Special Issue: “Molecular Genetics and Plant Breeding, 5th Edition”
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Medina, C.A.; Hansen, J.; Crawford, J.; Viands, D.; Sapkota, M.; Xu, Z.; Peel, M.D.; Yu, L.-X. Genome-Wide Association and Genomic Prediction of Alfalfa (Medicago sativa L.) Biomass Yield Under Drought Stress. Int. J. Mol. Sci. 2025, 26, 608. https://doi.org/10.3390/ijms26020608.
- Zhang, C.; Zha, B.; Yuan, R.; Zhao, K.; Sun, J.; Liu, X.; Wang, X.; Zhang, F.; Zhang, B.; t, S.F.; et al. Identification of Quantitative Trait Loci for Node Number, Pod Number, and Seed Number in Soybean. Int. J. Mol. Sci. 2025, 26, 2300. https://doi.org/10.3390/ijms26052300.
- Jiang, J.; Li, R.; Wang, K.; Xu, Y.; Lu, H.; Zhang, D. Combined Bulked Segregant Analysis-Sequencing and Transcriptome Analysis to Identify Candidate Genes Associated with Cold Stress in Brassica napus L. Int. J. Mol. Sci. 2025, 26, 1148. https://doi.org/10.3390/ijms26031148.
- Qian, X.; Liu, H.; Zhou, J.; Zhu, W.; Hu, L.; Yang, X.; Yang, X.; Zhao, H.; Wan, H.; Yin, N.; et al. The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency. Int. J. Mol. Sci. 2025, 26, 794. https://doi.org/10.3390/ijms26020794.
- Li, J.; Zhang, L.; Li, C.; Chen, W.; Wang, T.; Tan, L.; Qiu, Y.; Song, S.; Li, B.; Li, L. The Pentatricopeptide Repeat Protein OsPPR674 Regulates Rice Growth and Drought Sensitivity by Modulating RNA Editing of the Mitochondrial Transcript ccmC. Int. J. Mol. Sci. 2025, 26, 2646. https://doi.org/10.3390/ijms26062646.
References
- Isik, F. Genomic Prediction of Complex Traits in Perennial Plants: A Case for Forest Trees. In Genomic Prediction of Complex Traits; Methods in Molecular Biology; Humana: New York, NY, USA, 2022; Volume 2467, pp. 493–520. [Google Scholar] [CrossRef]
- Jadhav, Y.; Thakur, N.R.; Ingle, K.P.; Ceasar, S.A. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. Physiol. Plant. 2024, 176, e14349. [Google Scholar] [CrossRef]
- Jin, M.; Liu, H.; Liu, X.; Guo, T.; Guo, J.; Yin, Y.; Ji, Y.; Li, Z.; Zhang, J.; Wang, X.; et al. Complex genetic architecture underlying the plasticity of maize agronomic traits. Plant Commun. 2023, 4, 100473. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Complex plant responses to drought and heat stress under climate change. Plant J. 2024, 117, 1873–1892. [Google Scholar] [CrossRef]
- Deng, Y.; Ning, Y.; Yang, D.L.; Zhai, K.; Wang, G.L.; He, Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Mol. Plant 2020, 13, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, Y.; Shi, Y.; Qin, F.; Jiang, C.; Yang, S. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant 2023, 16, 1496–1517. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Cowling, W.; Pareek, A.; Gupta, K.J.; Singla-Pareek, S.L.; Foyer, C.H. Gaining Acceptance of Novel Plant Breeding Technologies. Trends Plant Sci. 2021, 26, 575–587. [Google Scholar] [CrossRef]
- Moore, V.M.; Peters, T.; Schlautman, B.; Brummer, E.C. Toward plant breeding for multicrop systems. Proc. Natl. Acad. Sci. USA 2023, 120, e2205792119. [Google Scholar] [CrossRef]
- Fiaz, S.; Uzair, M.; Zhang, B. Modern Plant Breeding for Achieving Global Food Security. Physiol. Plant. 2024, 176, e70014. [Google Scholar] [CrossRef]
- Purugganan, M.D.; Jackson, S.A. Advancing crop genomics from lab to field. Nat. Genet. 2021, 53, 595–601. [Google Scholar] [CrossRef]
- Qin, P.; Lu, H.; Du, H.; Wang, H.; Chen, W.; Chen, Z.; He, Q.; Ou, S.; Zhang, H.; Li, X. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 2021, 184, 3542–3558.e16. [Google Scholar] [CrossRef]
- Wei, L.; Du, H.; Li, X.; Fan, Y.; Qian, M.; Li, Y.; Wang, H.; Qu, C.; Qian, W.; Xu, X.; et al. Spatio-temporal transcriptome profiling and subgenome analysis in Brassica napus. Plant J. 2022, 111, 1123–1138. [Google Scholar] [CrossRef]
- Yang, Q.; Hou, Z.Y.; Li, L.; Wang, L.; Li, S.T.; Li, Y.; Zhang, X.; Huang, H.; Ke, Y.; Ma, X. Landscape and m(6)A post-transcriptional regulation of soybean proteome. Cell Genom. 2025, 100926. [Google Scholar] [CrossRef]
- Qu, C.; Zhu, M.; Hu, R.; Niu, Y.; Chen, S.; Zhao, H.; Li, C.; Wang, Z.; Yin, N.; Sun, F. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. Nat. Commun. 2023, 14, 5194. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Han, B.; Li, J. The integrated genomics of crop domestication and breeding. Cell 2022, 185, 2828–2839. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, G.; Liang, C.; Tian, Z. Omics-based interdisciplinarity is accelerating plant breeding. Curr. Opin. Plant Biol. 2022, 66, 102167. [Google Scholar] [CrossRef]
