Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine
Abstract
1. Introduction
2. CD in Humans
3. Spontaneous Models of CD in Animals
3.1. Dog (Canis lupus familiaris)
3.2. Horse (Equus caballus)
3.3. Cat (Felis catus)
3.4. Small Mammals
3.5. Rat (Rattus norvegicus)
4. CD Animal Models for Preclinical Research
4.1. Mouse (Mus musculus)
4.2. Rat (Rattus norvegicus)
4.3. Zebrafish (Danio rerio)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pivonello, R.; De Martino, M.C.; De Leo, M.; Simeoli, C.; Colao, A. Cushing’s disease: The burden of illness. Endocrine 2017, 56, 10–18. [Google Scholar] [CrossRef]
- de Bruin, C.; Meij, B.P.; Kooistra, H.S.; Hanson, J.M.; Lamberts, S.W.; Hofland, L.J. Cushing’s disease in dogs and humans. Horm. Res. 2009, 71, 140–143. [Google Scholar] [CrossRef]
- Denver, R.J. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann. N. Y. Acad. Sci. 2009, 1163, 1–16. [Google Scholar] [CrossRef]
- Orth, D.N. Cushing’s syndrome. N. Engl. J. Med. 1995, 332, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, G.; Crisafulli, S.; Ferrau, F.; Fontana, A.; Alessi, Y.; Calapai, F.; Ragonese, M.; Luxi, N.; Cannavo, S.; Trifiro, G. Global Cushing’s disease epidemiology: A systematic review and meta-analysis of observational studies. J. Endocrinol. Investig. 2022, 45, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, S.; Yilmaz, N.; Selcukbiricik, O.S.; Hekimsoy, Z.; Canpolat, A.G.; Topsakal, S.; Yaylali, G.F.; Misiroglu, F.; Gul, N.; Uzum, A.K.; et al. Comparison of clinical, hormonal, pathological and treatment outcomes of ectopic Cushing’s syndrome by sex: Results of a multicenter study. Endocrine 2024, 86, 1148–1155. [Google Scholar] [CrossRef]
- Kemppainen, R.J.; Peterson, M.E. Animal models of Cushing’s disease. Trends Endocrinol. Metab. 1994, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Fountas, A.; Giotaki, Z.; Ligkros, N.; Tsakiridou, E.D.; Tigas, S.; Saeger, W.; Tsatsoulis, A. Cushing’s Syndrome Due to CRH and ACTH Co-secreting Pancreatic Tumor—Presentation of a New Case Focusing on Diagnostic Pitfalls. Endocr. Pathol. 2015, 26, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Rhee, Y.; Youn, J.C.; Park, Y.N.; Lee, S.; Kim, D.M.; Song, S.Y.; Lim, S.K. Ectopic Cushing’s syndrome due to concurrent corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) secreted by malignant gastrinoma. Exp. Clin. Endocrinol. Diabetes 2007, 115, 13–16. [Google Scholar] [CrossRef]
- Sauer, N.; zur Wiesch, C.S.; Flitsch, J.; Saeger, W.; Klutmann, S.; Zustin, J.; Luebke, A.; Aberle, J. Cushing’s syndrome due to a corticotropin-releasing hormone- and adrenocorticotrophic hormone-producing neuroendocrine pancreatic tumor. Endocr. Pract. 2014, 20, e53–e57. [Google Scholar] [CrossRef]
- Shahani, S.; Nudelman, R.J.; Nalini, R.; Kim, H.S.; Samson, S.L. Ectopic corticotropin-releasing hormone (CRH) syndrome from metastatic small cell carcinoma: A case report and review of the literature. Diagn. Pathol. 2010, 5, 56. [Google Scholar] [CrossRef]
- Streuli, R.; Krull, I.; Brandle, M.; Kolb, W.; Stalla, G.; Theodoropoulou, M.; Enzler-Tschudy, A.; Bilz, S. A rare case of an ACTH/CRH co-secreting midgut neuroendocrine tumor mimicking Cushing’s disease. Endocrinol. Diabetes Metab. Case Rep. 2017, 2017, 17-0058. [Google Scholar] [CrossRef]
- Ferone, D.; Pivonello, C.; Vitale, G.; Zatelli, M.C.; Colao, A.; Pivonello, R. Molecular basis of pharmacological therapy in Cushing’s disease. Endocrine 2014, 46, 181–198. [Google Scholar] [CrossRef]
- Caimari, F.; Corcoy, R.; Webb, S.M. Cushing’s disease: Major difficulties in diagnosis and management during pregnancy. Minerva Endocrinol. 2018, 43, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Ragnarsson, O. Cushing’s syndrome—Disease monitoring: Recurrence, surveillance with biomarkers or imaging studies. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101382. [Google Scholar] [CrossRef]
- Agrawal, N.; Urwyler, S.A.; Mehta, S.; Karavitaki, N.; Feelders, R.A. How to manage Cushing’s disease after failed primary pituitary surgery. Eur. J. Endocrinol. 2024, 191, R37–R54. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.J.; Andrade, N.; Musolino, N.; Cescato, V.; Silva, G.; Fragoso, M.C.; Bronstein, M.; Machado, M. The effects of cabergoline in the presurgical and recurrence periods of Cushing’s disease patients. Minerva Endocrinol. Torino 2024, 49, 235–242. [Google Scholar] [CrossRef]
