Direct Intercellular Transport Mode of Filovirus Nucleocapsids
Abstract
1. Introduction
2. Results
2.1. EBOV Intercellular Transport by Cellular Extension Bridges
2.2. MARV Intercellular Transport Through Neighboring Cell Contact
2.3. EBOV NCLS Interaction with Actin Is Involved in Intercellular Viral Transmission
2.4. EBOV NCLS Can Be Transferred to Naïve Cells by Cell-to-Cell Interactions
3. Discussion
4. Materials and Methods
4.1. Cells and Viruses
4.2. Plasmids and Transfection
4.3. Infection and Transfection of Cells in BSL-4
4.4. Live-Cell Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EBOV | Ebola virus |
MARV | Marburg virus |
GP | Glycoprotein |
RNP | Ribonucleoprotein |
NP | Nucleoprotein |
L | L polymerase |
VP35 | Polymerase cofactor |
VP30 | Transcriptional activator |
VP24 | Viral protein 24 |
VP40 | Matrix protein |
Arp2/3 | Actin related protein 2/3 |
TNT | Tunneling nanotube |
NCLS | Nucleocapsid-like structure |
GFP | Green fluorescent protein |
TagRFP | Red fluorescent protein |
References
- Biedenkopf, N.; Bukreyev, A.; Chandran, K.; Paola, N.D.; Formenty, P.B.H.; Griffiths, A.; Hume, A.J.; Mühlberger, E.; Netesov, S.V.; Palacios, G.; et al. ICTV Virus Taxonomy Profile: Filoviridae 2024. J. Gen. Virol. 2024, 105, 001955. [Google Scholar] [CrossRef]
- Jacob, S.T.; Crozier, I.; Fischer, W.A.; Hewlett, A.; Kraft, C.S.; Vega, M.A.d.L.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola Virus Disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef]
- Liu, C.H.; Hu, Y.T.; Wong, S.H.; Lin, L.T. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022, 14, 579. [Google Scholar] [CrossRef]
- Mühlberger, E.; Weik, M.; Volchkov, V.E.; Klenk, H.-D.; Becker, S. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems. J. Virol. 1999, 73, 2333–2342. [Google Scholar] [CrossRef]
- Furuyama, W.; Marzi, A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu. Rev. Virol. 2019, 6, 435–458. [Google Scholar] [CrossRef]
- Gordon, T.B.; Hayward, J.A.; Marsh, G.A.; Baker, M.L.; Tachedjian, G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019, 11, 25. [Google Scholar] [CrossRef]
- Yu, D.S.; Weng, T.H.; Wu, X.X.; Wang, F.X.C.; Lu, X.Y.; Wu, H.B.; Wu, N.P.; Li, L.J.; Yao, H.P. The Lifecycle of the Ebola Virus in Host Cells. Oncotarget 2017, 8, 55750. [Google Scholar] [CrossRef]
- Falasca, L.; Agrati, C.; Petrosillo, N.; Di Caro, A.; Capobianchi, M.R.; Ippolito, G.; Piacentini, M. Molecular Mechanisms of Ebola Virus Pathogenesis: Focus on Cell Death. Cell Death Differ. 2015, 22, 1250–1259. [Google Scholar] [CrossRef]
- Rhein, B.A.; Maury, W.J. Ebola Virus Entry into Host Cells: Identifying Therapeutic Strategies. Curr. Clin. Microbiol. Rep. 2015, 2, 115. [Google Scholar] [CrossRef]
- Dolnik, O.; Becker, S. Assembly and Transport of Filovirus Nucleocapsids. PLoS Pathog. 2022, 18, e1010616. [Google Scholar] [CrossRef]
- Mittler, E.; Alkutkar, T.; Jangra, R.K.; Chandran, K. Direct Intracellular Visualization of Ebola Virus-Receptor Interaction by in Situ Proximity Ligation. mBio 2021, 12, e03100-20. [Google Scholar] [CrossRef]
- Hoenen, T.; Shabman, R.S.; Groseth, A.; Herwig, A.; Weber, M.; Schudt, G.; Dolnik, O.; Basler, C.F.; Becker, S.; Feldmann, H. Inclusion Bodies Are a Site of Ebolavirus Replication. J. Virol. 2012, 86, 11779–11788. [Google Scholar] [CrossRef]
- Fang, J.; Castillon, G.; Phan, S.; McArdle, S.; Hariharan, C.; Adams, A.; Ellisman, M.H.; Deniz, A.A.; Saphire, E.O. Spatial and Functional Arrangement of Ebola Virus Polymerase inside Phase-Separated Viral Factories. Nat. Commun. 2023, 14, 4159. [Google Scholar] [CrossRef] [PubMed]
