
- Mignot, E.; Mayleben, D.; Fietze, I.; Leger, D.; Zammit, G.; Bassetti, C.L.A.; Pain, S.; Kinter, D.S.; Roth, T. Safety and efficacy of daridorexant in patients with insomnia disorder: Results from two multicentre, randomised, dou-ble-blind, placebo-controlled, phase 3 trials. Lancet Neurol. 2022, 21, 125–139, Erratum in: Lancet Neurol. 2022, 21, e3. https://doi.org/10.1016/S1474-4422(22)00029-1. Erratum in: Lancet Neurol. 2022, 21, e6. https://doi.org/10.1016/S1474-4422(22)00144-2. [Google Scholar] [CrossRef] [PubMed]
- Wrishko, R.E.; McCrea, J.B.; Yee, K.L.; Liu, W.; Panebianco, D.; Mangin, E.; Chakravarthy, M.; Martinez-Cantarin, M.P.; Kraft, W.K. Effect of CYP3A Inhibition and Induction on the Pharmacokinetics of Suvorexant: Two Phase I, Open-Label, Fixed-Sequence Trials in Healthy Subjects. Clin. Drug Investig. 2019, 39, 441–451, Erratum in: Clin. Drug Investig. 2019, 39, 453–454. https://doi.org/10.1007/s40261-019-00777-6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asai, Y.; Miyazaki, M.; Iwakura, M.; Hara, M. The interim report about the drug use—Results survey of orexinergic receptor antagonist, Belsomra, in patients with insomnia. Jpn. J. Sleep Med. 2017, 11, 249–263. [Google Scholar]
- Asai, Y.; Sano, H.; Miyazaki, M.; Iwakura, M.; Maeda, Y.; Hara, M. Suvorexant (Belsomra® Tablets 10, 15, and 20 mg): Japanese Drug-Use Results Survey. Drugs RD 2019, 19, 27–46. [Google Scholar] [CrossRef]
- Ali, A.K. Psychiatric Safety Profile Of Suvorexant, A First-In-Class Orexin Receptor Antagonist. Value Health 2016, 19, A59. [Google Scholar] [CrossRef]
- Borchert, J.S.; Wang, B.; Ramzanali, M.; Stein, A.B.; Malaiyandi, L.M.; Dineley, K.E. Adverse Events Due to Insomnia Drugs Reported in a Regulatory Database and Online Patient Reviews: Comparative Study. J. Med. Internet Res. 2019, 21, e13371. [Google Scholar] [CrossRef] [PubMed]
- Hatta, K.; Kishi, Y.; Wada, K.; Takeuchi, T.; Ito, S.; Kurata, A.; Murakami, K.; Sugita, M.; Usui, C.; Nakamura, H.; et al. Preventive Effects of Suvorexant on Delirium: A Randomized Placebo-Controlled Trial. J. Clin. Psychiatry 2017, 78, e970–e979. [Google Scholar] [CrossRef]
- Kishi, T.; Nishida, M.; Koebis, M.; Taninaga, T.; Muramoto, K.; Kubota, N.; Moline, M.; Sakuma, K.; Okuya, M.; Nomura, I.; et al. Evidence-based insomnia treatment strategy using novel orexin antagonists: A review. Neuropsychopharmacol. Rep. 2021, 41, 450–458. [Google Scholar] [CrossRef]
- Kishi, T.; Nomura, I.; Matsuda, Y.; Sakuma, K.; Okuya, M.; Ikuta, T.; Iwata, N. Lemborexant vs suvorexant for insomnia: A systematic review and network meta-analysis. J. Psychiatr. Res. 2020, 128, 68–74. [Google Scholar] [CrossRef]
- Landry, I.; Nakai, K.; Ferry, J.; Aluri, J.; Hall, N.; Lalovic, B.; Moline, M.L. Pharmacokinetics, Pharmacodynamics, and Safety of the Dual Orexin Receptor Antagonist Lemborexant: Findings From Single-Dose and Multiple-Ascending-Dose Phase 1 Studies in Healthy Adults. Clin. Pharmacol. Drug Dev. 2021, 10, 153–165. [Google Scholar] [CrossRef]
- Dayal, S.; Aluri, J.; Hall, N.; Filippov, G.; Moline, M.; Reyderman, L.; Landry, I. Effect of hepatic impairment on pharmacokinetics, safety, and tolerability of lemborexant. Pharmacol. Res. Perspect. 2021, 9, e00758. [Google Scholar] [CrossRef]