- Bugbee, A.; Rucinsky, R.; Cazabon, S.; Kvitko-White, H.; Lathan, P.; Nichelason, A.; Rudolph, L. 2023 AAHA Selected Endocrinopathies of Dogs and Cats Guidelines. J. Am. Anim. Hosp. Assoc. 2023, 59, 113–135. [Google Scholar] [CrossRef]
- Bilodeau, S.; Vallette-Kasic, S.; Gauthier, Y.; Figarella-Branger, D.; Brue, T.; Berthelet, F.; Lacroix, A.; Batista, D.; Stratakis, C.; Hanson, J.; et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 2006, 20, 2871–2886. [Google Scholar] [CrossRef] [PubMed]
- Sbiera, S.; Tryfonidou, M.A.; Weigand, I.; Grinwis, G.C.; Broeckx, B.; Herterich, S.; Allolio, B.; Deutschbein, T.; Fassnacht, M.; Meij, B.P. Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas. PLoS ONE 2016, 11, e0169009. [Google Scholar] [CrossRef]
- Castillo, V.; Theodoropoulou, M.; Stalla, J.; Gallelli, M.F.; Cabrera-Blatter, M.F.; Haedo, M.R.; Labeur, M.; Schmid, H.A.; Stalla, G.K.; Arzt, E. Effect of SOM230 (pasireotide) on corticotropic cells: Action in dogs with Cushing’s disease. Neuroendocrinology 2011, 94, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Lottati, M.; Bruyette, D.S. Outcomes of the addition of pasireotide to traditional adrenal-directed treatment for dogs with pituitary-dependent hyperadrenocorticism secondary to macroadenoma: 9 cases (2013–2015). J. Am. Vet. Med. Assoc. 2018, 252, 1403–1408. [Google Scholar] [CrossRef]
- Castillo, V.; Giacomini, D.; Paez-Pereda, M.; Stalla, J.; Labeur, M.; Theodoropoulou, M.; Holsboer, F.; Grossman, A.B.; Stalla, G.K.; Arzt, E. Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology 2006, 147, 4438–4444. [Google Scholar] [CrossRef]
- Pecori Giraldi, F.; Ambrogio, A.G.; Andrioli, M.; Sanguin, F.; Karamouzis, I.; Corsello, S.M.; Scaroni, C.; Arvat, E.; Pontecorvi, A.; Cavagnini, F. Potential role for retinoic acid in patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 2012, 97, 3577–3583. [Google Scholar] [CrossRef]
- Vilar, L.; Albuquerque, J.L.; Lyra, R.; Trovao Diniz, E.; Rangel Filho, F.; Gadelha, P.; The, A.C.; Ibiapina, G.R.; Gomes, B.S.; Santos, V.; et al. The Role of Isotretinoin Therapy for Cushing’s Disease: Results of a Prospective Study. Int. J. Endocrinol. 2016, 2016, 8173182. [Google Scholar] [CrossRef]
- Fukuoka, H.; Cooper, O.; Ben-Shlomo, A.; Mamelak, A.; Ren, S.G.; Bruyette, D.; Melmed, S. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Investig. 2011, 121, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.; Veldhuizen, A.; Kooistra, H.S.; Slob, A.; Timmermans-Sprang, E.P.M.; Riemers, F.M.; Daminet, S.; Fracassi, F.; van Nimwegen, S.A.; Meij, B.P.; et al. Circulating MicroRNAs as Non-invasive Biomarkers for Canine Cushing’s Syndrome. Front. Vet. Sci. 2021, 8, 760487. [Google Scholar] [CrossRef] [PubMed]
- Blois, S.L.; Dickie, E.; Kruth, S.A.; Allen, D.G. Multiple endocrine diseases in dogs: 35 cases (1996–2009). J. Am. Vet. Med. Assoc. 2011, 238, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Pöppl, Á.G.; Coelho, I.C.; da Silveira, C.A.; Moresco, M.B.; Carvalho, G.L.C. Frequency of Endocrinopathies and Characteristics of Affected Dogs and Cats in Southern Brazil (2004–2014). Acta Sci. Vet. 2016, 44, 9. [Google Scholar] [CrossRef]
- Kemppainen, R.J.; Zerbe, C.A.; Sartin, J.L. Regulation and secretion of proopiomelanocortin peptides from isolated perifused dog pituitary pars intermedia cells. Endocrinology 1989, 124, 2208–2217. [Google Scholar] [CrossRef]
- Tatum, R.C.; McGowan, C.M.; Ireland, J.L. Efficacy of pergolide for the management of equine pituitary pars intermedia dysfunction: A systematic review. Vet. J. 2020, 266, 105562. [Google Scholar] [CrossRef]
- Love, S. Equine Cushing’s disease. Br. Vet. J. 1993, 149, 139–153. [Google Scholar] [CrossRef] [PubMed]
- McCue, P.M. Ovarian abnormalities. In Current Therapy in Equine Reproduction; Samper, J.C., Pycock, J.F., McKinnon, A.O., Eds.; W. B. Saunders: Philadelphia, PA, USA, 2007; pp. 87–92. [Google Scholar]
