Urinary Exosomes in Nephrology: A New Frontier for Diagnosis and Prognosis of Kidney Diseases
Abstract
1. Introduction
2. Urinary Exosomes Isolation and Characterization
3. Isolation Methods
4. Discussion
5. Urinary Exosomes in Kidney Diseases
- IgA Nephropathy
- Podocytopathies
- Membranous nephropathy
- Lupus Nephritis
- Paraprotein related nephropathies
- Rejection after kidney transplant
- Diabetic Nephropathy
- Autosomal Dominant Polycystic Kidney Disease (ADPKD)
6. Critical Appraisal of the Existing Literature
7. Therapeutic Applications
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
ABMR | Antibody Mediated Rejection |
ADP | Adenosine Diphosphate |
ADPKD | Autosomal Dominant Polycystic Kidney Disease |
AF4 | Asymmetric Flow Field-Flow Fractionation |
apoE | Apolipoprotein E |
AQP | Aquaporin |
ATPase | Adenosine Triphosphatase |
CD | Cluster of Differentiation |
CKD | Chronic Kidney Disease |
DN | Diabetic Nephropathy |
ESCRT | Endosomal Sorting Complex Required for Transport |
ESDR | End-Stage Renal Disease |
EV | Extracellular Vesicle |
EXODUS | Exosome detection via the ultrafast isolation system |
FSGS | Focal Segmental Glomerulosclerosis |
GFR | Glomerular Filtration Rate |
IFNAR2 | Interferon-Alpha/Beta Receptor Subunit 2 |
IgA | Immunoglobulin A |
IgAN | Immunoglobulin A Nephropathy |
IgG | Immunoglobulin G |
ILV | Intraluminal Vesicle |
ISEV | International Society for Extracellular Vesicles |
LCDD | Light Chain Deposition Disease |
LN | Lupus Nephritis |
MCD | Minimal Change Disease |
MGRS | Monoclonal Gammopathy of Renal Significance |
MGUS | Monoclonal Gammopathy of Undetermined Significance |
miR/miRNA | Micro Ribonucleic Acid |
MMP-9 | Matrix Metalloproteinase-9 |
mRNA | Messenger Ribonucleic Acid |
MSC | Mesenchymal Stem Cell |
MVB | Multivesicular Body |
NLR | Nucleotide-binding Leucine-rich repeat Receptors |
NLRP3 | NLR Family Pyrin Domain Containing 3 |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
PEG | Polyethylene Glycol |
PLA2R | Phospholipase A2 Receptor, M-type |
SAP | Serum Amyloid P component |
SLE | Systemic Lupus Erythematosus |
TBMN | Thin Basement Membrane Nephropathy |
TCMR | T-Cell Mediated Rejection |
TGF-β | Transforming Growth Factor Beta |
THSD7A | Thrombospondin Type-1 Domain-Containing 7A |
TSG101 | Tumor Susceptibility Gene 101 |
uAQP | Urinary Aquaporin |
UMOD | Uromodulin |
VPS4 | Vacuolar Protein Sorting-associated protein 4 |
References
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Fogo, A.B. Approach to renal biopsy. Am. J. Kidney Dis. 2003, 42, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Dhaun, N.; Bellamy, C.O.; Cattran, D.C.; Kluth, D.C. Utility of renal biopsy in the clinical management of renal disease. Kidney Int. 2014, 85, 1039–1048, Erratum in Kidney Int. 2014, 86, 1268. [Google Scholar] [CrossRef] [PubMed]
- Furness, P.N.; Taub, N.; Assmann, K.J.M.; Banfi, G.; Cosyns, J.-P.; Dorman, A.M.; Hill, C.M.; Kapper, S.K.; Waldherr, R.; Laurinavicius, A.; et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am. J. Surg. Pathol. 2003, 27, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Corapi, K.M.; Chen, J.L.T.; Balk, E.M.; Gordon, C.E. Bleeding complications of native kidney biopsy: A systematic review and meta-analysis. Am. J. Kidney Dis. 2012, 60, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Vivante, A.; Ingelfinger, J.R.; Lee, C.D. Genetics of Chronic Kidney Disease. N. Engl. J. Med. 2024, 391, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ERA-EDTA. Registry: ERA-EDTA Registry Annual Report 2019; Amsterdam UMC, location AMC, Department of Medical Informatics: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Andaloussi, E.L.S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Kourembanas, S. Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 2015, 77, 13–27. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M. Urinary Exosomes: A Promising Biomarker for Disease Diagnosis. Lab Med. 2023, 54, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Stokman, M.F.; Bijnsdorp, I.V.; Schelfhorst, T.; Pham, T.V.; Piersma, S.R.; Knol, J.C.; Giles, R.H.; Bongers, E.M.; Knoers, N.V.; Lilien, M.R.; et al. Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies. J. Proteom. 2019, 192, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Llorente, A.; Skotland, T.; Sylvänne, T.; Kauhanen, D.; Róg, T.; Orłowski, A.; Vattulainen, I.; Ekroos, K.; Sandvig, K. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta. 2013, 1831, 1302–1309. [Google Scholar] [CrossRef]
- Agborbesong, E.; Bissler, J.; Li, X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes 2023, 14, 1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, G.K.; Khan, M.A.; Zubair, H.; Srivastava, S.K.; Khushman, M.; Singh, S.; Singh, A.P. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci. Rep. 2019, 9, 5335. [Google Scholar] [CrossRef]
- Dhondt, B.; Geeurickx, E.; Tulkens, J.; Van Deun, J.; Vergauwen, G.; Lippens, L.; Miinalainen, I.; Rappu, P.; Heino, J.; Ost, P.; et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J. Extracell. Vesicles 2020, 9, 1736935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Svenningsen, P.; Sabaratnam, R.; Jensen, B.L. Urinary extracellular vesicles: Origin, role as intercellular messengers and biomarkers; efficient sorting and potential treatment options. Acta Physiol. 2019, 228, e13346. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, K.; Dwivedi, O.P.; Leparc, G.; Rolser, M.; Delic, D.; Forsblom, C.; Groop, P.; Groop, L.; Huber, T.B.; Puhka, M.; et al. Comparison of urinary extracellular vesicle isolation methods for transcriptomic biomarker research in diabetic kidney disease. J. Extracell. Vesicles 2020, 10, e12038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musante, L.; Tataruch-Weinert, D.; Kerjaschki, D.; Henry, M.; Meleady, P.; Holthofer, H. Residual urinary extracellular vesicles in ultracentrifugation supernatants after hydrostatic filtration dialysis enrichment. Extracell. Vesicles 2017, 6, 1267896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. In Proteomic Profiling; Posch, A., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1295, pp. 179–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, Q.; Cheng, L.; Wang, Y.; Li, M.; Yang, Q.; Hu, L.; Lou, D.; Li, J.; Dong, X.; et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 2021, 18, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lyden, D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 2019, 14, 1027–1053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saint-Pol, J.; Culot, M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol. Vitr. 2025, 106, 106049. [Google Scholar] [CrossRef] [PubMed]
- Jadli, A.S.; Ballasy, N.; Edalat, P.; Patel, V.B. Inside(sight) of tiny communicator: Exosome biogenesis, secretion, and uptake. Mol. Cell. Biochem. 2020, 467, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Juan, T.; Fürthauer, M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin. Cell Dev. Biol. 2018, 74, 66–77. [Google Scholar] [CrossRef]
- Moon, P.; Lee, J.; You, S.; Kim, T.; Cho, J.; Kim, I.; Kwon, T.; Kim, C.; Park, S.; Hwang, D.; et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 2011, 11, 2459–2475. [Google Scholar] [CrossRef] [PubMed]
