Morphogenetic Factors as a Tool for Enhancing Plant Regeneration Capacity During In Vitro Transformation
Abstract
1. Introduction
2. Morphogenetic Factors: Definition and Classification
2.1. WOX Factors (WUSCHEL-Related Homeobox)
2.2. BBM (BABY BOOM)
2.3. PLT Factors (PLETHORA)
2.4. GRF-GIF Gene Family
2.5. Other Morphogenetic Factors
3. Case Studies of Morphogenetic Factors’ Utilization in Crop Transformation and In Vitro Regeneration
3.1. Rice
3.2. Rapeseed
3.3. Soybean
3.4. Tomato
3.5. Other Crops
4. Engineering Principles of Morphogenetic Factor Expression Systems
4.1. Transient Expression (Non-Intergrated)
4.2. Chemically Inducible Promoters
4.3. Tissue-Specific Promoters
4.4. Gene Excision Systems
4.5. Combining Multiple Morphogenetic Factors
5. Limitations, Contradictions, and Failure Modes of Morphogenetic-Factor-Assisted Regeneration
6. The Interplay of Exogenous Plant Growth Regulators and Endogenous Morphogenetic Factors During In Vitro Regeneration
7. Emerging Applications of Morphogenetic Regulators in Plant Biotechnology
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Somssich, M. A short history of plant transformation. PeerJ Prepr. 2019, 28. [Google Scholar] [CrossRef]
- McCabe, D.E.; Swain, W.F.; Martinell, B.J.; Christou, P. Stable Transformation of Soybean (Glycine max) by Particle Bombardment. Nat. Biotechnol 1988, 6, 923–926. [Google Scholar] [CrossRef]
- Umbeck, P.; Johnson, G.; Barton, K.; Swain, W. Genetically Transformed Cotton (Gossypium hirsutum L.) Plants. Nat. Biotechnol 1987, 5, 263–266. [Google Scholar] [CrossRef]
- Toriyama, K.; Arimoto, Y.; Uchimiya, H.; Hinata, K. Transgenic Rice Plants After Direct Gene Transfer into Protoplasts. Nat. Biotechnol 1988, 6, 1072–1074. [Google Scholar] [CrossRef]
- Horsch, R.B.; Fry, J.E.; Hoffmann, N.L.; Wallroth, M.; Eichholtz, D.; Rogers, S.G.; Fraley, R.T. A Simple and General Method for Transferring Genes into Plants. Science 1985, 227, 1229–1231. [Google Scholar] [CrossRef]
- Moloney, M.M.; Walker, J.M.; Sharma, K.K. High Efficiency Transformation of Brassica napus Using Agrobacterium Vectors. Plant Cell Rep. 1989, 8, 238–242. [Google Scholar] [CrossRef]
- Fromm, M.E.; Morrish, F.; Armstrong, C.; Williams, R.; Thomas, J.; Klein, T.M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Nat. Biotechnol 1990, 8, 833–839. [Google Scholar] [CrossRef]
- Vasil, V.; Castillo, A.M.; Fromm, M.E.; Vasil, I.K. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. Nat. Biotechnol 1992, 10, 667–674. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Cai, T.; Tagliani, L.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; et al. Agrobacterium-Mediated Sorghum Transformation. Plant Mol. Biol. 2000, 44, 789–798. [Google Scholar] [CrossRef]
- Bower, R.; Birch, R.G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 1992, 2, 409–416. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C.O. Chemical Regulation of Growth and Organ Formation in Plant Tissues Cultured In Vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–131. [Google Scholar]
- Steward, F.C. Growth and Organized Development of Cultured Cells. Am. J. Bot. 1958, 45, 693–703. [Google Scholar] [CrossRef]
- Gordon-Kamm, B.; Sardesai, N.; Arling, M.; Lowe, K.; Hoerster, G.; Betts, S.; Jones, T. Using Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants. Plants 2019, 8, 38. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, J.; He, X.-Q. Plant in situ tissue regeneration: Dynamics, mechanisms and implications for forestry research. For. Res. 2023, 3, 8. [Google Scholar] [CrossRef]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef]
- Ramkumar, T.R.; Lenka, S.K.; Arya, S.S.; Bansal, K.C. A Short History and Perspectives on Plant Genetic Transformation. Methods Mol. Biol. 2020, 2124, 39–60. [Google Scholar] [CrossRef]
- Chu, U.C.; Kumar, S.; Sigmund, A.; Johnson, K.; Li, Y.; Vongdeuane, P.; Jones, T.J. Genotype-independent transformation and genome editing of Brassica napus using a novel explant material. Front. Plant Sci. 2020, 11, 579524. [Google Scholar] [CrossRef]
- Lowe, K.; La Rota, M.; Hoerster, G.; Hastings, C.; Wang, N.; Chamberlin, M.; Wu, E.; Jones, T.; Gordon-Kamm, W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. Vitr. Cell. Dev. Biol. 2018, 54, 240–252. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Du, L.; Ye, X.; Wu, H. The Gene TaWOX5 Overcomes Genotype Dependency in Wheat Genetic Transformation. Nat. Plants 2022, 8, 110–117, Erratum in Nat. Plants 2022, 8, 717–720. [Google Scholar] [CrossRef]
- Kong, J.; Martin-Ortigosa, S.; Finer, J.; Orchard, N.; Gunadi, A.; Batts, L.A.; Thakare, D.; Rush, B.; Schmitz, O.; Stuiver, M.; et al. Overexpression of the Transcription Factor GROWTH-REGULATING FACTOR5 Improves Transformation of Dicot and Monocot Species. Front. Plant Sci. 2020, 11, 572319. [Google Scholar] [CrossRef]
- Bennur, P.L.; O’Brien, M.; Fernando, S.C.; Doblin, M.S. Improving transformation and regeneration efficiency in medicinal plants: Insights from other recalcitrant species. J. Exp. Bot. 2025, 76, 52–75. [Google Scholar] [CrossRef]
- Youngstrom, C.; Wang, K.; Lee, K. Unlocking regeneration potential: Harnessing morphogenic regulators and small peptides for enhanced plant engineering. Plant J. 2025, 121, e17193. [Google Scholar] [CrossRef]