- McFarlane, D.; Toribio, R.E. Pituitary pars intermedia dysfunction. In Equine Internal Medicine, 3rd ed.; Reed, S.M., Bayly, W.M., Sellon, D.C., Eds.; W. B. Saunders: Philadelphia, PA, USA, 2010; pp. 1262–1270. [Google Scholar]
- Pease, A.P.; 2nd Schott, H.C.; Howey, E.B.; Patterson, J.S. Computed tomographic findings in the pituitary gland and brain of horses with pituitary pars intermedia dysfunction. J. Vet. Intern. Med. 2011, 25, 1144–1151. [Google Scholar] [CrossRef]
- Kirkwood, N.C.; Hughes, K.J.; Stewart, A.J. Pituitary Pars Intermedia Dysfunction (PPID) in Horses. Vet. Sci. 2022, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Schott, H.C., 2nd. Pituitary pars intermedia dysfunction: Equine Cushing’s disease. Vet. Clin. N. Am. Equine Pract. 2002, 18, 237–270. [Google Scholar] [CrossRef] [PubMed]
- Rijnberk, A.; Kooistra, H.S.; Mol, J.A. Endocrine diseases in dogs and cats: Similarities and differences with endocrine diseases in humans. Growth Horm. IGF Res. 2003, 13, S158–S164. [Google Scholar] [CrossRef]
- Sanders, K.; Galac, S.; Meij, B.P. Pituitary tumour types in dogs and cats. Vet. J. 2021, 270, 105623. [Google Scholar] [CrossRef]
- Jekl, V. Adrenal Disease in Small Mammals. Vet. Clin. N. Am. Exot. Anim. Pract. 2025, 28, 87–106. [Google Scholar] [CrossRef]
- Jekl, V.; Hauptman, K.; Knotek, Z. Evidence-Based Advances in Rodent Medicine. Vet. Clin. N. Am. Exot. Anim. Pract. 2017, 20, 805–816. [Google Scholar] [CrossRef]
- Kunzel, F.; Mayer, J. Endocrine tumours in the guinea pig. Vet. J. 2015, 206, 268–274. [Google Scholar] [CrossRef]
- Kaspareit-Rittinghausen, J.; Hense, S.; Deerberg, F. Cushing’s syndrome- and disease-like lesions in rats. Z Vers. 1990, 33, 229–234. [Google Scholar]
- Szadkowska, D.; Bielecki, W. Spontaneous Pituitary Tumors in Rats: A Review. Ann. Clin. Pathol. 2020, 7, 1153. [Google Scholar]
- O’Neill, D.G.; Scudder, C.; Faire, J.M.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; Brodbelt, D.C. Epidemiology of hyperadrenocorticism among 210,824 dogs attending primary-care veterinary practices in the UK from 2009 to 2014. J. Small Anim. Pract. 2016, 57, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.M.; Lourenco, B.N.; Promislow, D.E.L.; Creevy, K.E. Canine hyperadrenocorticism associations with signalment, selected comorbidities and mortality within North American veterinary teaching hospitals. J. Small Anim. Pract. 2018, 59, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog models of naturally occurring cancer. Trends Mol. Med. 2011, 17, 380–388. [Google Scholar] [CrossRef]
- Sbiera, S.; Deutschbein, T.; Weigand, I.; Reincke, M.; Fassnacht, M.; Allolio, B. The New Molecular Landscape of Cushing’s Disease. Trends Endocrinol. Metab. 2015, 26, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Song, Z.J.; Chen, J.H.; Wang, Y.F.; Li, S.Q.; Zhou, L.F.; Mao, Y.; Li, Y.M.; Hu, R.G.; Zhang, Z.Y.; et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015, 25, 306–317. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Theodoropoulou, M.; Ferrau, F.; Nusser, C.; Kawaguchi, K.; Stratakis, C.A.; Faucz, F.R.; Wildemberg, L.E.; Assie, G.; Beschorner, R.; et al. The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing’s Disease. J. Clin. Endocrinol. Metab. 2015, 100, E997–E1004. [Google Scholar] [CrossRef]
- de Bruin, C.; Hanson, J.M.; Meij, B.P.; Kooistra, H.S.; Waaijers, A.M.; Uitterlinden, P.; Lamberts, S.W.; Hofland, L.J. Expression and functional analysis of dopamine receptor subtype 2 and somatostatin receptor subtypes in canine cushing’s disease. Endocrinology 2008, 149, 4357–4366. [Google Scholar] [CrossRef]
- Pivonello, R.; Arnaldi, G.; Scaroni, C.; Giordano, C.; Cannavo, S.; Iacuaniello, D.; Trementino, L.; Zilio, M.; Guarnotta, V.; Albani, A.; et al. The medical treatment with pasireotide in Cushing’s disease: An Italian multicentre experience based on “real-world evidence”. Endocrine 2019, 64, 657–672. [Google Scholar] [CrossRef]
- Meij, B.; Voorhout, G.; Rijnberk, A. Progress in transsphenoidal hypophysectomy for treatment of pituitary-dependent hyperadrenocorticism in dogs and cats. Mol. Cell. Endocrinol. 2002, 197, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Meij, B.P.; Voorhout, G.; van den Ingh, T.S.; Hazewinkel, H.A.; Teske, E.; Rijnberk, A. Results of transsphenoidal hypophysectomy in 52 dogs with pituitary-dependent hyperadrenocorticism. Vet. Surg. 1998, 27, 246–261. [Google Scholar] [CrossRef] [PubMed]