- Min, Q.; Chen, X.; Zou, Y.; Zhang, J.; Wang, Y.; Li, S.; Gao, Q.; Sun, F.; Liu, J.; Xu, Y.; et al. Differential expression of urinary exosomal microRNAs in IgA nephropathy. J. Clin. Lab. Anal. 2017, 32, e22226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramezani, A.; Devaney, J.M.; Cohen, S.; Wing, M.R.; Scott, R.; Knoblach, S.; Singhal, R.; Howard, L.; Kopp, J.B.; Raj, D.S. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: A pilot study. Eur. J. Clin. Investig. 2015, 45, 394–404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Wang, J.; Xu, A.; Wei, L.; Pei, M.; Shen, T.; Xian, X.; Yang, K.; Fei, L.; Pan, Y.; et al. Future embracing: Exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J. Nanobiotechnol. 2024, 22, 472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez-Hernandez, J.; Forner, M.J.; Pinto, C.; Chaves, F.J.; Cortes, R.; Redon, J.; Alvarez, M.L. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0138618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramirez-Alvarado, M.; Ward, C.J.; Huang, B.Q.; Gong, X.; Hogan, M.C.; Madden, B.J.; Charlesworth, M.C.; Leung, N.; Abraham, E. Differences in immunoglobulin light chain species found in urinary exosomes in light chain amyloidosis (Al). PLoS ONE 2012, 7, e38061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Fekih, R.; Hurley, J.; Tadigotla, V.; Alghamdi, A.; Srivastava, A.; Coticchia, C.; Choi, J.; Allos, H.; Yatim, K.; Alhaddad, J.; et al. Discovery and Validation of a Urinary Exosome mRNA Signature for the Diagnosis of Human Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2021, 32, 994–1004. [Google Scholar] [CrossRef]
- Barr, S.I.; Bessa, S.S.; Mohamed, T.M.; El-Azeem, E.M.A. Exosomal UMOD gene expression and urinary uromodulin level as early noninvasive diagnostic biomarkers for diabetic nephropathy in type 2 diabetic patients. Diabetol. Int. 2024, 15, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, S.; Qiao, R.; Zhang, J. Potential value of urinary exosome-derived let-7c-5p in the diagnosis and progression of type II diabetic nephropathy. Clin. Lab. 2018, 64, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, S.; Zhang, R.; Sun, B.; Zhou, S.; Chen, R.; Yu, P. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J. Diabetes Investig. 2017, 9, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Nicoletti, M.C.; Carmosino, M.; Mastrofrancesco, L.; Di Franco, A.; Indrio, F.; Lella, R.; Laviola, L.; Giorgino, F.; Svelto, M.; et al. Urinary excretion of kidney aquaporins as possible diagnostic biomarker of diabetic nephropathy. J. Diabetes Res. 2017, 2017, 4360357. [Google Scholar] [CrossRef]
- Floege, J.; Johnson, R.J.; Feehally, J. Comprehensive Clinical Nephrology, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-323-05876-6. [Google Scholar]
- Kopp, J.B.; Anders, H.-J.; Susztak, K.; Podestà, M.A.; Remuzzi, G.; Hildebrandt, F.; Romagnani, P. Podocytopathies. Nat. Rev. Dis. Prim. 2020, 6, 68. [Google Scholar] [CrossRef]
- Francis, J.M.; Beck, L.H.; Salant, D.J. Membranous Nephropathy: A Journey from Bench to Bedside. Am. J. Kidney Dis. 2016, 68, 138–147. [Google Scholar] [CrossRef]
- Garcia-Vives, E.; Solé, C.; Moliné, T.; Vidal, M.; Agraz, I.; Ordi-Ros, J.; Cortés-Hernández, J. The urinary exosomal miRNA expression profile is predictive of clinical response in lupus nephritis. Int. J. Mol. Sci. 2020, 21, 1372. [Google Scholar] [CrossRef]
- Chapman, A.B.; Devuyst, O.; Eckardt, K.-U.; Gansevoort, R.T.; Harris, T.; Horie, S.; Kasiske, B.L.; Odland, D.; Pei, Y.; Perrone, R.D.; et al. Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015, 88, 17–27. [Google Scholar] [CrossRef]
- Hogan, M.C.; Manganelli, L.; Woollard, J.R.; Masyuk, A.I.; Masyuk, T.V.; Tammachote, R.; Huang, B.Q.; Leontovich, A.A.; Beito, T.G.; Madden, B.J.; et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 2009, 20, 278–288. [Google Scholar] [CrossRef]