- Laux, T.; Mayer, K.F.X.; Berger, J.; Jürgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996, 122, 87–96. [Google Scholar] [CrossRef]
- Tvorogova, V.E.; Krasnoperova, E.Y.; Potsenkovskaia, E.A.; Kudriashov, A.A.; Dodueva, I.E.; Lutova, L.A. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol. Biol. 2021, 55, 362–391. [Google Scholar] [CrossRef]
- Duan, H.; Maren, N.A.; Ranney, T.G.; Liu, W. New opportunities for using WUS/BBM and GRF-GIF genes to enhance genetic transformation of ornamental plants. Ornam. Plant Res. 2022, 2, 4. [Google Scholar] [CrossRef]
- Arroyo-Herrera, A.; Gonzalez, A.K.; Moo, R.C.; Quiroz-Figueroa, F.R.; Loyola-Vargas, V.M.; Rodriguez-Zapata, L.C.; Burgeff, D. ′Hondt, C.; Suárez-Solís, V.M., Castaño, E. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ. Cult. 2008, 94, 171–180. [Google Scholar] [CrossRef]
- Mursyanti, E.; Purwantoro, A.; Moeljopawiro, S.; Semiarti, E. Induction of somatic embryogenesis through overexpression of ATRKD4 genes in Phalaenopsis “Sogo Vivien”. Indones. J. Biotechnol. 2016, 20, 42–53. [Google Scholar] [CrossRef]
- Acereto-Escoffié, P.O.M.; Chi-Manzanero, B.H.; Echeverría-Echeverría, S.; Grijalva, R.; Kay, A.J.; González-Estrada, T.; Castaño, E.; Rodríguez-Zapata, L.C. Agrobacterium-mediated transformation of Musa acuminata cv. “Grand Nain” scalps by vacuum infiltration. Sci. Hortic. 2005, 105, 350–371. [Google Scholar] [CrossRef]
- Bouchabké-Coussa, O.; Obellianne, M.; Linderme, D.; Montes, E.; Maia-Grondard, A.; Vilaine, F.; Pannetier, C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 2013, 32, 675–686. [Google Scholar] [CrossRef]
- Zuo, J.; Niu, Q.-W.; Frugis, G.; Chua, N.-H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 2002, 30, 349–359. [Google Scholar] [CrossRef]
- Nelson-Vasilchik, K.; Hague, J.P.; Tilelli, M.; Kausch, A.P. Rapid transformation and plant regeneration of sorghum (Sorghum bicolor L.) mediated by altruistic Baby boom and Wuschel2. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 331–342. [Google Scholar] [CrossRef]
- Jha, P.; Ochatt, S.J.; Kumar, V. WUSCHEL: A master regulator in plant growth signaling. Plant Cell Rep. 2020, 39, 431–444. [Google Scholar] [CrossRef]
- van der Graaff, E.; Laux, T.; Rensing, S.A. The WUS homeobox-containing (WOX) protein family. Genome Biol. 2009, 10, 248. [Google Scholar] [CrossRef]
- Ogura, N.; Sasagawa, Y.; Ito, T.; Tameshige, T.; Kawai, S.; Sano, M.; Doll, Y.; Iwase, A.; Kawamura, A.; Suzuki, T.; et al. WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. Sci. Adv. 2023, 9, eadg6983. [Google Scholar] [CrossRef]
- Zhou, X.; Han, H.; Chen, J.; Han, H. The emerging roles of WOX genes in development and stress responses in woody plants. Plant Sci. 2024, 349, 112259. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, L.; Xu, Y.; Li, J.; Yang, Z.; Huang, H.; Xu, L. WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis. Plant Cell 2014, 26, 1081–1093. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Hao, Z.; Long, X.; Shi, J.; Chen, J. Overexpression of Liriodenron WOX5 in Arabidopsis Leads to Ectopic Flower Formation and Altered Root Morphology. Int. J. Mol. Sci. 2023, 24, 906. [Google Scholar] [CrossRef]
- Wójcik, A.M. Root regeneration under miRNA control. Nat. Plants 2025, 11, 949–950. [Google Scholar] [CrossRef]
- Boutilier, K.; Offringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.M.; van Lammeren, A.A.; Miki, B.L.; et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef]
- Srinivasan, C.; Liu, Z.; Heidmann, I.; Supena, E.D.; Fukuoka, H.; Joosen, R.; Lambalk, J.; Angenent, G.; Scorza, R.; Custers, J.B.; et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 2007, 225, 341–351. [Google Scholar] [CrossRef]
- El Ouakfaoui, S.; Schnell, J.; Abdeen, A.; Colville, A.; Labbé, H.; Han, S.; Baum, B.; Laberge, S.; Miki, B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol. Biol. 2010, 74, 313–326. [Google Scholar] [CrossRef]
- Florez, S.L.; Erwin, R.L.; Maximova, S.N.; Guiltinan, M.J.; Curtis, W.R. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol. 2015, 15, 121. [Google Scholar] [CrossRef]
- Lian, Z.; Nguyen, C.D.; Liu, L.; Wang, G.; Chen, J.; Wang, S.; Yi, G.; Wilson, S.; Ozias-Akins, P.; Gong, H.; et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol. J. 2022, 20, 1622–1635. [Google Scholar] [CrossRef]
- Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature 2020, 38, 1274–1279. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, P.; Liu, Y.; Liu, C.; Hu, Z.; Xin, D.; Wu, X.; Yang, M.; Chen, Q. A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein. J. Integr. Plant Biol. 2025, 67, 3–6. [Google Scholar] [CrossRef]
- Li, X.; Cao, C.; Liu, Y.; Bolaños-Villegas, P.; Wang, J.; Zhou, R.; Hou, J.; Li, Q.; Mao, W.; Wang, P.; et al. Enhancing genetic transformation efficiency of melon (Cucumis melo L.) through an extended sucrose-removal co-culture. Plant Cell Rep. 2025, 44, 123. [Google Scholar] [CrossRef] [PubMed]
- Lotan, T.; Ohto, M.; Yee, K.M.; West, M.A.; Lo, R.; Kwong, R.W.; Yamagishi, K.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 1998, 93, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.L.; Kwong, L.W.; Yee, K.M.; Pelletier, J.; Lepiniec, L.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 2001, 98, 11806–11811. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, N.; Kyo, M. Two promoters conferring active gene expression in vegetative nuclei of tobacco immature pollen undergoing embryogenic dedifferentiation. Plant Cell Rep. 2006, 25, 749–757. [Google Scholar] [CrossRef]
