Innovative Approaches to Medical Rehabilitation: Regeneration, Immune Training, Homeostasis, and Microbiome Synergy
Abstract
1. Introduction
2. A Holistic Framework: From Individual Interventions to Systemic Synergy
- Regenerative Medicine: Building the Foundation
- Homeostatic Interventions: Stabilizing the System
- Immunological Training: Refining Biological Responses
- Microbiome Modulation: The Overlooked Partner
- Interconnected Mechanisms
3. Regenerative Medicine
4. Homeostatic Interventions
5. The Role of the Immune System in Rehabilitation and Tissue Regeneration
- The Immune System as a Driver of Healing
- The Immune System Enhances Angiogenesis
- The Immune System Modulates Local Stem Cell Niches
- The Immune System Prevents Chronic Inflammation: The Role of Resolution Mediators
6. Immunological Training: Refining Biological Responses
7. The Role of the Microbiome
- Immune Modulation: The gut microbiota serves as a pivotal regulator of immune system development and functionality [36,89]. During early life, exposure to diverse microbiota helps “train” the immune system, enabling it to distinguish between harmful pathogens and benign antigens. This process of immune education continues throughout life, with microbial metabolites influencing the differentiation of Tregs and modulating inflammatory responses [90].
8. Prebiotics, Probiotics, and Postbiotics: Restoring Microbial Balance
9. The Holistic Health Approach in Rehabilitation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAs | biliary acids |
MSCs | mesenchymal stem cells |
SCFAs | short-chain fatty acids |
FMT | fecal microbiota transplantation |
PAs | polyamines |
TNF-α | tumor necrosis factor-alpha |
VEGF | vascular endothelial growth factor |
TGF-β | transforming growth factor-beta |
Tregs | Regulatory T cells |
M2 | macrophages |
IL | interleukin |
Trp | tryptophan |
AhR | aryl hydrocarbon receptor |
FOS | fructo-oligosaccharides |
References
- Chua, K.S.G.; Kuah, C.W.K. Innovating with Rehabilitation Technology in the Real World: Promises, Potentials, and Perspectives. Am. J. Phys. Med. Rehabil. 2017, 96, S150–S156. [Google Scholar] [CrossRef]
- Kannenberg, A.; Rupp, R.; Wurdeman, S.R.; Frossard, L. Editorial: Advances in technology-assisted rehabilitation. Front. Rehabil. Sci. 2024, 5, 1465671. [Google Scholar] [CrossRef]
- Kang, Y.J.; Zheng, L. Rejuvenation: An integrated approach to regenerative medicine. Regen. Med. Res. 2013, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Keever, T. The Whole Well-Being Model: A Layered Framework for Thriving People, Systems, and Planet. Glob. Adv. Integr. Med. Health 2025, 14, 27536130251364869. [Google Scholar] [CrossRef] [PubMed]
- Ten Brink, T.; Damanik, F.; Rotmans, J.I.; Moroni, L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv. Healthc. Mater. 2024, 13, e2301939. [Google Scholar] [CrossRef]
- Salgado, A.J.; Oliveira, J.M.; Martins, A.; Teixeira, F.G.; Silva, N.A.; Neves, N.M.; Sousa, N.; Reis, R.L. Tissue engineering and regenerative medicine: Past, present, and future. Int. Rev. Neurobiol. 2013, 108, 1–33. [Google Scholar] [CrossRef]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Motaung, K. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 2495848. [Google Scholar] [CrossRef]
- Hammerhøj, A.; Chakravarti, D.; Sato, T.; Jensen, K.B.; Nielsen, O.H. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024, 27, 110118. [Google Scholar] [CrossRef]
- Zakrzewski, J.L.; van den Brink, M.R.; Hubbell, J.A. Overcoming immunological barriers in regenerative medicine. Nat. Biotechnol. 2014, 32, 786–794. [Google Scholar] [CrossRef]
- Petrus-Reurer, S.; Romano, M.; Howlett, S.; Jones, J.L.; Lombardi, G.; Saeb-Parsy, K. Immunological considerations and challenges for regenerative cellular therapies. Commun. Biol. 2021, 4, 798. [Google Scholar] [CrossRef]
- Shavandi, A.; Saeedi, P.; Gérard, P.; Jalalvandi, E.; Cannella, D.; Bekhit, A.E.-D. The role of microbiota in tissue repair and regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 539–555. [Google Scholar] [CrossRef]
