Special Issue “Atherosclerosis 2: From Molecular Mechanisms and Pathophysiology to Novel Therapeutic Approaches”
Conclusions and Future Directions
Conflicts of Interest
References
- Björkegren, J.; Lusis, A. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Bekbossynova, M.; Saliev, T.; Ivanova-Razumova, T.; Andossova, S.; Kali, A.; Myrzakhmetova, G. Beyond Cholesterol: Emerging Risk Factors in Atherosclerosis. J. Clin. Med. 2025, 14, 2352. [Google Scholar] [CrossRef] [PubMed]
- Frolov, A.; Lobov, A.; Kabilov, M.; Zainullina, B.; Tupikin, A.; Shishkova, D.; Markova, V.; Sinitskaya, A.; Grigoriev, E.; Markova, Y.; et al. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int. J. Mol. Sci. 2023, 24, 15032. [Google Scholar] [CrossRef] [PubMed]
- Dutka, M.; Garczorz, W.; Kosowska, A.; Buczek, E.; Godek, P.; Wojakowski, W.; Francuz, T. Osteoprotegerin Is Essential for the Development of Endothelial Dysfunction Induced by Angiotensin II in Mice. Int. J. Mol. Sci. 2024, 25, 6434. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Hwang, J.S.; Kim, K.R.; Kim, J.K. Wall Shear Stress (WSS) Analysis in Atherosclerosis in Partial Ligated Apolipoprotein E Knockout Mouse Model through Computational Fluid Dynamics (CFD). Int. J. Mol. Sci. 2024, 25, 9877. [Google Scholar] [CrossRef] [PubMed]
- Henni Mansour, A.S.; Ragues, M.; Brevier, J.; Borowczyk, C.; Grevelinger, J.; Laroche-Traineau, J.; Garaude, J.; Marais, S.; Jacobin-Valat, M.-J.; Gerbaud, E.; et al. Phenotypic, Metabolic, and Functional Characterization of Experimental Models of Foamy Macrophages: Toward Therapeutic Research in Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 10146. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, I.; Prasad, A.; Sharma, B.K.; Aithabathula, R.V.; Ofosu-Boateng, M.; Gyamfi, M.A.; Jiang, J.; Park, F.; Singh, U.P.; Singla, B. Nidogen 2 Overexpression Promotes Hepatosteatosis and Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 12782. [Google Scholar] [CrossRef] [PubMed]
- Iusupova, A.O.; Pakhtusov, N.N.; Slepova, O.A.; Khabarova, N.V.; Privalova, E.V.; Bure, I.V.; Nemtsova, M.V.; Belenkov, Y.N. MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease. Int. J. Mol. Sci. 2024, 25, 12978. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.; Lim, S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 2593. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Vlachakis, P.K.; Papanikolaou, A.; Karakasis, P.; Oikonomou, E.; Tsioufis, K.; Tousoulis, D. Coronary Plaque Erosion: Epidemiology, Diagnosis, and Treatment. Int. J. Mol. Sci. 2024, 25, 5786. [Google Scholar] [CrossRef] [PubMed]
- Kasher, M.; Freidin, M.B.; Williams, F.M.K.; Cherny, S.S.; Ashkenazi, S.; Livshits, G. Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 5981. [Google Scholar] [CrossRef] [PubMed]
- Getz, G.S.; Reardon, C.A. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 6375. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fatima, M.; Hou, S.; Bai, L.; Zhao, S.; Liu, E. Research methods for animal models of atherosclerosis (Review). Mol. Med. Rep. 2021, 24, 871. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Kamato, D.; Little, P.J.; Nakagawa, S.; Pelisek, J.; Jin, Z.G. Targeting Epigenetics and Non-Coding RNAs in Atherosclerosis: From Mechanisms to Therapeutics. Pharmacol. Ther. 2019, 196, 15–43. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, P.; Tona, F. Sex Differences in Diagnostic Modalities of Atherosclerosis in the Macrocirculation. Atherosclerosis 2023, 384, 117275. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbato, A. Special Issue “Atherosclerosis 2: From Molecular Mechanisms and Pathophysiology to Novel Therapeutic Approaches”. Int. J. Mol. Sci. 2025, 26, 8515. https://doi.org/10.3390/ijms26178515
Barbato A. Special Issue “Atherosclerosis 2: From Molecular Mechanisms and Pathophysiology to Novel Therapeutic Approaches”. International Journal of Molecular Sciences. 2025; 26(17):8515. https://doi.org/10.3390/ijms26178515
Chicago/Turabian StyleBarbato, Antonio. 2025. "Special Issue “Atherosclerosis 2: From Molecular Mechanisms and Pathophysiology to Novel Therapeutic Approaches”" International Journal of Molecular Sciences 26, no. 17: 8515. https://doi.org/10.3390/ijms26178515
APA StyleBarbato, A. (2025). Special Issue “Atherosclerosis 2: From Molecular Mechanisms and Pathophysiology to Novel Therapeutic Approaches”. International Journal of Molecular Sciences, 26(17), 8515. https://doi.org/10.3390/ijms26178515