- Valvekens, D.; Van Montagu, M.; Van Lijsebettens, M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 1988, 85, 5536–5540. [Google Scholar] [CrossRef]
- Banno, H.; Ikeda, Y.; Niu, Q.W.; Chua, N.H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 2001, 13, 2609–2618. [Google Scholar] [CrossRef]
- Ikeda, Y.; Králová, M.; Zalabák, D.; Kubalová, I.; Aida, M. Post-Embryonic Lateral Organ Development and Adaxial-Abaxial Polarity Are Regulated by the Combined Effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in Arabidopsis Shoots. Int. J. Mol. Sci. 2021, 22, 10621. [Google Scholar] [CrossRef]
- Iwase, A.; Mita, K.; Nonaka, S.; Ikeuchi, M.; Koizuka, C.; Ohnuma, M.; Ezura, H.; Imamura, J.; Sugimoto, K. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J. Plant Res. 2015, 128, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Zhai, N.; Xie, D.; Liu, W.; Xu, L. WOX11: The founder of plant organ regeneration. Cell Regen. 2023, 12, 1. [Google Scholar] [CrossRef]
- Kshetry, A.O.; Ghose, K.; Alok, A.; Devkar, V.; Raman, V.; Stupar, R.M.; Herrera-Estrella, L.; Zhang, F.; Patil, G.B. Shoot at Site: Advancing in planta transformation, regeneration and gene-editing through a cascade of wounding-mediated developmental regulators. bioRxiv 2025. [Google Scholar] [CrossRef]
- Waki, T.; Hiki, T.; Watanabe, R.; Hashimoto, T.; Nakajima, K. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr. Biol. 2011, 21, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Chardin, C.; Girin, T.; Roudier, F.; Meyer, C.; Krapp, A. The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. J. Exp. Bot. 2014, 65, 5577–5587. [Google Scholar] [CrossRef]
- Schauser, L.; Roussis, A.; Stiller, J.; Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 1999, 402, 191–195. [Google Scholar] [CrossRef]
- Purwestri, Y.A.; Lee, Y.S.; Meehan, C.; Mose, W.; Susanto, F.A.; Wijayanti, P.; Fauzia, A.N.; Nuringtyas, T.R.; Hussain, N.; Putra, H.L.; et al. RWP-RK Domain 3 (OsRKD3) induces somatic embryogenesis in black rice. BMC Plant Biol. 2023, 23, 202. [Google Scholar] [CrossRef]
- Liu, X.; Bie, X.M.; Lin, X.; Li, M.; Wang, H.; Zhang, X.; Yang, Y.; Zhang, C.; Zhang, X.S.; Xiao, J. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants 2023, 9, 908–925, Erratum in Nat. Plants 2024, 10, 194. [Google Scholar] [CrossRef]
- Ebinuma, H.; Sugita, K.; Matsunaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA 1997, 94, 2117–2121. [Google Scholar] [CrossRef]
- Ijaz, S.; Bashir, A.; Malik, K.A. Expression of Agrobacterium Isopentenyl transferase (IPT) gene in wheat improves drought tolerance. Transgenic Res. 2025, 34, 7. [Google Scholar] [CrossRef]
- Yang, W.; Zhai, H.; Wu, F.; Lei, D.; Yu, C.; Meng, X.; Chen, Q.; Liu, C.; Bie, X.; Sun, C.; et al. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024, 187, 3024–3038. [Google Scholar] [CrossRef]
- Gallois, J.L.; Woodward, C.; Reddy, G.V.; Sablowski, R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 2002, 129, 3207–3217. [Google Scholar] [CrossRef]
- Ille, K.; Melzer, S. Efficient and Versatile Rapeseed Transformation for New Breeding Technologies. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gordon, S.P.; Chickarmane, V.S.; Ohno, C.; Meyerowitz, E.M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. USA 2009, 106, 16529–16534. [Google Scholar] [CrossRef]
- Lenhard, M.; Bohnert, A.; Jürgens, G.; Laux, T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 2001, 105, 805–814. [Google Scholar] [CrossRef]
- Maher, M.F.; Nasti, R.A.; Vollbrecht, M.; Starker, C.G.; Clark, M.D.; Voytas, D.F. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 2020, 38, 84–89. [Google Scholar] [CrossRef]
- Gallois, J.L.; Nora, F.R.; Mizukami, Y.; Sablowski, R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes. Dev. 2004, 18, 375–380. [Google Scholar] [CrossRef]
- Mookkan, M.; Nelson-Vasilchik, K.; Hague, J.; Zhang, Z.J.; Kausch, A.P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep. 2017, 36, 1477–1491. [Google Scholar] [CrossRef]
- Deveaux, Y.; Toffano-Nioche, C.; Claisse, G.; Thareau, V.; Morin, H.; Laufs, P.; Moreau, H.; Kreis, M.; Lecharny, A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Ecol. Evol. 2008, 8, 291. [Google Scholar] [CrossRef]
- Zhang, T.; Xiang, Y.; Ye, M.; Yuan, M.; Xu, G.; Zhou, D.-X.; Zhao, Y. The uORF-HsfA1a-WOX11 module controls crown root development in rice. New Phytol. 2025, 247, 760–773. [Google Scholar] [CrossRef]
- Heidmann, I.; de Lange, B.; Lambalk, J.; Angenent, G.C.; Boutilier, K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 2011, 30, 1107–1115. [Google Scholar] [CrossRef]
- Kareem, A.; Durgaprasad, K.; Sugimoto, K.; Du, Y.; Pulianmackal, A.; Trivedi, Z.; Abhayadev, P.; Pinon, V.; Meyerowitz, E.; Scheres, B.; et al. PLETHORA Genes Control Regeneration by a Two-Step Mechanism . Curr. Biol. 2015, 25, 1017–1030. [Google Scholar] [CrossRef]
- Schmidt, E.D.L.; Guzzo, F.; Toonen, M.A.J.; de Vries, S.C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 1997, 124, 2049–2062. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef]