- Hogan, M.C.; Bakeberg, J.L.; Gainullin, V.G.; Irazabal, M.V.; Harmon, A.J.; Lieske, J.C.; Charlesworth, M.C.; Johnson, K.L.; Madden, B.J.; Zenka, R.M.; et al. Identification of Biomarkers for PKD1 Using Urinary Exosomes. J. Am. Soc. Nephrol. 2015, 26, 1661–1670. [Google Scholar] [CrossRef]
- Salih, M.; Demmers, J.A.; Bezstarosti, K.; Leonhard, W.N.; Losekoot, M.; van Kooten, C.; Gansevoort, R.T.; Peters, D.J.; Zietse, R.; Hoorn, E.J.; et al. Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3079–3092. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.-G. A Novel Nanoparticle Drug Delivery System: The Anti-inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes. Mol. Ther. 2010, 18, 1606–1614. [Google Scholar] [CrossRef]
- Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390. [Google Scholar] [CrossRef]
- Wang, B.; Yao, K.; Huuskes, B.M.; Shen, H.-H.; Zhuang, J.; Godson, C.; Brennan, E.P.; Wilkinson-Berka, J.L.; Wise, A.F.; Ricardo, S.D. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol. Ther. 2016, 24, 1290–1301. [Google Scholar] [CrossRef]
- Xie, X.; Yang, X.; Wu, J.; Tang, S.; Yang, L.; Fei, X.; Wang, M. Exosome from indoleamine 2,3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res. Ther. 2022, 13, 367. [Google Scholar] [CrossRef]
Nephropathy | Exosomes Biomarkers | References |
---|---|---|
IgA Nephropathy | (+) aminopeptidase N (+) Vasorin precursor (+) α-1-antitrypsin (+) ceruloplasmin (+) miR-29c (+) miR-146a (+) miR-205 | [26] [26] [26] [26] [27] [27] [27] |
Minimal Change Disease | (+) miR-1225-5p | [28] |
Membranous Nephropathy | (+) Alix (+) CD63 (+) TSG10 | [29] [29] [29] |
Lupus Nephritis | (+) miR-146a | [30] |
AL Amyloidosis | (+) SAP (+) apoE (+) vitronectin (+) light chain decamers | [31] [31] [31] [31] |
All cause rejection | (+) (CXCL11, CD74, IL32, STAT1, CXCL14, SERPINA1, B2M, C3, PYCARD, BMP7, TBP, NAMPT, IFNGR1, IRAK2) | [32] |
ABMR | (+) (CD74, C3, CXCL11, CD44, IFNAR2) | [32] |
Diabetic Nephropathy | (+) uromodulin (+) miR-151a-3p (+) miR-182-5p (+) let-7c-5p (+) miR-192a-1-5p AQP5, AQP2 | [33] [34] [34] [34] [35] [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaudio, C.; D’Arpino, E.; Stefani, S.; Fani, F.M.; Rosso, G.; Di Marcantonio, E.; Becherelli, P.; Caselli, G.; Merciai, C.; Fortunato, L.; et al. Urinary Exosomes in Nephrology: A New Frontier for Diagnosis and Prognosis of Kidney Diseases. Int. J. Mol. Sci. 2025, 26, 8679. https://doi.org/10.3390/ijms26178679
Gaudio C, D’Arpino E, Stefani S, Fani FM, Rosso G, Di Marcantonio E, Becherelli P, Caselli G, Merciai C, Fortunato L, et al. Urinary Exosomes in Nephrology: A New Frontier for Diagnosis and Prognosis of Kidney Diseases. International Journal of Molecular Sciences. 2025; 26(17):8679. https://doi.org/10.3390/ijms26178679
Chicago/Turabian StyleGaudio, Costanza, Emanuele D’Arpino, Simone Stefani, Filippo Maria Fani, Giuseppina Rosso, Elio Di Marcantonio, Paola Becherelli, Gianmarco Caselli, Chiara Merciai, Laura Fortunato, and et al. 2025. "Urinary Exosomes in Nephrology: A New Frontier for Diagnosis and Prognosis of Kidney Diseases" International Journal of Molecular Sciences 26, no. 17: 8679. https://doi.org/10.3390/ijms26178679
APA StyleGaudio, C., D’Arpino, E., Stefani, S., Fani, F. M., Rosso, G., Di Marcantonio, E., Becherelli, P., Caselli, G., Merciai, C., Fortunato, L., Scopetani, N., & Rosati, A. (2025). Urinary Exosomes in Nephrology: A New Frontier for Diagnosis and Prognosis of Kidney Diseases. International Journal of Molecular Sciences, 26(17), 8679. https://doi.org/10.3390/ijms26178679