- Ogunrinola, G.A.; Oyewale, J.O.; Oshamika, O.O.; Olasehinde, G.I. The Human Microbiome and Its Impacts on Health. Int. J. Microbiol. 2020, 2020, 8045646. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Nunzi, E.; Pariano, M.; Costantini, C.; Garaci, E.; Puccetti, P.; Romani, L. Host-microbe serotonin metabolism. Trends Endocrinol. Metab. 2025, 36, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Preethy, S.; Ranganathan, N.; Raghavan, K.; Dedeepiya, V.D.; Ikewaki, N.; Abraham, S.J.K. Integrating the Synergy of the Gut Microbiome into Regenerative Medicine: Relevance to Neurological Disorders. J. Alzheimer’s Dis. 2022, 87, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Aldali, F.; Luo, H.; Chen, H. Regenerative rehabilitation: A novel multidisciplinary field to maximize patient outcomes. Med. Rev. 2024, 4, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef]
- de Jongh, D.; Massey, E.K.; Cronin, A.J.; Schermer, M.H.; Bunnik, E.M.; VANGUARD Consortium. Early-Phase Clinical Trials of Bio-Artificial Organ Technology: A Systematic Review of Ethical Issues. Transplant. Int. 2022, 35, 10751. [Google Scholar] [CrossRef]
- Hunsberger, J.; Simon, C.; Zylberberg, C.; Ramamoorthy, P.; Tubon, T.; Bedi, R.; Gielen, K.; Hansen, C.; Fischer, L.; Johnson, J.; et al. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. STEM CELLS Transl. Med. 2020, 9, 728–733. [Google Scholar] [CrossRef]
- Makuku, R.; Werthel, J.D.; Zanjani, L.O.; Nabian, M.H.; Tantuoyir, M.M. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: A concise literature review. J. Int. Med. Res. 2022, 50, 3000605221117212. [Google Scholar] [CrossRef]
- Saini, G.; Segaran, N.; Mayer, J.L.; Saini, A.; Albadawi, H.; Oklu, R. Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J. Clin. Med. 2021, 10, 4966. [Google Scholar] [CrossRef]
- Feng, J.N.; Jin, T. Hormones that are involved in metabolic homeostasis: Overview of the past century and future perspectives. Obes. Med. 2022, 32, 100422. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.L. Energy metabolism in health and diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
- Messonnier, L.A. Physical Exercise or Activity and Energy Balance or Metabolism in the Context of Health and Diseases. Nutrients 2023, 15, 4909. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Z. Hormonal regulation of metabolism—Recent lessons learned from insulin and estrogen. Clin. Sci. 2023, 137, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Julier, Z.; Park, A.J.; Briquez, P.S.; Martino, M.M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017, 53, 13–28. [Google Scholar] [CrossRef]
- Bindu, S.; Dandapat, S.; Manikandan, R.; Dinesh, M.; Subbaiyan, A.; Mani, P.; Dhawan, M.; Tiwari, R.; Bilal, M.; Emran, T.B. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Human. Vaccines Immunother. 2022, 18, 2040238. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ouyang, J.; Chen, Z.; Zhou, Z.; Milon Essola, J.; Ali, B.; Wu, X.; Zhu, M.; Guo, W.; Liang, X.J. Nanomedicine for T-Cell Mediated Immunotherapy. Adv. Mater. 2024, 36, e2301770. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- de Sire, A.; de Sire, R.; Curci, C.; Castiglione, F.; Wahli, W. Role of dietary supplements and probiotics in modulating microbiota and bone health: The gut-bone axis. Cells 2022, 11, 743. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front. Nutr. 2022, 8, 634897. [Google Scholar] [CrossRef]
- Martyniak, A.; Medyńska-Przęczek, A.; Wędrychowicz, A.; Skoczeń, S.; Tomasik, P.J. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Williams, K.L.; Enslow, R.; Suresh, S.; Beaton, C.; Hodge, M.; Brooks, A.E. Using the Microbiome as a Regenerative Medicine Strategy for Autoimmune Diseases. Biomedicines 2023, 11, 1582. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- López-Otín, C.; Kroemer, G. Hallmarks of Health. Cell 2021, 184, 33–63, Erratum in Cell 2021, 184, 1929–1939. [Google Scholar] [CrossRef]