- de Fornel, P.; Delisle, F.; Devauchelle, P.; Rosenberg, D. Effects of radiotherapy on pituitary corticotroph macrotumors in dogs: A retrospective study of 12 cases. Can. Vet. J. 2007, 48, 481–486. [Google Scholar]
- Sellon, R.K.; Fidel, J.; Houston, R.; Gavin, P.R. Linear-accelerator-based modified radiosurgical treatment of pituitary tumors in cats: 11 cases (1997–2008). J. Vet. Intern. Med. 2009, 23, 1038–1044. [Google Scholar] [CrossRef]
- Sawada, H.; Mori, A.; Lee, P.; Sugihara, S.; Oda, H.; Sako, T. Pituitary size alteration and adverse effects of radiation therapy performed in 9 dogs with pituitary-dependent hypercortisolism. Res. Vet. Sci. 2018, 118, 19–26. [Google Scholar] [CrossRef]
- Belaya, Z.; Khandaeva, P.; Nonn, L.; Nikitin, A.; Solodovnikov, A.; Sitkin, I.; Grigoriev, A.; Pikunov, M.; Lapshina, A.; Rozhinskaya, L.; et al. Circulating Plasma microRNA to Differentiate Cushing’s Disease From Ectopic ACTH Syndrome. Front. Endocrinol. Lausanne 2020, 11, 331. [Google Scholar] [CrossRef]
- Pivonello, C.; Patalano, R.; Simeoli, C.; Monto, T.; Negri, M.; Amatrudo, F.; Di Paola, N.; Larocca, A.; Crescenzo, E.M.; Pirchio, R.; et al. Circulating myomiRNAs as biomarkers in patients with Cushing’s syndrome. J. Endocrinol. Investig. 2024, 47, 655–669. [Google Scholar] [CrossRef]
- Vetrivel, S.; Zhang, R.; Engel, M.; Altieri, B.; Braun, L.; Osswald, A.; Bidlingmaier, M.; Fassnacht, M.; Beuschlein, F.; Reincke, M.; et al. Circulating microRNA Expression in Cushing’s Syndrome. Front. Endocrinol. Lausanne 2021, 12, 620012. [Google Scholar] [CrossRef]
- Amaral, F.C.; Torres, N.; Saggioro, F.; Neder, L.; Machado, H.R.; Silva, W.A., Jr.; Moreira, A.C.; Castro, M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 2009, 94, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Gu, C.; Yang, Y.; Xue, J.; Sun, Y.; Jian, F.; Chen, D.; Bian, L.; Sun, Q. TSP-1 is downregulated and inversely correlates with miR-449c expression in Cushing’s disease. J. Cell. Mol. Med. 2019, 23, 4097–4110. [Google Scholar] [CrossRef]
- Bottoni, A.; Zatelli, M.C.; Ferracin, M.; Tagliati, F.; Piccin, D.; Vignali, C.; Calin, G.A.; Negrini, M.; Croce, C.M.; Degli Uberti, E.C. Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. J. Cell. Physiol. 2007, 210, 370–377. [Google Scholar] [CrossRef]
- Bujko, M.; Kober, P.; Boresowicz, J.; Rusetska, N.; Zeber-Lubecka, N.; Paziewska, A.; Pekul, M.; Zielinski, G.; Styk, A.; Kunicki, J.; et al. Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes. J. Clin. Med. 2021, 10, 375. [Google Scholar] [CrossRef]
- Mossakowska, B.J.; Kober, P.; Rusetska, N.; Boresowicz, J.; Maksymowicz, M.; Pekul, M.; Zielinski, G.; Styk, A.; Kunicki, J.; Mandat, T.; et al. Difference in miRNA Expression in Functioning and Silent Corticotroph Pituitary Adenomas Indicates the Role of miRNA in the Regulation of Corticosteroid Receptors. Int. J. Mol. Sci. 2022, 23, 2867. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.K.; Zhou, Z.S.; Wang, G.Z.; Tu, J.Y.; Cheng, H.B.; Ma, S.Z.; Ke, C.; Wang, Y.; Jian, Q.P.; Shu, Y.H.; et al. MiR-122-5p regulates the mevalonate pathway by targeting p53 in non-small cell lung cancer. Cell Death Dis. 2023, 14, 234. [Google Scholar] [CrossRef]
- Qin, H.; Sha, J.; Jiang, C.; Gao, X.; Qu, L.; Yan, H.; Xu, T.; Jiang, Q.; Gao, H. miR-122 inhibits metastasis and epithelial-mesenchymal transition of non-small-cell lung cancer cells. Onco Targets Ther. 2015, 8, 3175–3184. [Google Scholar] [CrossRef]
- Yin, Z.; Zhou, Y.; Ma, T.; Chen, S.; Shi, N.; Zou, Y.; Hou, B.; Zhang, C. Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J. Cell. Mol. Med. 2020, 24, 5028–5038. [Google Scholar] [CrossRef]
- Reese, M.; Dhayat, S.A. Small extracellular vesicle non-coding RNAs in pancreatic cancer: Molecular mechanisms and clinical implications. J. Hematol. Oncol. 2021, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y. LncRNA XIST enhanced TGF-beta2 expression by targeting miR-141-3p to promote pancreatic cancer cells invasion. Biosci. Rep. 2019, 39, BSR20190332. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Li, J.; Wang, H.Q.; Li, X.; Wen, B.; Wang, Y.J. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem. Biophys. Res. Commun. 2017, 482, 1381–1386. [Google Scholar] [CrossRef]