- Landry, I.; Hall, N.; Aluri, J.; Filippov, G.; Setnik, B.; Dayal, S.; Reyderman, L.; Moline, M. Effect of alcohol coadministration on the pharmacodynamics, pharmacokinetics, and safety of lemborexant: A randomized, placebo-controlled crossover study. J. Psychopharmacol. Oxf. Engl. 2022, 36, 745–755. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Lorch, D.; Lowe, A.D.; Uchimura, N.; Hall, N.; Shah, D.; Moline, M. A randomized, double-blind, placebo-controlled, crossover study of respiratory safety of lemborexant in moderate to severe obstructive sleep apnea. J. Clin. Sleep Med. 2024, 20, 57–65. [Google Scholar] [CrossRef]
- Yardley, J.; Kärppä, M.; Inoue, Y.; Pinner, K.; Perdomo, C.; Ishikawa, K.; Filippov, G.; Kubota, N.; Moline, M. Long-term effectiveness and safety of lemborexant in adults with insomnia disorder: Results from a phase 3 randomized clinical trial. Sleep Med. 2021, 80, 333–342. [Google Scholar] [CrossRef]
- Terada, T.; Hirayama, T.; Sadahiro, R.; Wada, S.; Nakahara, R.; Matsuoka, H. Pilot Study of Lemborexant for Insomnia in Cancer Patients with Delirium|Journal of Palliative Medicine. Available online: https://www.liebertpub.com/doi/10.1089/jpm.2021.0509 (accessed on 2 August 2025).
- Herring, W.J.; Connor, K.M.; Ivgy-May, N.; Snyder, E.; Liu, K.; Snavely, D.B.; Krystal, A.D.; Walsh, J.K.; Benca, R.M.; Rosenberg, R.; et al. Suvorexant in Patients with Insomnia: Results From Two 3-Month Randomized Controlled Clinical Trials. Biol. Psychiatry 2016, 79, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Wu, X.; Li, J.; Chen, S.; Wang, Z.; Tan, X.; Wang, Z.; Zhang, J. Different doses of dual orexin receptor antagonists in primary insomnia: A Bayesian network analysis. Front. Pharmacol. 2023, 14, 1175372. [Google Scholar] [CrossRef]
- Murphy, P.; Moline, M.; Mayleben, D.; Rosenberg, R.; Zammit, G.; Pinner, K.; Dhadda, S.; Hong, Q.; Giorgi, L.; Satlin, A. Lemborexant, A Dual Orexin Receptor Antagonist (DORA) for the Treatment of Insomnia Disorder: Results From a Bayesian, Adaptive, Randomized, Double-Blind, Placebo-Controlled Study. J. Clin. Sleep Med. 2017, 13, 1289–1299. [Google Scholar] [CrossRef]
- Roch, C.; Bergamini, G.; Steiner, M.A.; Clozel, M. Nonclinical pharmacology of daridorexant: A new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology 2021, 238, 2693–2708. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Daridorexant: First Approval. Drugs 2022, 82, 601–607, Erratum in: Drugs 2022, 82, 841. https://doi.org/10.1007/s40265-022-01719-x. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunz, D.; Dauvilliers, Y.; Benes, H.; García-Borreguero, D.; Plazzi, G.; Seboek Kinter, D.; Coloma, P.; Rausch, M.; Sassi-Sayadi, M.; Thein, S. Long-Term Safety and Tolerability of Daridorexant in Patients with Insomnia Disorder. CNS Drugs 2023, 37, 93–106. [Google Scholar] [CrossRef]
- Berger, B.; Muehlan, C.; Klein, G.; Dingemanse, J. Pharmacokinetics of daridorexant, a dual orexin receptor antagonist, are not affected by renal impairment. Clin. Transl. Sci. 2021, 14, 2132–2138. [Google Scholar] [CrossRef]