- Iwase, A.; Mitsuda, N.; Ikeuchi, M.; Ohnuma, M.; Koizuka, C.; Kawamoto, K.; Imamura, J.; Ezura, H.; Sugimoto, K. Arabidopsis WIND1 Induces Callus Formation in Rapeseed, Tomato, and Tobacco. Plant Signal. Behav. 2013, 8, e27432. [Google Scholar] [CrossRef]
- Richael, C.M.; Kalyaeva, M.; Chretien, R.C.; Yan, H.; Adimulam, S.; Stivison, A.; Weeks, J.T.; Rommens, C.M. vectors mediate marker-free and backbone-free plant transformation. Transgenic Res. 2008, 17, 905–917. [Google Scholar] [CrossRef]
- Ondrej, M.; Macháčková, I.; Ĉatský, J.; Eder, J.; Hrouda, M.; Pospisilová, J.; Synkova, H. Potato transformation by T-DNA Cytokinin synthesis gene. Biol. Plant. 1990, 32, 401–406. [Google Scholar] [CrossRef]
- Smigocki, A.C.; Owens, L.D. Cytokinin-to-Auxin Ratios and Morphology of Shoots and Tissues Transformed by a Chimeric Isopentenyl Transferase Gene. Plant Physiol. 1989, 91, 808–811. [Google Scholar] [CrossRef]
- Casanova, E.; Valdés, A.E.; Zuker, A.; Fernández, B.; Vainstein, A.; Trillas, M.I.; Moysset, L. rolC-transgenic carnation plants: Adventitious organogenesis and levels of endogenous auxin and cytokinins. Plant Sci. 2004, 167, 551–560. [Google Scholar] [CrossRef]
- Gorpenchenko, T.Y.; Kiselev, K.V.; Bulgakov, V.P.; Tchernoded, G.K.; Bragina, E.A.; Khodakovskaya, M.V.; Koren, O.G.; Batygina, T.B.; Zhuravlev, Y.N. The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 2006, 223, 457–467. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; Ye, J.; Zhu, A.-D.; Guo, W.; Deng, X. Isolation and Characterization of LEAFY COTYLEDON 1-LIKE Gene Related to Embryogenic Competence in Citrus Sinensis. Plant Cell Tiss. Organ. Cult. 2014, 119, 1–13. [Google Scholar] [CrossRef]
- Hu, W.; Li, W.; Xie, S.; Fagundez, S.; McAvoy, R.; Deng, Z.; Li, Y. Kn1 Gene Overexpression Drastically Improves Genetic Transformation Efficiencies of Citrus Cultivars. Plant Cell Tiss. Organ. Cult. 2016, 125, 81–91. [Google Scholar] [CrossRef]
- Chen, J.; Tomes, S.; Gleave, A.P.; Hall, W.; Luo, Z.; Xu, J.; Yao, J.-L. Significant Improvement of Apple (Malus Domestica Borkh.) Transgenic Plant Production by Pre-Transformation with a Baby Boom Transcription Factor. Hortic. Res. 2022, 9, uhab014. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, Y.; Zheng, Q.; Yu, Q.; Lv, K.; Hao, X.; Zhang, N.; Xu, W. A Simple and Efficient Non-Tissue Culture Method for Genetic Transformation of Grape Immature Zygotic Embryos via VvBBM Overexpression. Sci. Hortic. 2024, 337, 113581. [Google Scholar] [CrossRef]
- Sanchez, E.R.; Price, R.J.; Marangelli, F.; McLeary, K.; Harrison, R.J.; Kundu, A. Overexpression of Vitis GRF4-GIF1 Improves Regeneration Efficiency in Diploid Fragaria Vesca Hawaii 4. Plant Methods 2024, 20, 160. [Google Scholar] [CrossRef]
- Rekik, I.; Drira, N.; Grubb, D.; Elleuch, A. Molecular Characterization and Evolution Studies of a SERK like Gene Transcriptionally Induced during Somatic Embryogenesis in Phoenix dactylifera L. v Deglet Nour. Genetika 2015, 47, 323–337. [Google Scholar] [CrossRef]
- Osorio-Montalvo, P.; De-la-Peña, C.; Oropeza, C.; Nic-Can, G.; Córdova-Lara, I.; Castillo-Castro, E.; Sáenz-Carbonell, L. A Peak in Global DNA Methylation Is a Key Step to Initiate the Somatic Embryogenesis of Coconut Palm (Cocos nucifera L.). Plant Cell Rep. 2020, 39, 1345–1357. [Google Scholar] [CrossRef]
- Xu, N.; Kang, M.; Zobrist, J.D.; Wang, K.; Fei, S.Z. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes. Front. Plant Sci. 2022, 12, 781565. [Google Scholar] [CrossRef]
- Segatto, R.; Paggi, G.M.; Taylor, N.J. Overexpression of GRF-GIF Genes Enhances Plant Regeneration in Cassava (Manihot esculenta). Vitr. Cell. Dev. Biol.-Plant 2024, 61, 593–607. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Feng, J.; Liu, Y.; Wang, H.; Deng, S.; Dong, W.; Liu, X.; Lv, B.; Sun, J.; et al. Enhancing Genetic Transformation Efficiency in Cucurbit Crops through AtGRF5 Overexpression: Mechanistic Insights and Applications. JIPB 2025, 67, 1843–1860. [Google Scholar] [CrossRef]
- Feng, Q.; Xiao, L.; He, Y.; Liu, M.; Wang, J.; Tian, S.; Zhang, X.; Yuan, L. Highly Efficient, Genotype-independent Transformation and Gene Editing in Watermelon (Citrullus lanatus) Using a Chimeric ClGRF4-GIF1 Gene. JIPB 2021, 63, 2038–2042. [Google Scholar] [CrossRef]
- Zhang, Z.-A.; Liu, M.-Y.; Ren, S.-N.; Liu, X.; Gao, Y.-H.; Zhu, C.-Y.; Niu, H.-Q.; Chen, B.-W.; Liu, C.; Yin, W.; et al. Identification of WUSCHEL-Related Homeobox Gene and Truncated Small Peptides in Transformation Efficiency Improvement in Eucalyptus. BMC Plant Biol. 2023, 23, 604. [Google Scholar] [CrossRef]
- Deng, W.; Luo, K.; Li, Z.; Yang, Y. A Novel Method for Induction of Plant Regeneration via Somatic Embryogenesis. Plant Sci. 2009, 177, 43–48. [Google Scholar] [CrossRef]
- Pan, C.; Li, G.; Malzahn, A.A.; Cheng, Y.; Leyson, B.; Sretenovic, S.; Gurel, F.; Coleman, G.D.; Qi, Y. Boosting Plant Genome Editing with a Versatile CRISPR-Combo System. Nat. Plants 2022, 8, 513–525. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Li, Z.; Wen, S.-S.; Wang, J.-N.; Zhao, S.-T.; Lu, M.-Z. WUSCHEL-Related Homeobox Gene PagWOX11/12a Responds to Drought Stress by Enhancing Root Elongation and Biomass Growth in Poplar. J. Exp. Bot. 2019, erz490. [Google Scholar] [CrossRef]