- Hartlieb, B.; Weissenhorn, W. Filovirus Assembly and Budding. Virology 2006, 344, 64–70. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Kolesnikova, L.; Becker, S. Ebola Virus Proteins NP, VP35, and VP24 Are Essential and Sufficient to Mediate Nucleocapsid Transport. Proc. Natl. Acad. Sci. USA 2018, 115, 1075–1080. [Google Scholar] [CrossRef]
- Grikscheit, K.; Dolnik, O.; Takamatsu, Y.; Pereira, A.R.; Becker, S. Ebola Virus Nucleocapsid-like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020, 9, 1728. [Google Scholar] [CrossRef]
- Ito, H.; Watanabe, S.; Takada, A.; Kawaoka, Y. Ebola Virus Glycoprotein: Proteolytic Processing, Acylation, Cell Tropism, and Detection of Neutralizing Antibodies. J. Virol. 2001, 75, 1576–1580. [Google Scholar] [CrossRef]
- Kolesnikova, L.; Bamberg, S.; Berghöfer, B.; Becker, S. The Matrix Protein of Marburg Virus Is Transported to the Plasma Membrane along Cellular Membranes: Exploiting the Retrograde Late Endosomal Pathway. J. Virol. 2004, 78, 2382–2393. [Google Scholar] [CrossRef]
- Miao, C.; Li, M.; Zheng, Y.M.; Cohen, F.S.; Liu, S.L. Cell–Cell Contact Promotes Ebola Virus GP-Mediated Infection. Virology 2016, 488, 202–215. [Google Scholar] [CrossRef]
- Djurkovic, M.A.; Leavitt, C.G.; Arnett, E.; Kriachun, V.; Martínez-Sobrido, L.; Titone, R.; Sherwood, L.J.; Hayhurst, A.; Schlesinger, L.S.; Shtanko, O. Ebola Virus Uses Tunneling Nanotubes as an Alternate Route of Dissemination. J. Infect. Dis. 2023, 228, S522–S535. [Google Scholar] [CrossRef]
- Bär, S.; Takada, A.; Kawaoka, Y.; Alizon, M. Detection of Cell-Cell Fusion Mediated by Ebola Virus Glycoproteins. J. Virol. 2006, 80, 2815–2822. [Google Scholar] [CrossRef]
- Markosyan, R.M.; Miao, C.; Zheng, Y.M.; Melikyan, G.B.; Liu, S.L.; Cohen, F.S. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low PH Is Not a Trigger. PLoS Pathog. 2016, 12, e1005373. [Google Scholar] [CrossRef]
- Zhong, P.; Agosto, L.M.; Munro, J.B.; Mothes, W. Cell-to-Cell Transmission of Viruses. Curr. Opin. Virol. 2013, 3, 44–50. [Google Scholar] [CrossRef]
- Calado, M.; Pires, D.; Conceição, C.; Santos-Costa, Q.; Anes, E.; Azevedo-Pereira, J.M. Human Immunodeficiency Virus Transmission—Mechanisms Underlying the Cell-to-Cell Spread of Human Immunodeficiency Virus. Rev. Med. Virol. 2023, 33, e2480. [Google Scholar] [CrossRef]
- Bracq, L.; Xie, M.; Benichou, S.; Bouchet, J. Mechanisms for Cell-to-Cell Transmission of HIV-1. Front. Immunol. 2018, 9, 339840. [Google Scholar] [CrossRef] [PubMed]
- Schudt, G.; Dolnik, O.; Kolesnikova, L.; Biedenkopf, N.; Herwig, A.; Becker, S. Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells. J. Infect. Dis. 2015, 212, S160–S166. [Google Scholar] [CrossRef] [PubMed]
- Schudt, G.; Kolesnikova, L.; Dolnik, O.; Sodeik, B.; Becker, S. Live-Cell Imaging of Marburg Virus-Infected Cells Uncovers Actin-Dependent Transport of Nucleocapsids over Long Distances. Proc. Natl. Acad. Sci. USA 2013, 110, 14402–14407. [Google Scholar] [CrossRef]
- Sattentau, Q. Avoiding the Void: Cell-to-Cell Spread of Human Viruses. Nat. Rev. Microbiol. 2008, 6, 815–826. [Google Scholar] [CrossRef]
- Mothes, W.; Sherer, N.M.; Jin, J.; Zhong, P. Virus Cell-to-Cell Transmission. J. Virol. 2010, 84, 8360–8368. [Google Scholar] [CrossRef]
- Cifuentes-Munoz, N.; El Najjar, F.; Dutch, R.E. Viral Cell-to-Cell Spread: Conventional and Non-Conventional Ways. Adv. Virus Res. 2020, 108, 85–125. [Google Scholar] [CrossRef]