- Orth, D.N.; Holscher, M.A.; Wilson, M.G.; Nicholson, W.E.; Plue, R.E.; Mount, C.D. Equine Cushing’s disease: Plasma immunoreactive proopiolipomelanocortin peptide and cortisol levels basally and in response to diagnostic tests. Endocrinology 1982, 110, 1430–1441. [Google Scholar] [CrossRef]
- McFarlane, D.; Dybdal, N.; Donaldson, M.T.; Miller, L.; Cribb, A.E. Nitration and increased alpha-synuclein expression associated with dopaminergic neurodegeneration in equine pituitary pars intermedia dysfunction. J. Neuroendocrinol. 2005, 17, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, M.; Baumgartner, W.; Capen, C.C. Immunocytochemical demonstration of proopiomelanocortin-derived peptides in pituitary adenomas of the pars intermedia in horses. Vet. Pathol. 1990, 27, 419–425. [Google Scholar] [CrossRef]
- Castinetti, F.; Brue, T. Impact of Cushing’s syndrome on fertility and pregnancy. Ann. Endocrinol. Paris 2022, 83, 188–190. [Google Scholar] [CrossRef]
- Orth, D.N.; Nicholson, W.E. Bioactive and immunoreactive adrenocorticotropin in normal equine pituitary and in pituitary tumors of horses with Cushing’s disease. Endocrinology 1982, 111, 559–563. [Google Scholar] [CrossRef]
- Pivonello, R.; Pivonello, C.; Simeoli, C.; De Martino, M.C.; Colao, A. The dopaminergic control of Cushing’s syndrome. J. Endocrinol. Investig. 2022, 45, 1297–1315. [Google Scholar] [CrossRef]
- Boland, L.A.; Barrs, V.R. Peculiarities of feline hyperadrenocorticism: Update on diagnosis and treatment. J. Feline Med. Surg. 2017, 19, 933–947, Correction in J. Feline Med. Surg. 2018, 20, NP5. https://doi.org/10.1177/1098612x18783650. [Google Scholar] [CrossRef]
- van den Broek, A.H.; Stafford, W.L. Epidermal and hepatic glucocorticoid receptors in cats and dogs. Res. Vet. Sci. 1992, 52, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Stenzel-Poore, M.P.; Cameron, V.A.; Vaughan, J.; Sawchenko, P.E.; Vale, W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992, 130, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Dirks, A.; Groenink, L.; Bouwknecht, J.A.; Hijzen, T.H.; Van Der Gugten, J.; Ronken, E.; Verbeek, J.S.; Veening, J.G.; Dederen, P.J.; Korosi, A.; et al. Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations. Eur. J. Neurosci. 2002, 16, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Dirks, A.; Groenink, L.; Schipholt, M.I.; van der Gugten, J.; Hijzen, T.H.; Geyer, M.A.; Olivier, B. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol. Psychiatry 2002, 51, 583–590. [Google Scholar] [CrossRef]
- Groenink, L.; Dirks, A.; Verdouw, P.M.; Schipholt, M.; Veening, J.G.; van der Gugten, J.; Olivier, B. HPA axis dysregulation in mice overexpressing corticotropin releasing hormone. Biol. Psychiatry 2002, 51, 875–881. [Google Scholar] [CrossRef]
- Dedic, N.; Touma, C.; Romanowski, C.P.; Schieven, M.; Kuhne, C.; Ableitner, M.; Lu, A.; Holsboer, F.; Wurst, W.; Kimura, M.; et al. Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice. Cell. Mol. Neurobiol. 2012, 32, 815–828. [Google Scholar] [CrossRef]
- Bentley, L.; Esapa, C.T.; Nesbit, M.A.; Head, R.A.; Evans, H.; Lath, D.; Scudamore, C.L.; Hough, T.A.; Podrini, C.; Hannan, F.M.; et al. An N-ethyl-N-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous glucocorticoid excess. Endocrinology 2014, 155, 908–922. [Google Scholar] [CrossRef]
- Helseth, A.; Haug, E.; Nesland, J.M.; Siegal, G.P.; Fodstad, O.; Bautch, V.L. Endocrine and metabolic characteristics of polyoma large T transgenic mice that develop ACTH-producing pituitary tumors. J. Neurosurg. 1995, 82, 879–885. [Google Scholar] [CrossRef]
- Helseth, A.; Siegal, G.P.; Haug, E.; Bautch, V.L. Transgenic mice that develop pituitary tumors. A model for Cushing’s disease. Am. J. Pathol. 1992, 140, 1071–1080. [Google Scholar]