- Uddenberg, D.; Abrahamsson, M.; von Arnold, S. Overexpression of PaHAP3A stimulates differentiation of ectopic embryos from maturing somatic embryos of Norway spruce. Tree Genet. Genomes 2016, 12, 18. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Y.; Coudert, Y.; Kierzkowski, D. Leaf Morphogenesis: Insights From the Moss Physcomitrium Patens. Front. Plant Sci. 2021, 12, 736212. [Google Scholar] [CrossRef]
- Klein, T.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Christou, P.; Ford, T.L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA Into Immature Zygotic embryos. Nat. Biotechnol. 1991, 9, 957–962. [Google Scholar] [CrossRef]
- Hiei, Y.; Komari, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 2008, 3, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Allahi, S.; Khodaparast, S.A.; Sohani, M.M. Agrobacterium-Mediated Transformation of Indica Rice: A Non-Tissue Culture Approach. Int. J. Agric. Innov. Res. 2014, 3, 467–472. [Google Scholar]
- Cardoza, V.; Stewart, C.N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep. 2003, 21, 599–604. [Google Scholar] [CrossRef]
- Zhang, K.; He, J.; Liu, L.; Xie, R.; Qiu, L.; Li, X.; Yuan, W.; Chen, K.; Yin, Y.; Kyaw, M.M.M.; et al. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus. Plant Methods 2020, 16, 43. [Google Scholar] [CrossRef]
- Liu, F.; Wang, P.; Xiong, X.; Fu, P.; Gao, H.; Ding, X.; Wu, G. Comparison of three Agrobacterium-mediated co-transformation methods for generating marker-free transgenic Brassica napus plants. Plant Methods 2020, 16, 81. [Google Scholar] [CrossRef]
- Christou, P.; McCabe, D.E.; Swain, W.F. Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol. 1988, 87, 671–674. [Google Scholar] [CrossRef]
- Hinchee, M.A.W.; Connor-Ward, D.V.; Newell, C.A.; McDonnell, R.E.; Sato, S.J.; Gasser, C.S.; Fischhoff, D.A.; Re, D.B.; Fraley, R.T.; Horsch, R.B. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat. Biotechnol. 1988, 6, 915–922. [Google Scholar] [CrossRef]
- Paz, M.M.; Martinez, J.C.; Kalvig, A.B.; Fonger, T.M.; Wang, K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 2006, 25, 206–213. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Y. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 2008, 27, 1177–1184. [Google Scholar] [CrossRef]
- Jia, Y.; Yao, X.; Zhao, M.; Zhao, Q.; Du, Y.; Yu, C.; Xie, F. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process. Int. J. Mol. Sci. 2015, 16, 18522–18543. [Google Scholar] [CrossRef]
- Rech, E.L.; Vianna, G.R.; Aragão, F.J. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 2008, 3, 410–418. [Google Scholar] [CrossRef]
- Nagle, M.F.; Yuan, J.; Kaur, D.; Ma, C.; Peremyslova, E.; Jiang, Y.; Goralogia, G.S.; Magnuson, A.; Li, J.Y.; Muchero, W.; et al. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. New Phytol. 2024, 242, 2059–2076. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.; Niedermeyer, J.; Fry, J.; Barnason, A.; Horsch, R.; Fraley, R. Leaf disc transformation of cultivated tomato (L. esculentum) Using Agrobacterium tumefaciens. Plant Cell Rep. 1986, 5, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-J.; Uchii, S.; Watanabe, S.; Ezura, H. A Highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. Plant Cell Physiol. 2006, 47, 426–431. [Google Scholar] [CrossRef]
- Fuentes, A.D.; Ramos, P.L.; Sánchez, Y.; Callard, D.; Ferreira, A.; Tiel, K.; Cobas, K.; Rodríguez, R.; Borroto, C.; Doreste, V.; et al. A transformation procedure for recalcitrant tomato by addressing transgenic plant-recovery limiting factors. Biotechnol. J. 2008, 3, 1088–1093. [Google Scholar] [CrossRef]
- Sun, S.; Kang, X.P.; Xing, X.J.; Xu, X.Y.; Cheng, J.; Zheng, S.W.; Xing, G.M. Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. cv. Hezuo 908) with improved efficiency. Biotechnol. Biotechnol. Equip. 2015, 29, 861–868. [Google Scholar] [CrossRef]
- Frary, A.; Earle, E.D. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 1996, 16, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Soniya, E.V.; Banerjee, N.S.; Das, M.R. Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr. Sci. 2001, 80, 1213–1215. [Google Scholar]
- Karami, O. Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant 2008, 2, 127–137. [Google Scholar]
- Conti, G.; Xoconostle-Cázares, B.; Marcelino-Pérez, G.; Hopp, H.E.; Reyes, C.A. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. Front. Plant Sci. 2021, 12, 768197. [Google Scholar] [CrossRef] [PubMed]
- Khadgi, A.; Sagawa, C.H.D.; Vernon, C.; Mermaz, B.; Irish, V.F. Optimization of in Planta Methodology for Genome Editing and Transformation in Citrus. Front. Plant Sci. 2024, 15, 1438031. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Tarannum, Z.; Kokane, S.; Ghosh, D.K.; Sharma, A.K.; Chauhan, H. Efficient Transformation and Regeneration of Transgenic Plants in Commercial Cultivars of Citrus Aurantifolia and Citrus Sinensis. Transgenic Res. 2023, 32, 523–536. [Google Scholar] [CrossRef]
- Bahariah, B.; Masani, M.Y.A.; Fizree, M.P.M.A.A.; Rasid, O.A.; Parveez, G.K.A. Multiplex CRISPR/Cas9 Gene-Editing Platform in Oil Palm Targeting Mutations in EgFAD2 and EgPAT Genes. J. Genet. Eng. Biotechnol. 2023, 21, 3. [Google Scholar] [CrossRef]
