Antimicrobial Efficacy and Stability of an N-Chlorotaurine Gel for Chronic Wound Treatment
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Bacterial Strains and Culture Conditions
4.3. Biofilm Flow System
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottardi, W.; Nagl, M. Chemical Properties of N-Chlorotaurine Sodium, a Key Compound in the Human Defence System. Arch. Pharm. 2002, 335, 411–421. [Google Scholar] [CrossRef]
- Gottardi, W.; Nagl, M. N-chlorotaurine, a natural antiseptic with outstanding tolerability. J. Antimicrob. Chemother. 2010, 65, 399–409. [Google Scholar] [CrossRef]
- Nagl, M.; Nguyen, V.A.; Gottardi, W.; Ulmer, H.; Höpfl, R. Tolerability and efficacy of N-chlorotaurine in comparison with chloramine T for the treatment of chronic leg ulcers with a purulent coating: A randomized phase II study. Br. J. Dermatol. 2003, 149, 590–597. [Google Scholar] [CrossRef]
- Nagl, M.; Arnitz, R.; Lackner, M. N-Chlorotaurine, a Promising Future Candidate for Topical Therapy of Fungal Infections. Mycopathologia 2018, 183, 161–170. [Google Scholar] [CrossRef]
- Staudinger, G.J.; Thomas, Z.M.; Hooper, S.E.; Williams, J.F.; Robins, L.I. Long-Term Stability and Efficacy of NCT Solutions. Int. J. Mol. Sci. 2024, 25, 8745. [Google Scholar] [CrossRef] [PubMed]
- Miron, A.; Giurcaneanu, C.; Mihai, M.M.; Beiu, C.; Voiculescu, V.M.; Popescu, M.N.; Soare, E.; Popa, L.G. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics 2023, 15, 1606. [Google Scholar] [CrossRef]
- Nagamatsu, Y.; Nagamatsu, H.; Ikeda, H.; Shimizu, H. Microbicidal effect and storage stability of neutral HOCl-containing aqueous gels with different thickening/gelling agents. Dent. Mater. J. 2021, 40, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Nagl, M.; Gottardi, W. In-vitro experiments on the bactericidal action of N-chloro taurine. Hyg. + Med. 1992, 17, 431–439. [Google Scholar]
- Duckworth, P.F.; Rowlands, R.S.; Barbour, M.E.; Maddocks, S.E. A novel flow-system to establish experimental biofilms for modelling chronic wound infection and testing the efficacy of wound dressings. Microbiol. Res. 2018, 215, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Coraça-Huber, D.C.; Ammann, C.G.; Fille, M.; Hausdorfer, J.; Nogler, M.; Nagl, M. Bactericidal activity of N-chlorotaurine against biofilm-forming bacteria grown on metal disks. Antimicrob. Agents Chemother. 2014, 58, 2235–2239. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Strus, M.; Walczewska, M.; Machul, A.; Mikołajczyk, D. Influence of taurine haloamines (TauCl and TauBr) on the development of Pseudomonas aeruginosa biofilm: A preliminary study. Adv. Exp. Med. Biol. 2013, 775, 269–283. [Google Scholar]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Khalid, A.; Cookson, A.R.; Whitworth, D.E.; Beeton, M.L.; Robins, L.I.; Maddocks, S.E. A Synthetic Polymicrobial Community Biofilm Model Demonstrates Spatial Partitioning, Tolerance to Antimicrobial Treatment, Reduced Metabolism, and Small Colony Variants Typical of Chronic Wound Biofilms. Pathogens 2023, 12, 118. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite: Evidence for radical intermediates and fragmentation. Free Radic. Biol. Med. 1998, 24, 1396–1410. [Google Scholar] [CrossRef]