- Zelante, T.; Puccetti, M.; Giovagnoli, S.; Romani, L. Regulation of host physiology and immunity by microbial indole-3-aldehyde. Curr. Opin. Immunol. 2021, 70, 27–32. [Google Scholar] [CrossRef]
- Aurora, A.B.; Olson, E.N. Immune modulation of stem cells and regeneration. Cell Stem Cell 2014, 15, 14–25. [Google Scholar] [CrossRef]
- Han, X.; Liao, R.; Li, X.; Zhang, C.; Huo, S.; Qin, L.; Xiong, Y.; He, T.; Xiao, G.; Zhang, T. Mesenchymal stem cells in treating human diseases: Molecular mechanisms and clinical studies. Signal Transduct. Target. Ther. 2025, 10, 262. [Google Scholar] [CrossRef]
- Naik, S.; Larsen, S.B.; Cowley, C.J.; Fuchs, E. Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell 2018, 175, 908–920. [Google Scholar] [CrossRef]
- Velikic, G.; Maric, D.M.; Maric, D.L.; Supic, G.; Puletic, M.; Dulic, O.; Vojvodic, D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 993. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Wang, C.; Shang, L. Living Materials for Regenerative Medicine. Eng. Regen. 2021, 2, 96–104. [Google Scholar] [CrossRef]
- Arsiwala, A.; Desai, P.; Patravale, V. Recent advances in micro/nanoscale biomedical implants. J. Control Release 2014, 189, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Guillamat-Prats, R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021, 10, 1729. [Google Scholar] [CrossRef] [PubMed]
- Rajabzadeh, N.; Fathi, E.; Farahzadi, R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019, 6, 19. [Google Scholar] [CrossRef]
- Takata, N.; Eiraku, M. Stem cells and genome editing: Approaches to tissue regeneration and regenerative medicine. J. Hum. Genet. 2018, 63, 165–178. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, T.; Wang, B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res. Ther. 2023, 14, 260. [Google Scholar] [CrossRef]
- Patel, K.D.; Lamarra, K.A.; Sawadkar, P.; Ludwig, A.; Perriman, A.W. Silk Fibroin/GelMA-Based Hydrogels as a Platform for Tissue Adhesives and Tissue Engineering. ACS Biomater. Sci. Eng. 2025, 11, 3893–3931. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, P.; Sharma, R.; Bhatt, V.D.; Dhot, P.S. Tissue Engineering; Current Status & Futuristic Scope. J. Med. Life 2019, 12, 225–229. [Google Scholar] [CrossRef]
- Zhang, J.; Wehrle, E.; Rubert, M.; Muller, R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef]
- Hosseinkhani, H.; Domb, A.J.; Sharifzadeh, G.; Nahum, V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023, 15, 856. [Google Scholar] [CrossRef] [PubMed]
- Saraf, A.; Mikos, A.G. Gene delivery strategies for cartilage tissue engineering. Adv. Drug Deliv. Rev. 2006, 58, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.X.; De Isla, N.; Zhang, L. Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 7384. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Jiang, A.Y.; Eufrasio-da-Silva, T.; Dolatshahi-Pirouz, A.; Langer, R.; Orive, G.; Grattoni, A. Emerging immunomodulatory strategies for cell therapeutics. Trends Biotechnol. 2023, 41, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Hong, J.; Go, S.; Kim, B.S. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng. Regen. Med. 2023, 20, 389–409. [Google Scholar] [CrossRef]
- Oliveira, E.R.; Nie, L.; Podstawczyk, D.; Allahbakhsh, A.; Ratnayake, J.; Brasil, D.L.; Shavandi, A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 903. [Google Scholar] [CrossRef]
- Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015, 160, 816–827. [Google Scholar] [CrossRef]
- Modell, H.; Cliff, W.; Michael, J.; McFarland, J.; Wenderoth, M.P.; Wright, A. A physiologist’s view of homeostasis. Adv. Physiol. Educ. 2015, 39, 259–266. [Google Scholar] [CrossRef]