- Leung, C.K.; Paterson, J.A.; Imai, Y.; Shiu, R.P. Transplantation of ACTH-secreting pituitary tumor cells in athymic nude mice. Virchows Arch. A Pathol. Anat. Histol. 1982, 396, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Murasawa, S.; Kageyama, K.; Sugiyama, A.; Ishigame, N.; Niioka, K.; Suda, T.; Daimon, M. Inhibitory effects of SOM230 on adrenocorticotropic hormone production and corticotroph tumor cell proliferation in vitro and in vivo. Mol. Cell. Endocrinol. 2014, 394, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Takao, T.; Iwasaki, Y.; Nishiyama, M.; Asaba, K.; Hashimoto, K. Suppressive effects of dehydroepiandrosterone and the nuclear factor-kappaB inhibitor parthenolide on corticotroph tumor cell growth and function in vitro and in vivo. J. Endocrinol. 2006, 188, 321–331. [Google Scholar] [CrossRef]
- Riebold, M.; Kozany, C.; Freiburger, L.; Sattler, M.; Buchfelder, M.; Hausch, F.; Stalla, G.K.; Paez-Pereda, M. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat. Med. 2015, 21, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chatain, G.P.; Bugarini, A.; Wang, X.; Maric, D.; Walbridge, S.; Zhuang, Z.; Chittiboina, P. Histone Deacetylase Inhibitor SAHA Is a Promising Treatment of Cushing Disease. J. Clin. Endocrinol. Metab. 2017, 102, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Hakata, T.; Yamauchi, I.; Kosugi, D.; Sugawa, T.; Fujita, H.; Okamoto, K.; Ueda, Y.; Fujii, T.; Taura, D.; Inagaki, N. High-throughput Screening for Cushing Disease: Therapeutic Potential of Thiostrepton via Cell Cycle Regulation. Endocrinology 2024, 165, bqae089. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.; Nie, D.; Fang, Q.; Li, C.; Zhang, Y. Metformin inhibits cell proliferation and ACTH secretion in AtT20 cells via regulating the MAPK pathway. Mol. Cell. Endocrinol. 2024, 582, 112140. [Google Scholar] [CrossRef]
- Xia, L.; Shen, D.; Zhang, Y.; Lu, J.; Wang, M.; Wang, H.; Chen, Y.; Xue, D.; Xie, D.; Li, G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J. Cell. Mol. Med. 2021, 25, 2404–2417. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, Z.; Wang, J.; Huang, Y.; Sun, W.; Xie, R.; Hu, F.; Lei, T. Triptolide suppresses growth and hormone secretion in murine pituitary corticotroph tumor cells via NF-kappaB signaling pathway. Biomed. Pharmacother. 2017, 95, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, H.R.; Elsamadicy, A.A.; Farber, S.H.; Champion, C.D.; Lorrey, S.J.; Chongsathidkiet, P.; Woroniecka, K.I.; Cui, X.; Shen, S.H.; Rhodin, K.E.; et al. Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clin. Cancer Res. 2020, 26, 1141–1151. [Google Scholar] [CrossRef]
- Sekizaki, T.; Kameda, H.; Nakamura, A.; Kuwabara, S.; Nomoto, H.; Cho, K.Y.; Ishi, Y.; Motegi, H.; Miyoshi, H.; Atsumi, T. Neuromedin B receptor as a potential therapeutic target for corticotroph adenomas. Pituitary 2023, 26, 597–610. [Google Scholar] [CrossRef]
- Silva, A.P.; Schoeffter, P.; Weckbecker, G.; Bruns, C.; Schmid, H.A. Regulation of CRH-induced secretion of ACTH and corticosterone by SOM230 in rats. Eur. J. Endocrinol. 2005, 153, R7–R10. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.A.; Cho, H.M.; Kang, S.H.; Lee, E.; Kim, I.K. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing’s syndrome. Korean J. Physiol. Pharmacol. 2018, 22, 23–33. [Google Scholar] [CrossRef]
- Lee, H.A.; Kang, S.H.; Kim, M.; Lee, E.; Cho, H.M.; Moon, E.K.; Kim, I. Histone deacetylase inhibition ameliorates hypertension and hyperglycemia in a model of Cushing’s syndrome. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E39–E52. [Google Scholar] [CrossRef]
- Liu, N.A.; Jiang, H.; Ben-Shlomo, A.; Wawrowsky, K.; Fan, X.M.; Lin, S.; Melmed, S. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc. Natl. Acad. Sci. USA 2011, 108, 8414–8419. [Google Scholar] [CrossRef]
- Paquis-Flucklinger, V.; Michiels, J.F.; Vidal, F.; Alquier, C.; Pointis, G.; Bourdon, V.; Cuzin, F.; Rassoulzadegan, M. Expression in transgenic mice of the large T antigen of polyomavirus induces Sertoli cell tumours and allows the establishment of differentiated cell lines. Oncogene 1993, 8, 2087–2094. [Google Scholar]
- Landolt, A.M.; Barker, M.; Deen, D.F.; Wilson, C.B. Subhypothalamic grafts of human pituitary adenomas in total-body irradiated rats. Cell Tissue Res. 1981, 221, 269–277. [Google Scholar] [CrossRef]