- Nie, H.; Batool, S.; Htwe, Y.M.; Fang, X.; Zhang, D.; Shi, P.; Li, Z.; Ma, M.; Su, H.; Yu, Q.; et al. Development of Protoplast-Based Gene Editing System for Areca Palm. Plants 2025, 14, 832. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Zhao, J.; Niu, S.; Zhao, H.; Zhang, J.; Zhao, J.; Niu, S. Genetic Transformation in Conifers: Current Status and Future Prospects. For. Res. 2024, 4, e010. [Google Scholar] [CrossRef]
- Bruegmann, T.; Fendel, A.; Zahn, V.; Fladung, M. Genome Editing in Forest Trees. In A Roadmap for Plant Genome Editing; Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., Woźniak-Gientka, E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 347–372. ISBN 9783031461491. [Google Scholar]
- Kui, L.; Chen, H.; Zhang, W.; He, S.; Xiong, Z.; Zhang, Y.; Yan, L.; Zhong, C.; He, F.; Chen, J.; et al. Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium Officinale. Front. Plant Sci. 2017, 7, 2036. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Zhang, Q.; Zhang, K.; Xue, Q.; Liu, W.; Ding, X.; Niu, Z. CRISPR-Cas9 Mediated Gene Editing Platform Through Callus-to-Plant Regeneration and Functional Analysis of DoALA4─DoALA6 in Dendrobium Officinale. Plant Cell Environ. 2025, 48, 2923–2936. [Google Scholar] [CrossRef]
- Semiarti, E.; Nopitasari, S.; Setiawati, Y.; Lawrie, M.D.; Purwantoro, A.; Widada, J.; Yoshioka, Y.; Matsumoto, S.; Ninomiya, K.; Asano, Y. Application of CRISPR/Cas9 Genome Editing System for Molecular Breeding of Orchids. Indones. J. Biotechnol. 2020, 25, 61. [Google Scholar] [CrossRef]
- Ren, R.; Gao, J.; Yin, D.; Li, K.; Lu, C.; Ahmad, S.; Wei, Y.; Jin, J.; Zhu, G.; Yang, F. Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. Front. Plant Sci. 2021, 12, 626015. [Google Scholar] [CrossRef]
- Guo, M.; Chen, H.; Dong, S.; Zhang, Z.; Luo, H. CRISPR-Cas Gene Editing Technology and Its Application Prospect in Medicinal Plants. Chin. Med. 2022, 17, 33. [Google Scholar] [CrossRef]
- Dey, A. CRISPR/Cas Genome Editing to Optimize Pharmacologically Active Plant Natural Products. Pharmacol. Res. 2021, 164, 105359. [Google Scholar] [CrossRef]
- Lee, K.; Wang, K. Strategies for Genotype-Flexible Plant Transformation. Curr. Opin. Biotechnol. 2023, 79, 102848. [Google Scholar] [CrossRef] [PubMed]
- DeMaggio, A.E. Morphogenetic Factors Influencing the Development of Fern Embryos. Linn. Soc. Lond. Proc. Bot. J 1963, 58, 361–376. [Google Scholar] [CrossRef]
- Johnson, K.; Cao Chu, U.; Anthony, G.; Wu, E.; Che, P.; Jones, T.J. Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. Front. Plant Sci. 2023, 14, 1151762. [Google Scholar] [CrossRef] [PubMed]
- Hoerster, G.; Wang, N.; Ryan, L.; Wu, E.; Anand, A.; McBride, K.; Lowe, K.; Jones, T.; Kamm, B.G. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. Vitr. Cell. Dev. Biol.-Plant 2020, 56, 265–279. [Google Scholar] [CrossRef]
- Che, P.; Wu, E.; Simon, M.K.; Anand, A.; Lowe, K.; Gao, H.; Sigmund, A.L.; Yang, M.; Albertsen, M.C.; Gordon-Kamm, W.; et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 2022, 5, 344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stroud, H.; Ding, B.; Simon, S.A.; Feng, S.; Bellizzi, M.; Pellegrini, M.; Wang, G.L.; Meyers, B.C.; Jacobsen, S.E. Plants regenerated from tissue culture contain stable epigenome changes in rice. Elife 2013, 2, e00354. [Google Scholar] [CrossRef]
- Hsieh, J.-W.A.; Chang, P.; Kuang, L.-Y.; Hsing, Y.-I.C.; Chen, P.-Y. Rice transformation treatments leave specific epigenome changes beyond tissue culture. Plant Physiol. 2023, 193, 2–1297, Erratum in Plant Physiol. 2023, 193, 1713. [Google Scholar] [CrossRef]
- Ong-Abdullah, M.; Ordway, J.M.; Jiang, N.; Ooi, S.E.; Kok, S.Y.; Sarpan, N.; Azimi, N.; Hashim, A.T.; Ishak, Z.; Rosli, S.K.; et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 2015, 525, 533–537. [Google Scholar] [CrossRef]
- Zhong, H.; Li, C.; Yu, W.; Zhou, H.P.; Lieber, T.; Su, X.; Wang, W.; Bumann, E.; Lunny Castro, R.M.; Jiang, Y.; et al. A fast and genotype-independent in planta Agrobacterium-mediated transformation method for soybean. Plant Commun. 2024, 5, 101063. [Google Scholar] [CrossRef]
- Karp, H.; Zoltek, M.; Wasko, K.; Vazquez, A.L.; Brim, J.; Ngo, W.; Schepartz, A.; Doudna, J. Packaged delivery of CRISPR-Cas9 ribonucleoproteins accelerates genome editing. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Linghu, Q.; Nagira, Y.; Miki, R.; Taoka, N.; Imai, R. An in planta biolistic method for stable wheat transformation. Sci. Rep. 2017, 7, 11443, Erratum in Sci. Rep. 2017, 7, 17573. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Abul-faraj, A.; Li, L.; Ghosh, N.; Piatek, M.; Mahjoub, A.; Aouida, M.; Piatek, A.; Baltes, N.J.; Voytas, D.F.; et al. Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. Mol. Plant 2015, 8, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, Z.; Tian, B.; Liu, Y.; Pang, Y.; Kavetskyi, V.; Trick, H.N.; Bai, G. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol. J. 2022, 20, 1018–1020. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Z.; He, F.; Bai, G.; Trick, H.N.; Akhunova, A.; Akhunov, E. Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system. Plant Biotechnol. J. 2022, 20, 2332–2341. [Google Scholar] [CrossRef]
- Liu, D.; Ellison, E.E.; Myers, E.A.; Donahue, L.I.; Xuan, S.; Swanson, R.; Qi, S.; Prichard, L.E.; Starker, C.G.; Voytas, D.F. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proc. Natl. Acad. Sci. USA 2024, 121, e2406486121. [Google Scholar] [CrossRef]