- Wang, S.; Qin, L. Homeostatic medicine: A strategy for exploring health and disease. Curr. Med. 2022, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Ginhoux, F.; Swirski, F.K. Immune system influence on physiology. Science 2025, 389, 594–599. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Tonnesen, M.G.; Feng, X.; Clark, R.A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000, 5, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Y. Therapeutic angiogenesis: Controlled delivery of angiogenic factors. Ther. Deliv. 2012, 3, 693–714. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Zou, B.; Yang, D.; Lu, Y.; Zhang, X.; Zhang, C.; Li, Y.; Zhu, C. Macrophage regulation in vascularization upon regeneration and repair of tissue injury and engineered organ transplantation. Fundam. Res. 2025, 5, 697–714. [Google Scholar] [CrossRef]
- Wynn, T.A.; Barron, L. Macrophages: Master regulators of inflammation and fibrosis. Semin. Liver Dis. 2010, 30, 245–257. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Suur, B.E.; Sotak, M.; Borgeson, E. Attenuation of adipose tissue inflammation by pro-resolving lipid mediators. Curr. Opin. Endocr. Metab. Res. 2024, 36, 100539. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef]
- Salauddin, M.; Nath, S.K.; Saha, S.; Zheng, Q.; Zheng, C.; Hossain, M.G. Trained immunity: A revolutionary immunotherapeutic approach. Anim. Dis. 2024, 4, 31. [Google Scholar] [CrossRef]
- McInnes, I.B.; Gravallese, E.M. Immune-mediated inflammatory disease therapeutics: Past, present and future. Nat. Rev. Immunol. 2021, 21, 680–686. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. [Google Scholar] [CrossRef]
- Livia, C.; Inglis, S.; Crespo-Diaz, R.; Rizzo, S.; Mahlberg, R.; Bagwell, M.; Hillestad, M.; Yamada, S.; Meenakshi Siddharthan, D.V.; Singh, R.D.; et al. Infliximab Limits Injury in Myocardial Infarction. J. Am. Heart Assoc. 2024, 13, e032172. [Google Scholar] [CrossRef]
- Stratos, I.; Behrendt, A.K.; Anselm, C.; Gonzalez, A.; Mittlmeier, T.; Vollmar, B. Inhibition of TNF-alpha Restores Muscle Force, Inhibits Inflammation, and Reduces Apoptosis of Traumatized Skeletal Muscles. Cells 2022, 11, 2397. [Google Scholar] [CrossRef]
- Zarubova, J.; Hasani-Sadrabadi, M.M.; Ardehali, R.; Li, S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv. Drug Deliv. Rev. 2022, 184, 114233. [Google Scholar] [CrossRef]
- Vuscan, P.; Kischkel, B.; Joosten, L.A.B.; Netea, M.G. Trained immunity: General and emerging concepts. Immunol. Rev. 2024, 323, 164–185. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; López-Mora, C.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 10672. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fang, J.-Y. The role of colonic microbiota amino acid metabolism in gut health regulation. Cell Insight 2025, 4, 100227. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shen, X.; Shi, X.; Sakandar, H.A.; Quan, K.; Li, Y.; Jin, H.; Kwok, L.-Y.; Zhang, H.; Sun, Z. Targeting gut microbiota and metabolism as the major probiotic mechanism—An evidence-based review. Trends Food Sci. Technol. 2023, 138, 178–198. [Google Scholar] [CrossRef]
- Porcari, S.; Ng, S.C.; Zitvogel, L.; Sokol, H.; Weersma, R.K.; Elinav, E.; Gasbarrini, A.; Cammarota, G.; Tilg, H.; Ianiro, G. The microbiome for clinicians. Cell 2025, 188, 2836–2844. [Google Scholar] [CrossRef]
- Liu, H.X.; Keane, R.; Sheng, L.; Wan, Y.J. Implications of microbiota and bile acid in liver injury and regeneration. J. Hepatol. 2015, 63, 1502–1510. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, B. The gut-liver axis in health and disease: The role of gut microbiota-derived signals in liver injury and regeneration. Front. Immunol. 2021, 12, 775526. [Google Scholar] [CrossRef]
- Yin, Y.; Sichler, A.; Ecker, J.; Laschinger, M.; Liebisch, G.; Höring, M.; Basic, M.; Bleich, A.; Zhang, X.J.; Kübelsbeck, L.; et al. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J. Hepatol. 2023, 78, 820–835. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Kim, C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.Y.; Wang, L.; Zhou, F. The gut microbiome: Implications for neurogenesis and neurological diseases. Neural Regen. Res. 2022, 17, 53–58. [Google Scholar] [CrossRef]