- Muehlan, C.; Brooks, S.; Vaillant, C.; Meinel, M.; Jacobs, G.E.; Zuiker, R.G.; Dingemanse, J. Driving Performance after Bedtime Administration of Daridorexant, Assessed in a Sensitive Simulator. Clin. Pharmacol. Ther. 2022, 111, 1334–1342. [Google Scholar] [CrossRef]
- Nie, T.; Blair, H.A. Daridorexant in Insomnia Disorder: A Profile of Its Use. CNS Drugs 2023, 37, 267–274, Erratum in: CNS Drugs 2023, 37, 291. https://doi.org/10.1007/s40263-023-00994-w. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uchimura, N.; Ozone, M.; Suzuki, M.; Taniguchi, M.; Kuriyama, K.; Togo, O.; Uchiyama, M. Long-term safety and efficacy of daridorexant in Japanese patients with insomnia disorder. Sleep Med. 2024, 122, 64–70. [Google Scholar] [CrossRef]
- Magliocca, M.; Koopmans, I.; Vaillant, C.; Lemoine, V.; Zuiker, R.; Dingemanse, J.; Muehlan, C. Nighttime safety of daridorexant: Evaluation of responsiveness to an external noise stimulus, postural stability, walking, and cognitive function. J. Psychopharmacol. 2025, 39, 223–232. [Google Scholar] [CrossRef]
- Boss, C.; Gatfield, J.; Brotschi, C.; Heidmann, B.; Sifferlen, T.; von Raumer, M.; Schmidt, G.; Williams, J.T.; Treiber, A.; Roch, C. The Quest for the Best Dual Orexin Receptor Antagonist (Daridorexant) for the Treatment of Insomnia Disorders. ChemMedChem 2020, 15, 2286–2305. [Google Scholar] [CrossRef]
- Caldiroli, A.; Affaticati, L.M.; Capuzzi, E.; La Tegola, D.; Colmegna, F.; Clerici, M.; Dakanalis, A.; Buoli, M. The potential use of daridorexant in eating disorders: Beyond the treatment of insomnia? Int. Clin. Psychopharmacol. 2025, 40, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Scala, M.; Fanelli, G.; De Ronchi, D.; Serretti, A.; Fabbri, C. Clinical specificity profile for novel rapid acting antidepressant drugs. Int. Clin. Psychopharmacol. 2023, 38, 297–328. [Google Scholar] [CrossRef]
- Uchiyama, M.; Kambe, D.; Imadera, Y.; Kajiyama, Y.; Ogo, H.; Uchimura, N. Effects of TS-142, a novel dual orexin receptor antagonist, on sleep in patients with insomnia: A randomized, double-blind, placebo-controlled phase 2 study. Psychopharmacology 2022, 239, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Jin, L.; Zhao, D.; Zhang, W.; Li, B.; Huang, X.; Hao, X. Pharmacokinetics, Pharmacodynamic, Safety and Tolerability of Fazamorexant, a Novel Dual Orexin Receptor Antagonist: Report of the First-in-Human Study. Drug Des. Devel. Ther. 2025, 19, 5271–5282. [Google Scholar] [CrossRef] [PubMed]
- van Lemmen, M.; Dahan, A.; Hang, Y.; Jansen, S.C.; Lu, H.; Naylor, M.; Olsson, T.; Sheikh, S.; Sullivan, D.; Tolkoff, M.; et al. TAK-925 (Danavorexton), an Orexin Receptor 2 Agonist, Reduces Opioid-induced Respiratory Depression and Sedation Without Affecting Analgesia in Healthy Men. Anesthesiology 2025, 142, 628. [Google Scholar] [CrossRef]
- Billioti de Gage, S.; Bégaud, B.; Bazin, F.; Verdoux, H.; Dartigues, J.-F.; Pérès, K.; Kurth, T.; Pariente, A. Benzodiazepine use and risk of dementia: Prospective population based study. BMJ 2012, 345, e6231. [Google Scholar] [CrossRef]
- Hoyer, D.; Allen, A.; Jacobson, L.H. Hypnotics with novel modes of action. Br. J. Clin. Pharmacol. 2020, 86, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.; Daykin, H.; Metha, J.A.; Allocca, G.; Hoyer, D.; Drummond, S.P.A.; Jacobson, L.H. Manipulation of rapid eye movement sleep via orexin and GABAA receptor modulators differentially affects fear extinction in mice: Effect of stable versus disrupted circadian rhythm. Sleep 2021, 44, zsab068. [Google Scholar] [CrossRef]