- Sprink, T.; Wilhelm, R.; Hartung, F. Genome editing around the globe: An update on policies and perceptions. Plant Physiol. 2022, 190, 1579–1587. [Google Scholar] [CrossRef]
- Buchholzer, M.; Frommer, W.B. An increasing number of countries regulate genome editing in crops. New Phytol. 2023, 237, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Munawar, N.; Khan, Z.; Qusmani, A.; Khan, S.; Jamil, A.; Ashraf, S.; Ghouri, M.; Aslam, S.; Mubarik, M.; et al. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int. J. Mol. Sci. 2021, 22, 11753. [Google Scholar] [CrossRef]
- Voigt, B. EU regulation of gene-edited plants—A reform proposal. Front. Genome Ed. 2023, 5, 1119442. [Google Scholar] [CrossRef]
- Zagoskina, N.Z.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Steinberger, A.R.; Voytas, D.F. Virus-induced gene editing free from tissue culture. Nat. Plants 2025, 11, 1241–1251. [Google Scholar] [CrossRef]
Group Name of Morphogenetic Factors | Genes | Functions in Plants | Observed Impact In Vitro | References |
---|---|---|---|---|
WUS (WUSCHEL) | WUS | Maintenance of cell populations in shoot and floral meristems; regulation of meristem differentiation | Overexpression enhances shoot regeneration and meristem growth | [25,26,27,28,29,30,31,64,65,66,67,68,69,70] |
WOX (WUSCHEL-related homebox) | WOX1, WOX2, WOX3, WOX4, WOX5, WOX11 | Regulation of cell differentiation (WOX5 maintains root meristems; WOX11 controls lateral root branching) | Stimulation organo- and embryogenesis; WOX11 improves in vitro rhizogenesis efficiency | [32,33,34,35,36,37,38,71,72] |
BBM (BABY BOOM) | BBM | Control of embryogenesis; regulation of cell proliferation and embryo development | Somatic embryogenesis induction without exogenous hormones | [39,40,41,42,68,73] |
GRF-GIF (GROWTH-REGULATING FACTOR–GIF) | GRF1–GRF9, GIF1–GIF3 | Management of shoot and leaf growth; cell proliferation | Improvement of regeneration efficiency by promoting prolific shoot formation | [20,44,45,46] |
PLT (PLETHORA) | PLT1, PLT2, PLT3, PLT5 | Maintenance of root meristems; regulation of embryo development; control of auxin signaling | Root regeneration; overexpression enhances somatic embryogenesis | [43,74] |
LEC (LEAFY COTYLEDON) | LEC1, LEC2, FUS3 | Control of embryo maturation and seed germination; regulation of nutrient storage | Somatic embryogenesis induction and embryoid yield increasing | [15,47,48,49] |
SERK (SOMATIC EMBRYOGENESIS RECEPTOR KINASE) | SERK1, SERK2 | Enhancement of somatic embryogenesis; co-factor in signaling pathways | Enhancement of embryogenic competence; and regeneration efficiency | [25,75,76] |
ESR (Embryo Surrounding Region) | ESR1 | Processes of endosperm formation and seed coat development | Shoot formation efficiency increasing | [50,51,52] |
WIND (WOUND INDUCED DEDIFFERENTIATION) | WIND1 | Wound-induced promotion dedifferentiation; regulation of callus formation | Cell division induction and proliferation without phytohormones, improving transformation efficiency | [53,54,55,76,77] |
RKD (RWP-RK DOMAIN-CONTAINING) | RKD1, RKD2, RKD4 | Regulation of egg cell differentiation and maintenance of embryogenic totipotency | Somatic embryogenesis induction and callusogenesis | [56,57,58,59] |
DOF (DNA-binding One Zinc Finger) | DOF3.4, DOF5.6 | Development of shoot and root apical meristems | Callus induction | [60] |
ipt (isopentenyltransferase) | ipt | Oncogene | Enhancement of shoot formation efficiency | [55,61,62,78,79,80] |
rol (root loci) | rolB, rolC | Alteration of plant cell hormonal balance | Efficient root or shoot initiation | [13,81,82] |
REF1 (REGENERATION FACTOR1) | - | Initiation of callusogenesis via WIND1 activation in response to wounding | Regeneration efficiency improving via callusogenesis | [63] |
Crop | Cultivar | Genes | Observed Impact In Vitro | Reference |
---|---|---|---|---|
O. sativa | ssp. indica IRV95 | OsBBM + ZmWUS2 | 43% regeneration efficiency | [15] |
ZmBBM + ZmWUS2 | 27% regeneration efficiency | [15] | ||
Kitaake | GRF4-GIF1 | Enhancement of regeneration efficiency 2-fold (from 20 to 42.8%) | [44] | |
- | WOX11 | Enabling root system modifications without affecting shoot traits | [72] | |
Cempo Ireng | OsRKD3 | Enhancement of transformation 23.5-fold, enhancement of somatic embryogenesis by activating a gene network (AP2/ERF, MYB, COL) | [59] | |
B. napus | Topas DH 4079 | BnBBM | Development of somatic embryos in the absence of exogenous phytohormones | [39] |
BNS3 | AtGRF5 | Increasing shoot regeneration to 19.6% (vs. 3% in controls) without developmental defects | [20] | |
G. max | DN50, DN252, DN254, SN4, SN14, ZJ602 | GmGRF3-GIF1 | Enhancement of regeneration up to 5.5–13.8% (vs. 2–5% in controls) | [45] |
CD215, Jack | AtGRF5 | Enhancement of shoot regeneration up to 50% | [20] | |
Dongnong-50 | REF1 | Enhancement of transformation and regeneration efficiency 5- and 9-fold respectively | [63] | |
S. lycopersicum | Big Beef | PLT5 | Enhancement of transformation efficiency up to 13.3% | [43] |
WUS | Enhancement of transformation efficiency up to 3.3% | [43] | ||
Alisa Craig, Castlemart | REF1 | Enhancement of regeneration efficiency 3-fold | [63] | |