- Park, J.C.; Chang, L.; Kwon, H.K.; Im, S.H. Beyond the gut: Decoding the gut-immune-brain axis in health and disease. Cell Mol. Immunol. 2025, 1–26. [Google Scholar] [CrossRef]
- Williams, K.B.; Bischof, J.; Lee, F.J.; Miller, K.A.; LaPalme, J.V.; Wolfe, B.E.; Levin, M. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech. Dev. 2020, 163, 103614. [Google Scholar] [CrossRef]
- Tung, A.; Levin, M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev. Biol. 2020, 461, 1–12. [Google Scholar] [CrossRef]
- Tran, S.; Stephanie Chen, Y.F.; Xu, D.; Ison, M.; Yang, L. Microbial pattern recognition suppresses de novo organogenesis. Development 2023, 150, dev201485. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Naik, S.; Nagao, K. Choreographing Immunity in the Skin Epithelial Barrier. Immunity 2019, 50, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Piipponen, M.; Li, D.; Landén, N.X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21, 8790. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Sweren, E.; Liu, H.; Wier, E.; Alphonse, M.P.; Chen, R.; Islam, N.; Li, A.; Xue, Y.; Chen, J.; et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 2021, 29, 777–791.e776. [Google Scholar] [CrossRef]
- Uberoi, A.; Bartow-McKenney, C.; Zheng, Q.; Flowers, L.; Campbell, A.; Knight, S.A.B.; Chan, N.; Wei, M.; Lovins, V.; Bugayev, J.; et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021, 29, 1235–1248.e1238. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhang, C.; Liu, Z.; Li, C.; Ren, Z. Gut Microbiota and Bone Diseases: A Growing Partnership. Front. Microbiol. 2022, 13, 877776. [Google Scholar] [CrossRef]
- Filosa, A.; Sawamiphak, S. Heart development and regeneration-a multi-organ effort. FEBS J. 2023, 290, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Hu, Y.; Guo, Y.; Liu, D. Modulation of bone remodeling by the gut microbiota: A new therapy for osteoporosis. Bone Res. 2023, 11, 31. [Google Scholar] [CrossRef]
- Suez, J.; Elinav, E. The path towards microbiome-based metabolite treatment. Nat. Microbiol. 2017, 2, 17075. [Google Scholar] [CrossRef] [PubMed]
- Ratiner, K.; Ciocan, D.; Abdeen, S.K.; Elinav, E. Utilization of the microbiome in personalized medicine. Nat. Rev. Microbiol. 2024, 22, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Zeevi, D.; Korem, T.; Segal, E.; Elinav, E. Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host Microbe 2016, 19, 12–20. [Google Scholar] [CrossRef]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Virk, M.S.; Virk, M.A.; He, Y.; Tufail, T.; Gul, M.; Qayum, A.; Rehman, A.; Rashid, A.; Ekumah, J.N.; Han, X.; et al. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024, 16, 546. [Google Scholar] [CrossRef]
- Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- Takeuchi, T.; Nakanishi, Y.; Ohno, H. Microbial Metabolites and Gut Immunology. Annu. Rev. Immunol. 2024, 42, 153–178. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef]
- Kumar, P.; Lee, J.H.; Lee, J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2522–2545. [Google Scholar] [CrossRef]
- Collins, S.L.; Stine, J.G.; Bisanz, J.E.; Okafor, C.D.; Patterson, A.D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 2023, 21, 236–247. [Google Scholar] [CrossRef]
- Garruti, G.; Baj, J.; Cignarelli, A.; Perrini, S.; Giorgino, F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front. Endocrinol. 2023, 14, 1154561. [Google Scholar] [CrossRef]
- Jia, F.; Liu, X.; Liu, Y. Bile acid signaling in skeletal muscle homeostasis: From molecular mechanisms to clinical applications. Front. Endocrinol. 2025, 16, 1551100. [Google Scholar] [CrossRef]
- Marullo, A.L.; O’Halloran, K.D. Microbes, metabolites and muscle: Is the gut-muscle axis a plausible therapeutic target in Duchenne muscular dystrophy? Exp. Physiol. 2023, 108, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, K.; Jiang, C. Microbiota-derived bile acid metabolic enzymes and their impacts on host health. Cell Insight 2025, 4, 100265. [Google Scholar] [CrossRef] [PubMed]