- Wu, H.H.; McLoon, S.C.; Wilcox, G.L. Antinociception following implantation of AtT-20 and genetically modified AtT-20/hENK cells in rat spinal cord. J. Neural Transplant. Plast. 1993, 4, 15–26. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, H.A.; Kim, M.; Lee, E.; Sohn, U.D.; Kim, I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E495–E507. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.Y.; Choi, T.I.; Lee, Y.R.; Choe, S.K.; Kim, C.H. Zebrafish as an animal model for biomedical research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef]
- Tamburello, M.; Abate, A.; Sigala, S. Cancer cell xenografts in zebrafish embryos as an experimental tool in drug screening for adrenocortical carcinoma. Minerva Endocrinol. Torino 2025, 50, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Massardi, E.; Gaudenzi, G.; Oldani, M.; Rybinska, I.M.; Carra, S. Zebrafish model in the relentless race to tyrosine kinase inhibitors for neuroendocrine neoplasms. Minerva Endocrinol. Torino 2024, 49, 353–355. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Canavello, P.R.; Cachat, J.M.; Beeson, E.C.; Laffoon, A.L.; Grimes, C.; Haymore, W.A.M.; Elegante, M.F.; Bartels, B.K.; Hart, P.C.; Elkhayat, S.I.; et al. Measuring Endocrine (Cortisol) Responses of Zebrafish to Stress. In Zebrafish Neurobehavioral Protocols; Kalueff, A., Cachat, J., Eds.; Humana Press: Totowa, NY, USA, 2011; Volume 51, pp. 135–142. [Google Scholar]
- Liu, N.A.; Huang, H.; Yang, Z.; Herzog, W.; Hammerschmidt, M.; Lin, S.; Melmed, S. Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. Mol. Endocrinol. 2003, 17, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.; Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R711–R719. [Google Scholar] [CrossRef]
- Sousa, M.L.; Figueiredo, F.; Pinheiro, C.; Silva, A.; Malhao, F.; Rocha, M.J.; Rocha, E.; Urbatzka, R. Morphological and molecular effects of cortisol and ACTH on zebrafish stage I and II follicles. Reproduction 2015, 150, 429–436. [Google Scholar] [CrossRef]
- Nudi, M.; Ouimette, J.F.; Drouin, J. Bone morphogenic protein (Smad)-mediated repression of proopiomelanocortin transcription by interference with Pitx/Tpit activity. Mol. Endocrinol. 2005, 19, 1329–1342. [Google Scholar] [CrossRef]
- Araki, T.; Liu, N.A.; Tone, Y.; Cuevas-Ramos, D.; Heltsley, R.; Tone, M.; Melmed, S. E2F1-mediated human POMC expression in ectopic Cushing’s syndrome. Endocr. Relat. Cancer 2016, 23, 857–870. [Google Scholar] [CrossRef]
- Ray, D.W.; Littlewood, A.C.; Clark, A.J.; Davis, J.R.; White, A. Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J. Clin. Investig. 1994, 93, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Tateno, T.; Kato, M.; Tani, Y.; Yoshimoto, T.; Oki, Y.; Hirata, Y. Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene. J. Endocrinol. Investig. 2010, 33, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, J.; Pandey, R.; Churko, J.M.; Eschbacher, J.; Mallick, S.; Chen, Y.; Hermes, B.; Mallick, P.; Stansfield, B.N.; Pond, K.W.; et al. Development of Human Pituitary Neuroendocrine Tumor Organoids to Facilitate Effective Targeted Treatments of Cushing’s Disease. Cells 2022, 11, 3344. [Google Scholar] [CrossRef]
- Mallick, S.; Chakrabarti, J.; Eschbacher, J.; Moraitis, A.G.; Greenstein, A.E.; Churko, J.; Pond, K.W.; Livolsi, A.; Thorne, C.A.; Little, A.S.; et al. Genetically engineered human pituitary corticotroph tumor organoids exhibit divergent responses to glucocorticoid receptor modulators. Transl. Res. 2023, 256, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Kadoshima, T.; Minaguchi, M.; Ohgushi, M.; Soen, M.; Nakano, T.; Takata, N.; Wataya, T.; Muguruma, K.; Miyoshi, H.; et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011, 480, 57–62. [Google Scholar] [CrossRef]
Category | Clinical Manifestations |
---|---|
Physical signs | Moon face, buffalo hump (excessive fat accumulation on the upper back), central obesity, limb muscle wasting, and wide purple striae. |
Cardiovascular/ Metabolic disorders | Hypertension, glucose intolerance, dyslipidemia. |
Endocrine/ Reproductive disturbances | Amenorrhea, infertility, impaired growth in pediatric patients. |
Musculoskeletal complications | Osteoporosis, proximal muscle weakness, reduced mobility, increased fracture risk. |
Neuropsychiatric disorders | Depression, anxiety, reduced health-related quality of life. |