- Ammann, C.G.; Fille, M.; Hausdorfer, J.; Nogler, M.; Nagl, M.; Coraça-Huber, D.C. Influence of poly-N-acetylglucosamine in the extracellular matrix on N-chlorotaurine mediated killing of Staphylococcus epidermidis. New Microbiol. 2014, 37, 383–386. [Google Scholar]
- Hotterbeekx, A.; Kumar-Singh, S.; Goossens, H.; Malhotra-Kumar, S. In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front. Cell. Infect. Microbiol. 2017, 7, 106. [Google Scholar]
- Nostro, A.; Cellini, L.; Di Giulio, M.; D’Arrigo, M.; Marino, A.; Blanco, A.R.; Favaloro, A.; Cutroneo, G.; Bisignano, G. Effect of alkaline pH on staphylococcal biofilm formation. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2012, 120, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Mirani, Z.A.; Mirani, P.N.; Imdad, M.J.; Khan, F.Z.; Khan, M.N.; Khan, A.B.; Li, Y.; Zhao, Y. Pseudomonas aeruginosa Response to Acidic Stress and Imipenem Resistance. Appl. Sci. 2022, 12, 8357. [Google Scholar]
- Nedelea, A.G.; Plant, R.L.; Robins, L.I.; Maddocks, S.E. Testing the efficacy of topical antimicrobial treatments using a two- and five-species chronic wound biofilm model. J. Appl. Microbiol. 2021, 132, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Summers, F.A.; Morgan, P.E.; Davies, M.J.; Hawkins, C.L. Identification of Plasma Proteins That Are Susceptible to Thiol Oxidation by Hypochlorous Acid and N-Chloramines. Chem. Res. Toxicol. 2008, 21, 1832–1840. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J. Kinetic Analysis of the Role of Histidine Chloramines in Hypochlorous Acid Mediated Protein Oxidation. Biochemistry 2005, 44, 7378–7387. [Google Scholar] [CrossRef] [PubMed]
- Leaper, D.; Assadian, O.; Edmiston, C.E. Approach to chronic wound infections. Br. J. Dermatol. 2015, 173, 351–358. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Kontny, E. Taurine and inflammatory diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef]
- Robins, L.I.; Keim, E.K.; Robins, D.B.; Edgar, J.S.; Meschke, J.S.; Gafken, P.R.; Williams, J.F. Modifications of IL-6 by Hypochlorous Acids: Effects on Receptor Binding. ACS Omega 2021, 6, 35593–35599. [Google Scholar] [CrossRef]
- Croke, E.P. Danielle Gel Disinfecting Composition. U.S. Patent US20150125543A1, 5 July 2015. [Google Scholar]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. J. Hyg. 1938, 38, 732–749. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, Z.M.; Staudinger, G.J.; Hooper, S.E.; Williams, J.F.; Robins, L.I. Antimicrobial Efficacy and Stability of an N-Chlorotaurine Gel for Chronic Wound Treatment. Int. J. Mol. Sci. 2025, 26, 8677. https://doi.org/10.3390/ijms26178677
Thomas ZM, Staudinger GJ, Hooper SE, Williams JF, Robins LI. Antimicrobial Efficacy and Stability of an N-Chlorotaurine Gel for Chronic Wound Treatment. International Journal of Molecular Sciences. 2025; 26(17):8677. https://doi.org/10.3390/ijms26178677
Chicago/Turabian StyleThomas, Zachary M., Gabriel J. Staudinger, Sarah E. Hooper, Jeffrey F. Williams, and Lori I. Robins. 2025. "Antimicrobial Efficacy and Stability of an N-Chlorotaurine Gel for Chronic Wound Treatment" International Journal of Molecular Sciences 26, no. 17: 8677. https://doi.org/10.3390/ijms26178677
APA StyleThomas, Z. M., Staudinger, G. J., Hooper, S. E., Williams, J. F., & Robins, L. I. (2025). Antimicrobial Efficacy and Stability of an N-Chlorotaurine Gel for Chronic Wound Treatment. International Journal of Molecular Sciences, 26(17), 8677. https://doi.org/10.3390/ijms26178677