- Stolarska, E.; Paluch-Lubawa, E.; Grabsztunowicz, M.; Kumar Tanwar, U.; Arasimowicz-Jelonek, M.; Phanstiel, O.; Mattoo, A.K.; Sobieszczuk-Nowicka, E. Polyamines as Universal Bioregulators Across Kingdoms and Their role in Cellular Longevity and Death. Crit. Rev. Plant Sci. 2023, 42, 364–384. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Satarker, S.; Wilson, J.; Kolathur, K.K.; Mudgal, J.; Lewis, S.A.; Arora, D.; Nampoothiri, M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur. J. Pharmacol. 2024, 979, 176823. [Google Scholar] [CrossRef]
- Timmons, J.; Chang, E.T.; Wang, J.Y.; Rao, J.N. Polyamines and Gut Mucosal Homeostasis. J. Gastrointest. Dig. Syst. 2012, 2, 001. [Google Scholar] [CrossRef]
- Tofalo, R.; Cocchi, S.; Suzzi, G. Polyamines and Gut Microbiota. Front. Nutr. 2019, 6, 16. [Google Scholar] [CrossRef]
- Borzi, R.M.; Guidotti, S.; Minguzzi, M.; Facchini, A.; Platano, D.; Trisolino, G.; Filardo, G.; Cetrullo, S.; D’Adamo, S.; Stefanelli, C.; et al. Polyamine delivery as a tool to modulate stem cell differentiation in skeletal tissue engineering. Amino Acids 2014, 46, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.D.; Murray, I.A.; Bisson, W.H.; Lahoti, T.S.; Gowda, K.; Amin, S.G.; Patterson, A.D.; Perdew, G.H. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 2015, 5, 12689. [Google Scholar] [CrossRef]
- Li, S. Modulation of immunity by tryptophan microbial metabolites. Front. Nutr. 2023, 10, 1209613. [Google Scholar] [CrossRef]
- Miyabayashi, T.; Yamamoto, M.; Sato, A.; Sakano, S.; Takahashi, Y. Indole derivatives sustain embryonic stem cell self-renewal in long-term culture. Biosci. Biotechnol. Biochem. 2008, 72, 1242–1248. [Google Scholar] [CrossRef]
- Borowski, A.N.; Vuong, H.E. Crushing it: Indole-3 propionate promotes axonal regeneration in mice. Cell Host Microbe 2022, 30, 1189–1191. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, Q.; Wang, J.; Qiu, X.; Yang, Y.; Liu, J.; Yang, F.; Qi, R. Indole-3-propionic acid enhances glycolytic myofiber formation in piglets through PI3K-mTOR activation and gut microbiota-driven tryptophan metabolic alteration. Anim. Nutr. 2025, 22, 363–374. [Google Scholar] [CrossRef]
- Hijova, E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int. J. Mol. Sci. 2024, 25, 5441. [Google Scholar] [CrossRef]
- Melo-Dias, S.; Cabral, M.; Furtado, A.; Souto-Miranda, S.; Mendes, M.A.; Cravo, J.; Almeida, C.R.; Marques, A.; Sousa, A. Responsiveness to pulmonary rehabilitation in COPD is associated with changes in microbiota. Respir. Res. 2023, 24, 29. [Google Scholar] [CrossRef]
- Ye, X.; Li, H.; Anjum, K.; Zhong, X.; Miao, S.; Zheng, G.; Liu, W.; Li, L. Dual Role of Indoles Derived from Intestinal Microbiota on Human Health. Front. Immunol. 2022, 13, 903526. [Google Scholar] [CrossRef]
- Kim, Y.C.; Sohn, K.H.; Kang, H.R. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: Potential therapeutic approaches. Korean J. Intern. Med. 2024, 39, 746–758. [Google Scholar] [CrossRef]
- Puccetti, M.; Pariano, M.; Wojtylo, P.; Schoubben, A.; Giovagnoli, S.; Ricci, M. Turning Microbial AhR Agonists into Therapeutic Agents via Drug Delivery Systems. Pharmaceutics 2023, 15, 506. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sperandio, V. Indole Signaling at the Host-Microbiota-Pathogen Interface. mBio 2019, 10, e01031-19, Erratum in mBio 2020, 11, e03318-19. [Google Scholar] [CrossRef] [PubMed]
- Mafe, A.N.; Iruoghene Edo, G.; Akpoghelie, P.O.; Gaaz, T.S.; Yousif, E.; Zainulabdeen, K.; Isoje, E.F.; Igbuku, U.A.; Opiti, R.A.; Garba, Y.; et al. Probiotics and Food Bioactives: Unraveling Their Impact on Gut Microbiome, Inflammation, and Metabolic Health. Probiotics Antimicrob. Proteins 2025, 1–42. [Google Scholar] [CrossRef]