- Zeng, C.; Evans, J.P.; King, T.; Zheng, Y.M.; Oltz, E.M.; Whelan, S.P.J.; Saif, L.J.; Peeples, M.E.; Liu, S.L. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. Proc. Natl. Acad. Sci. USA 2022, 119, e2111400119. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Pietropaoli, S.; Vos, M.; Barba-Spaeth, G.; Zurzolo, C. Tunneling Nanotubes Provide a Route for SARS-CoV-2 Spreading. Sci. Adv. 2022, 8, eabo0171. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, A. An Intercellular Bridge for Chikungunya Virus Transmission. Nat. Rev. Microbiol. 2023, 21, 702. [Google Scholar] [CrossRef]
- Yin, P.; Davenport, B.J.; Wan, J.J.; Kim, A.S.; Diamond, M.S.; Ware, B.C.; Tong, K.; Couderc, T.; Lecuit, M.; Lai, J.R.; et al. Chikungunya Virus Cell-to-Cell Transmission Is Mediated by Intercellular Extensions in Vitro and in Vivo. Nat. Microbiol. 2023, 8, 1653–1667. [Google Scholar] [CrossRef]
- Hurtig, J.; Chiu, D.T.; Önfelt, B. Intercellular Nanotubes: Insights from Imaging Studies and Beyond. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 260–276. [Google Scholar] [CrossRef]
- Cheng, C.C.; Yang, C.F.; Lo, Y.P.; Chiang, Y.H.; Sofiyatun, E.; Wang, L.C.; Chen, W.J. Cell-to-Cell Spread of Dengue Viral RNA in Mosquito Cells. BioMed. Res. Int. 2020, 2020, 2452409. [Google Scholar] [CrossRef]
- Bruce, J.W.; Park, E.; Magnano, C.; Horswill, M.; Richards, A.; Potts, G.; Hebert, A.; Islam, N.; Coon, J.J.; Gitter, A.; et al. HIV-1 Virological Synapse Formation Enhances Infection Spread by Dysregulating Aurora Kinase B. PLoS Pathog. 2023, 19, e1011492. [Google Scholar] [CrossRef]
- Nejmeddine, M.; Bangham, C.R.M. The HTLV-1 Virological Synapse. Viruses 2010, 2, 1427–1447. [Google Scholar] [CrossRef]
- Stella, A.O.; Turville, S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018, 10, 63. [Google Scholar] [CrossRef]
- Kalinichenko, S.; Komkov, D.; Mazurov, D. HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022, 14, 152. [Google Scholar] [CrossRef]
- Law, K.M.; Satija, N.; Esposito, A.M.; Chen, B.K. Cell-to-Cell Spread of HIV and Viral Pathogenesis. Adv. Virus Res. 2016, 95, 43–85. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Krähling, V.; Kolesnikova, L.; Halwe, S.; Lier, C.; Baumeister, S.; Noda, T.; Biedenkopf, N.; Becker, S. Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription. mBio 2020, 11, e02565-19. [Google Scholar] [CrossRef] [PubMed]
- Hoenen, T.; Groseth, A.; Kolesnikova, L.; Theriault, S.; Ebihara, H.; Hartlieb, B.; Bamberg, S.; Feldmann, H.; Ströher, U.; Becker, S. Infection of Naïve Target Cells with Virus-Like Particles: Implications for the Function of Ebola Virus VP24. J. Virol. 2006, 80, 7260–7264. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Kolesnikova, L.; Schauflinger, M.; Noda, T.; Becker, S. The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. J. Virol. 2020, 94, e02170-19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, C.H.O.; Takamatsu, Y. Direct Intercellular Transport Mode of Filovirus Nucleocapsids. Int. J. Mol. Sci. 2025, 26, 8485. https://doi.org/10.3390/ijms26178485
Ibrahim CHO, Takamatsu Y. Direct Intercellular Transport Mode of Filovirus Nucleocapsids. International Journal of Molecular Sciences. 2025; 26(17):8485. https://doi.org/10.3390/ijms26178485
Chicago/Turabian StyleIbrahim, Catarina Harumi Oda, and Yuki Takamatsu. 2025. "Direct Intercellular Transport Mode of Filovirus Nucleocapsids" International Journal of Molecular Sciences 26, no. 17: 8485. https://doi.org/10.3390/ijms26178485
APA StyleIbrahim, C. H. O., & Takamatsu, Y. (2025). Direct Intercellular Transport Mode of Filovirus Nucleocapsids. International Journal of Molecular Sciences, 26(17), 8485. https://doi.org/10.3390/ijms26178485