- Matsumoto, S.; Tamiya, H.; Yamana, H.; Hosoi, T.; Matsui, H.; Fushimi, K.; Akishita, M.; Yasunaga, H.; Ogawa, S. Association between the type of hypnotic drug and in-hospital fractures in older patients with neurocognitive disorders: A case-control study using a nationwide database. Geriatr. Gerontol. Int. 2023, 23, 500–505. [Google Scholar] [CrossRef]
- Ikeda, S.; Azuma, M.K.; Fujimoto, K.; Shibahara, H.; Inoue, S.; Moline, M.; Ishii, M.; Mishima, K. Cost-effectiveness analysis of lemborexant for treating insomnia in Japan: A model-based projection, incorporating the risk of falls, motor vehicle collisions, and workplace accidents. Psychol. Med. 2022, 52, 2847, Erratum for: https://doi.org/10.1017/S0033291722000356. Published online by Cambridge University Press, 4 May 2022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natsky, A.N.; Vakulin, A.; Chai-Coetzer, C.L.; Lack, L.; McEvoy, R.D.; Lovato, N.; Sweetman, A.; Gordon, C.J.; Adams, R.J.; Kaambwa, B. Economic evaluation of cognitive behavioural therapy for insomnia (CBT-I) for improving health outcomes in adult populations: A systematic review. Sleep Med. Rev. 2020, 54, 101351. [Google Scholar] [CrossRef]
- Rao, H. ASL Imaging of Brain Function Changes During Sleep Restriction. Sleep 2012, 35, 1027–1028. [Google Scholar] [CrossRef] [PubMed]
- Kosjek, T.; Perko, S.; Zupanc, M.; Zanoški Hren, M.; Landeka Dragičević, T.; Zigon, D.; Kompare, B.; Heath, E. Environmental occurrence, fate and transformation of benzodiazepines in water treatment. Water Res. 2012, 46, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, M.A. Lemborexant (Dayvigo) for the Treatment of Insomnia. Am. Fam. Physician 2021, 103, 241–242. [Google Scholar]
- Briggs, A.H.; Chalet, F.-X.; Cooper, J.; Graham, P.; Palmer, S.; Miller, P.; Walker, A.; Greenwood, B.; Morin, C.M. Cost-Effectiveness Analysis of Daridorexant for the Pharmacological Treatment of Chronic Insomnia Disorder in Adults. PharmacoEconomics Open 2025, 9, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Sattari, N.; Upadhya, A.; Vinces, K.; Mednick, S. 058 The interactions of Sleep, Heart Rate Variability and Aging on an Emotional Directed Forgetting Memory Task. Sleep 2021, 44 (Suppl. 2), A24–A25. [Google Scholar] [CrossRef]
Drug | Suvorexant (Belsomra) | Lemborexant | Daridorexant |
---|---|---|---|
Class of drug | Dual Orexin Receptor Antagonist | Dual Orexin Receptor Antagonist | Dual Orexin Receptor Antagonist |
Year of FDA approval | 2014 | December 2019 | January 2022 |
Half-life | 15 h | 17–19 h | 8 h |
Tmax | 2 h | 1–3 h | 1–2 h |
Tested dosage | 5–20 mg | 5–10 mg | 25–50 mg |
Clinical efficacy | Insomnia Delirium associated with Alzheimer’s disease | Insomnia | Insomnia Eating disorders |
Contraindications | depression, narcolepsy and obstructive sleep apnea | Alcoholism | Alcoholism |