- Aponte, M.; Murru, N.; Shoukat, M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front. Microbiol. 2020, 11, 562048. [Google Scholar] [CrossRef] [PubMed]
- Bodke, H.; Jogdand, S. Role of Probiotics in Human Health. Cureus 2022, 14, e31313. [Google Scholar] [CrossRef]
- Golchin, A.; Ranjbarvan, P.; Parviz, S.; Shokati, A.; Naderi, R.; Rasmi, Y.; Kiani, S.; Moradi, F.; Heidari, F.; Saltanatpour, Z.; et al. The role of probiotics in tissue engineering and regenerative medicine. Regen. Med. 2023, 18, 635–657. [Google Scholar] [CrossRef]
- Choque Delgado, G.T.; Tamashiro, W. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res. Int. 2018, 113, 183–188. [Google Scholar] [CrossRef]
- Porcari, S.; Fusco, W.; Spivak, I.; Fiorani, M.; Gasbarrini, A.; Elinav, E.; Cammarota, G.; Ianiro, G. Fine-tuning the gut ecosystem: The current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol. Hepatol. 2024, 9, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Jung, S.C.; Kwak, K.; Kim, J.S. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int. J. Mol. Sci. 2024, 25, 4834. [Google Scholar] [CrossRef]
- Lin, W.; Kuo, Y.-W.; Chen, C.-W.; Hsu, Y.-C.; Huang, Y.-F.; Hsu, C.-H.; Lin, J.-H.; Lin, C.-H.; Lin, C.-C.; Yi, T.-H.; et al. The Function of Mixed Postbiotic PE0401 in Improving Intestinal Health via Elevating Anti-inflammation, Anti-oxidation, Epithelial Tight Junction Gene Expression and Promoting Beneficial Bacteria Growth. J. Pure Appl. Microbiol. 2022, 16, 1771–1782. [Google Scholar] [CrossRef]
- Dinic, M.; Burgess, J.L.; Lukic, J.; Catanuto, P.; Radojevic, D.; Marjanovic, J.; Verpile, R.; Thaller, S.R.; Gonzalez, T.; Golic, N.; et al. Postbiotic lactobacilli induce cutaneous antimicrobial response and restore the barrier to inhibit the intracellular invasion of Staphylococcus aureus in vitro and ex vivo. FASEB J. 2024, 38, e23801. [Google Scholar] [CrossRef]
- Spivak, I.; Fluhr, L.; Elinav, E. Local and systemic effects of microbiome-derived metabolites. EMBO Rep. 2022, 23, e55664. [Google Scholar] [CrossRef] [PubMed]
- Chotirmall, S.H.; Bogaert, D.; Chalmers, J.D.; Cox, M.J.; Hansbro, P.M.; Huang, Y.J.; Molyneaux, P.L.; O’Dwyer, D.N.; Pragman, A.A.; Rogers, G.B.; et al. Therapeutic Targeting of the Respiratory Microbiome. Am. J. Respir. Crit. Care Med. 2022, 206, 535–544. [Google Scholar] [CrossRef]
- Druszczynska, M.; Sadowska, B.; Kulesza, J.; Gasienica-Gliwa, N.; Kulesza, E.; Fol, M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024, 13, 1005. [Google Scholar] [CrossRef]
Technique | Description | Clinical Applications | Outcomes | References |
---|---|---|---|---|
Cell-based technologies | Use of stem cells to regenerate or repair damaged tissues. | Musculoskeletal injuries, neurodegenerative disorders, and cardiac repair. | Promotes tissue repair, reduces inflammation, and enhances functional recovery. | [47,48,49,50] |
Tissue Engineering | Cell sources and growth factor, artificial and 3D-printed scaffolds. | Skin and vascular grafts, organ reconstruction, cartilage, and bone repair. | Enables anatomical restoration, improves structural integrity, and accelerates healing. | [51,52,53] |
Gene delivery technologies | Introduction of genetic material to correct or modify cellular dysfunctions. | Genetic disorders, cancer, and immunodeficiencies. | Corrects genetic mutations, enhances targeted therapies, and improves cellular functionality. | [54,55,56] |
Molecular therapies | Growth factors, small molecules, and cytokines to support tissue regeneration. | Autoimmune diseases, chronic inflammation, bone regeneration, transplant medicine. | Balances immune responses, reduces inflammation, enhances functional recovery. | [57,58,59] |
Component | Role | Mechanisms | Benefits | References |
---|---|---|---|---|
Probiotics | Live beneficial bacteria administered to restore microbial balance. | Compete with pathogens, produce bioactive compounds, and enhance immune cell activity. | Provide immune modulatory and biocompatibility effects in tissue engineering and improve wound healing in regenerative medicine. | [106,137,138,139] |