Citrus × sinensis (L.) Osbeck | Valencia | L1L (LEC1) | Somatic embryogenesis induction in one month after Agrobacterium-mediated transformation | [83] |
‘Pineapple’, ‘Hamlin’, ‘Sucarri’, ‘Valencia’ | ZmKN1 | Enhancement of transformation efficiency by 3–15 times | [84] | |
Citrus reticulata Blanco | Red, Bendizao | L1L (LEC1) | Somatic embryogenesis induction in one month after Agrobacterium-mediated transformation | [83] |
Citrus limon (L.) Osbeck | Eureka | ZmKN1 | Enhancement of transformation efficiency by 3–15 times | [84] |
Citrus medica L. | Carrizo | GRF-GIF | Enhancement of regeneration efficiency 4.7-fold | [44] |
Malus domestica L. | Royal Gala | MdBBM1 | Increasing the frequency of transgenic shoot regeneration to ~31% | [85] |
Vitis vinifera L. | Cabernet Sauvignon | VvBBM | Overexpression enhances somatic embryogenesis to 42.85% | [86] |
- | GRF-GIF | Shoot formation efficiency increasing by more than 4-fold | [44] | |
Fragaria vesca L. | Hawaii 4 | VvGRF4-GRF1 | Enhancement of transformation efficiency by more than 2-fold, reaching 40% | [87] |
Theobroma cacao L. | 6–1, ICS1 | TcBBM | Enhancement of somatic embryogenesis induction 5.5-fold without exogenous hormones | [42] |
Phoenix dactylifera L. | Deglet Nour | PdSERK1 | Studying SERK1 expression which is highly expressed during embryogenic competence acquisition and globular embryo formation in culture | [88] |
Cocos nucifera L. | MI-192-17 | WUS, BBM, SERK, LEC | Investigation of MTF expression during explant treatment with 5-Azacytidine | [89] |
Sorghum bicolor (L.) Moench | TX430 | ZmBBM + ZmWUS2 | Somatic embryogenesis induction and enhancement of transformation efficiency from 2 to 18% | [15] |
Saccharum officinarum L. | CP01-1372 | ZmBBM + ZmWUS2 | Somatic embryogenesis induction and enhancement of transformation efficiency from 2 to 273% | [15] |
Panicum virgatum L. | Summer, Blackwell | ZmBBM + ZmWUS2 | Enhancement of transformation efficiency to 6% and regeneration efficiency to over 40% | [90] |
Manihot esculenta Crantz | 60444, NASE | VvGRF4-GRF1, AtGRF5 | Enhancement of transformation and regeneration efficiency to 50% without exogenous hormones | [91] |
Cucumis sativus L. | Cu2 | AtGRF5 | Improvement of regeneration efficiency by promoting prolific shoot formation | [92] |
Citrullus lanatus (Thunb.) Matsum. & Nakai | TC | ClGRF4-GIF1 | Improvement of regeneration efficiency by promoting prolific shoot formation by 47.02% | [93] |
Beta vulgaris L. | 9BS0448, 1RV6183, 7RV5706H, 8RV6921 | AtGRF5 | Enhancement of transformation efficiency 6-fold and regeneration efficiency to 20.7% | [20] |
E. urophylla × E. grandis | ‘DH32-29′ | WUS | Enhancement of transformation efficiency 3-fold, embryogenic callus and somatic embryogenesis induction 40% | [94] |
Populus L. | - | BBM WUS | Embryogenic callus and somatic embryogenesis induction 39% | [95] |
- | PtWUS + PtWOX11 | Enhancement of callus induction, shoot regeneration and rhizogenesis efficiency, increase in leaf area to 25% | [96] | |
84K | WUS | Enhancement of rhizogenesis efficiency 1.5–2-fold | [97] | |
Picea abies (L.) H. Karst | 88.22, 61.21 | PaHAP3A | Somatic embryogenesis induction in maturated embryo 5.5% | [98] |
Physcomitrium patens (Hedw.) Bruch & Schimp. | - | LSH1 | Studies on the maintenance of meristematic cell activity | [99] |
Type of Strategy | Principle of Function | Reference |
Transient Expression (Non-Integrated) | Short-term expression without genomic integration, non-integrated cassettes due to T-DNA border termination | [15] |
Chemically Inducible Promoters | The morphogen is expressed under a chemically inducible promoter only in the presence of a specific substance in the medium (e.g., dexamethasone-, tetracycline-, or estrogen-responsive promoters) | [13,39,40] |
Tissue-Specific Promoters | The morphogen is expressed under a special promoter only in target cells and tissues (calli or embryoids) | [15] |
Gene Excision Systems | Post-regeneration removal of morphogenes via recombinase-based systems (Cre/LoxP, FLP/FRT) | [76,77,78] |
Combining Multiple Morphogenetic Factors | Co-expression of synergistic regulators via separate promoters or self-cleaving peptides for balanced expression | [15,16,43,87,90,91,95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakulin, S.D.; Monakhos, S.G.; Bruskin, S.A. Morphogenetic Factors as a Tool for Enhancing Plant Regeneration Capacity During In Vitro Transformation. Int. J. Mol. Sci. 2025, 26, 8583. https://doi.org/10.3390/ijms26178583
Bakulin SD, Monakhos SG, Bruskin SA. Morphogenetic Factors as a Tool for Enhancing Plant Regeneration Capacity During In Vitro Transformation. International Journal of Molecular Sciences. 2025; 26(17):8583. https://doi.org/10.3390/ijms26178583
Chicago/Turabian StyleBakulin, Semyon D., Sokrat G. Monakhos, and Sergey A. Bruskin. 2025. "Morphogenetic Factors as a Tool for Enhancing Plant Regeneration Capacity During In Vitro Transformation" International Journal of Molecular Sciences 26, no. 17: 8583. https://doi.org/10.3390/ijms26178583
APA StyleBakulin, S. D., Monakhos, S. G., & Bruskin, S. A. (2025). Morphogenetic Factors as a Tool for Enhancing Plant Regeneration Capacity During In Vitro Transformation. International Journal of Molecular Sciences, 26(17), 8583. https://doi.org/10.3390/ijms26178583