Adverse effects | asthenia, xerostomia, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations, cataplexy, and suicidal ideation | somnolence; daytime functional impairment; sleep paralysis; hypnagogic/hypnopompic hallucinations; cataplexy-like symptoms; parasomnias | cognitive impairment, tachyphrenia, nocturnal sleep-related eating disorder, hypersensitivity, xerostomia, palpitations |
Safety to fetus | Absence of research | Absence of research | Absence of research |
Breastfeeding safety | Absence of research | Low amounts in milk; child should be monitored | Low amounts in milk; child should be monitored |
Drug | Participants | Tested Dosage of Active Drug | Results | Reference |
---|---|---|---|---|
Suvorexant | Insomnia patients, 18 y.o. or older (470 completed) | 40 mg (patients < 65 y.o.) 30 mg (patients ≥ 65 y.o.) | At month 1: Drug: Total sleep time (sTST), min → 40.9 (36.7 to 45.0); Time to sleep onset (sTSO), min → −19.2 (−22.5 to −16.0) Placebo: STST, min → 17.5 (11.7 to 23.4); STSO, min → −9.0 (−13.6 to −4.3) | [96] |
Lemborexant | Insomnia participants 55 y.o. or older (962 completed) | 5 mg and 10 mg | At day 30: Drug 5 mg: Latency to Persistent Sleep (LPS), min → 24.3 Wake-After-Sleep Onset (WASO), min → 34.5 Drug 10 mg: LPS, min → 17.5 WASO, min → 35.2 Placebo: LPS, min → 32.1 WASO, min → 41.0 | [60] |
Daridorexant | Adults aged 18 y.o. or older with insomnia | 10, 25, and 50 mg | At month 1: Drug 50 mg: LPS, min → −31.2 (−34.5 to −27.9) WASO, min → −29.0 (−32.7 to −25.3) Drug 25 mg: LPS, min → −28.2 (−31.5 to −24.8) WASO, min → −18.4 (−22.1 to −14.7) Placebo: LPS, min → −19.9 (−23.2 to −16.5) WASO, min → −6.2 (−9.9 to −2.5) | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żełabowski, K.; Petrov, W.; Wojtysiak, K.; Ratka, Z.; Biedka, K.; Wesołowski, M.; Fus, K.; Ślebioda, D.; Rusinek, M.; Sterkowicz, M.; et al. Targeting the Orexin System in the Pharmacological Management of Insomnia and Other Diseases: Suvorexant, Lemborexant, Daridorexant, and Novel Experimental Agents. Int. J. Mol. Sci. 2025, 26, 8700. https://doi.org/10.3390/ijms26178700
Żełabowski K, Petrov W, Wojtysiak K, Ratka Z, Biedka K, Wesołowski M, Fus K, Ślebioda D, Rusinek M, Sterkowicz M, et al. Targeting the Orexin System in the Pharmacological Management of Insomnia and Other Diseases: Suvorexant, Lemborexant, Daridorexant, and Novel Experimental Agents. International Journal of Molecular Sciences. 2025; 26(17):8700. https://doi.org/10.3390/ijms26178700
Chicago/Turabian StyleŻełabowski, Kacper, Wiktor Petrov, Kacper Wojtysiak, Zuzanna Ratka, Kamil Biedka, Michał Wesołowski, Katarzyna Fus, Dawid Ślebioda, Malwina Rusinek, Maria Sterkowicz, and et al. 2025. "Targeting the Orexin System in the Pharmacological Management of Insomnia and Other Diseases: Suvorexant, Lemborexant, Daridorexant, and Novel Experimental Agents" International Journal of Molecular Sciences 26, no. 17: 8700. https://doi.org/10.3390/ijms26178700
APA StyleŻełabowski, K., Petrov, W., Wojtysiak, K., Ratka, Z., Biedka, K., Wesołowski, M., Fus, K., Ślebioda, D., Rusinek, M., Sterkowicz, M., Radzka, I., & Chłopaś-Konowałek, A. (2025). Targeting the Orexin System in the Pharmacological Management of Insomnia and Other Diseases: Suvorexant, Lemborexant, Daridorexant, and Novel Experimental Agents. International Journal of Molecular Sciences, 26(17), 8700. https://doi.org/10.3390/ijms26178700