Prebiotics | Nutritional compounds that promote the growth of beneficial bacteria. | Fermented by gut microbiota to produce bioactive metabolites. | Enhances gut microbiota diversity, supports nutrient absorption, and stabilizes homeostasis. | [140,141,142] |
Postbiotics | Bioactive compounds produced by probiotics, such as SCFAs, BAs, PAs, indole derivatives or peptides. | Directly influence host physiology through anti-inflammatory and antioxidant effects, and promote gut barrier integrity. | Reduces oxidative stress, systemic inflammation, promotes tissue healing, and systemic homeostasis | [143,144,145] |
Step | Description | Actions | Expected Benefits |
---|---|---|---|
1. Baseline Assessment | Evaluate the patient’s microbiome profile and overall health status. | Conduct gut microbiota analysis, assess dietary habits, and identify dysbiosis or imbalances. | Personalized insights into microbiome health and targeted intervention planning. |
2. Targeted Nutritional Plan | Design a dietary strategy to support microbial diversity and SCFA production. | Incorporate prebiotics (e.g., inulin, fructo-oligosaccharides; FOS) and fiber-rich foods into the patient’s diet. | Enhances gut microbiota diversity, supports metabolic homeostasis, and improves recovery. |
3. Probiotic Supplementation | Introduce beneficial live bacteria tailored to individual needs. | Prescribe specific probiotic strains based on identified deficiencies (e.g., Lactobacillus, Bifidobacterium). | Restores microbial balance, reduces inflammation, and boosts immune resilience. |
4. Postbiotic Integration | Incorporate bioactive metabolites produced by beneficial bacteria into the therapy plan. | Use SCFA supplements or postbiotic formulations to enhance systemic and localized recovery. | Strengthens gut barrier integrity, modulates immunity, and accelerates tissue healing. |
5. Monitor and Adjust | Regularly assess microbiome-related health outcomes to refine the rehabilitation plan. | Perform follow-up microbiota analyses and adapt dietary or supplementation strategies. | Ensures sustained microbiome health and optimizes long-term rehabilitation outcomes. |
6. Gut-Health Education | Empower patients with knowledge about maintaining a healthy microbiome. | Provide guidance on diet, lifestyle, and probiotic use to prevent dysbiosis. | Promotes long-term health resilience and prevents recurrence of imbalances. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garaci, E.; Russo, M.A.; Pariano, M.; Puccetti, M.; Fabi, C.; Balucchi, S.; Bellet, M.M.; Ricci, M.; Fini, M.; Romani, L. Innovative Approaches to Medical Rehabilitation: Regeneration, Immune Training, Homeostasis, and Microbiome Synergy. Int. J. Mol. Sci. 2025, 26, 8687. https://doi.org/10.3390/ijms26178687
Garaci E, Russo MA, Pariano M, Puccetti M, Fabi C, Balucchi S, Bellet MM, Ricci M, Fini M, Romani L. Innovative Approaches to Medical Rehabilitation: Regeneration, Immune Training, Homeostasis, and Microbiome Synergy. International Journal of Molecular Sciences. 2025; 26(17):8687. https://doi.org/10.3390/ijms26178687
Chicago/Turabian StyleGaraci, Enrico, Matteo Antonio Russo, Marilena Pariano, Matteo Puccetti, Consuelo Fabi, Sarah Balucchi, Marina Maria Bellet, Maurizio Ricci, Massimo Fini, and Luigina Romani. 2025. "Innovative Approaches to Medical Rehabilitation: Regeneration, Immune Training, Homeostasis, and Microbiome Synergy" International Journal of Molecular Sciences 26, no. 17: 8687. https://doi.org/10.3390/ijms26178687
APA StyleGaraci, E., Russo, M. A., Pariano, M., Puccetti, M., Fabi, C., Balucchi, S., Bellet, M. M., Ricci, M., Fini, M., & Romani, L. (2025). Innovative Approaches to Medical Rehabilitation: Regeneration, Immune Training, Homeostasis, and Microbiome Synergy. International Journal of Molecular Sciences, 26(17), 8687. https://doi.org/10.3390/ijms26178687