Immune/ Hematologic complications | Immunosuppression, venous thromboembolism. |
Dermatological manifestations | Acne, skin thinning, subcutaneous bleeding, pigmentation changes, hirsutism. |
Species | Name of Spontaneous CD Form | Similarities with Human CD | Differences with Human CD | Possible Future Research with Translational Implications for Human CD |
---|---|---|---|---|
Dog (Canis lupus familiaris) | Pituitary-dependent hyperadrenocorticism |
| ||
Horse (Equus caballus) | Equine Cushing’s Disease or Pituitary Pars Intermedia Dysfunction |
|
|
|
Cat (Felis catus) | Pituitary-dependent hyperadrenocorticism |
|
| |
Small mammals Guinea pigs (Cavia porcellus) Hamster (Mesocricetus auratus and Cricetus cricetus) | Pituitary-dependent hyperadrenocorticism |
| ||
Rat (Rattus norvegicus) | Pituitary-dependent hyperadrenocorticism |
|
|
Species | Experimental Strategy | CD Features |
---|---|---|
Mouse (Mus musculus) | Transgenic CRH expression under the control of the metallothionein-1 (MT1) promoter [81]. Transgenic CRH expression under the control of the Thy1 promoter to drive constitutive expression in neurons throughout embryonic development and adulthood [82,83,84]. Conditional overexpression of CRH throughout the entire body or within the anterior and intermediate lobes of the pituitary [85]. Point mutation located −120 bp upstream of the Crh promoter through ENU mutagenesis [86]. Transgenic mouse lines expressing the polyoma large T (PyLT) antigen [87,88]. Subcutaneous implantation of AtT-20 cells into immunodeficient mice [26,89,90,91,92,93,94,95,96,97]. Subcutaneous implantation of AtT-20/D16v.2 into immunodeficient mice [98,99]. | Anxiety-like behavior, central obesity, osteoporosis, and muscle weakness, which were associated with elevated circulating levels of ACTH and corticosterone. Alterations in stress response along with a mild hypercortisolemic phenotype. Increased baseline plasma corticosterone concentrations, anxiety-related behaviors only occurred when CRH was ubiquitously overexpressed. Chronic stimulation of the HPA axis, visceral obesity, hyperglycemia and muscle wasting, reduced bone mineral density, and elevated plasma corticosterone levels. Development of ACTH-producing pituitary tumors, weight gain, adrenal medullary hyperplasia, and increased peripheral ACTH levels. Increase in body weight, excessive fat accumulation, “buffalo hump” appearance, adrenal gland enlargement. Weight gain and fat deposition. |
Rat (Rattus norvegicus) | Injection of CRH (0.5 mg/kg) [100]. Infusion of ACTH (40 ng/day) [101,102]. | Stimulation of ACTH secretion and subsequent increase in corticosterone levels. Increase in corticosterone levels, hepatic steatosis, hypertension, and hyperglycemia. |
Zebrafish (Danio rerio) | Transgenic overexpression of the pituitary tumor-transforming gene (PTTG/securin) in POMC-positive pituitary lineages [103]. | Development of neoplastic corticotrophs and metabolic disturbances mimicking the typical hypercortisolism state in adult fish. Presence of corticotroph expansion with cyclin E upregulation and cell-cycle dysregulation in embryonic and larval stages, together with a partial GC resistance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massardi, E.; Gaudenzi, G.; Carra, S.; Oldani, M.; Rybinska, I.; Persani, L.; Vitale, G. Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine. Int. J. Mol. Sci. 2025, 26, 8626. https://doi.org/10.3390/ijms26178626
Massardi E, Gaudenzi G, Carra S, Oldani M, Rybinska I, Persani L, Vitale G. Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine. International Journal of Molecular Sciences. 2025; 26(17):8626. https://doi.org/10.3390/ijms26178626
Chicago/Turabian StyleMassardi, Elena, Germano Gaudenzi, Silvia Carra, Monica Oldani, Ilona Rybinska, Luca Persani, and Giovanni Vitale. 2025. "Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine" International Journal of Molecular Sciences 26, no. 17: 8626. https://doi.org/10.3390/ijms26178626
APA StyleMassardi, E., Gaudenzi, G., Carra, S., Oldani, M., Rybinska, I., Persani, L., & Vitale, G. (2025). Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine. International Journal of Molecular Sciences, 26(17), 8626. https://doi.org/10.3390/ijms26178626