- Sharma, R.; Yang, C.J.; Rossi, N.; Irving, E.; Tuffin, A.; Aliki, H.; Powell, W.; Dawson, I.K. Integrating molecular genetics with plant breeding to deliver impact. Plant Physiol. 2025, 198, kiaf087. [Google Scholar] [CrossRef]
- Du, H.; Fang, C.; Li, Y.; Kong, F.; Liu, B. Understandings and future challenges in soybean functional genomics and molecular breeding. J. Integr. Plant Biol. 2023, 65, 468–495. [Google Scholar] [CrossRef]
- Maghuly, F.; Myśków, B.; Till, B.J. Functional Genomics for Plant Breeding. Int. J. Mol. Sci. 2021, 22, 11854. [Google Scholar] [CrossRef]
- Martínez-Gómez, P. Editorial for Special Issue “Plant Genetics and Molecular Breeding”. Int. J. Mol. Sci. 2019, 20, 2659. [Google Scholar] [CrossRef]
- Cortés, A.J.; Du, H. Molecular Genetics Enhances Plant Breeding. Int. J. Mol. Sci. 2023, 24, 9977. [Google Scholar] [CrossRef]
- Du, H. Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”. Int. J. Mol. Sci. 2025, 26, 2030. [Google Scholar] [CrossRef]
- Nybom, H.; Lācis, G. Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. Plants 2021, 10, 415. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Abd-Elhalim, H.M.; El Allali, A. A large-scale assessment of the quality of plant genome assemblies using the LTR assembly index. AoB Plants 2023, 15, plad015. [Google Scholar] [CrossRef]
- Zhan, C.; Shen, S.; Yang, C.; Liu, Z.; Fernie, A.R.; Graham, I.A.; Luo, J. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. 2022, 27, 981–1001. [Google Scholar] [CrossRef]
- Depuydt, T.; De Rybel, B.; Vandepoele, K. Charting plant gene functions in the multi-omics and single-cell era. Trends Plant Sci. 2023, 8, 283–296. [Google Scholar] [CrossRef]
- Li, L.; Ge, Z.; Liu, S.; Zheng, K.; Li, Y.; Chen, K.; Fu, Y.; Lei, X.; Cui, Z.; Wang, Y. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024, 386, eadl0799. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, C.; Xuan, W.; An, H.; Tian, Y.; Wang, B.; Chi, W.; Chen, G.; Ge, Y.; Li, J.; et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 2023, 14, 3550. [Google Scholar] [CrossRef]
- Farooq, M.A.; Gao, S.; Hassan, M.A.; Huang, Z.; Rasheed, A.; Hearne, S.; Prasanna, B.; Li, X.; Li, H. Artificial intelligence in plant breeding. Trends Genet. 2024, 40, 891–908. [Google Scholar] [CrossRef]
- Sun, L.; Lai, M.; Ghouri, F.; Nawaz, M.A.; Ali, F.; Baloch, F.S.; Nadeem, M.A.; Aasim, M.; Shahid, M.Q. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. Plants 2024, 13, 2676. [Google Scholar] [CrossRef]
- Mahmood, U.; Li, X.; Fan, Y.; Chang, W.; Niu, Y.; Li, J.; Qu, C.; Lu, K. Multi-omics revolution to promote plant breeding efficiency. Front. Plant Sci. 2022, 13, 1062952. [Google Scholar] [CrossRef] [PubMed]
- Bassi, F.M.; Sanchez-Garcia, M.; Ortiz, R. What plant breeding may (and may not) look like in 2050? Plant Genome 2024, 17, e20368. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, X. Machine learning bridges omics sciences and plant breeding. Trends Plant Sci. 2023, 28, 99–210. [Google Scholar] [CrossRef] [PubMed]
Contributions | Species | Purpose | Approaches |
---|---|---|---|
1 | Medicago sativa L. | Molecular markers linked to biomass yield | Genetics and genomics |
2 | Glycine max (L.) Merr. | Quantitative trait loci for node, pod or seed traits | Genetics and molecular biology |
3 | Brassica napus L. | Genes associated with cold stress | Genetics and transcriptomics |
4 | Brassica napus L. | Potassium utilization genes | Bioinformatics, transcriptomics and molecular biology |
5 | Oryza sativa | Gene regulates plant growth and drought | Bioinformatics and molecular biology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H. Special Issue: “Molecular Genetics and Plant Breeding, 5th Edition”. Int. J. Mol. Sci. 2025, 26, 8439. https://doi.org/10.3390/ijms26178439
Du H. Special Issue: “Molecular Genetics and Plant Breeding, 5th Edition”. International Journal of Molecular Sciences. 2025; 26(17):8439. https://doi.org/10.3390/ijms26178439
Chicago/Turabian StyleDu, Hai. 2025. "Special Issue: “Molecular Genetics and Plant Breeding, 5th Edition”" International Journal of Molecular Sciences 26, no. 17: 8439. https://doi.org/10.3390/ijms26178439
APA StyleDu, H. (2025). Special Issue: “Molecular Genetics and Plant Breeding, 5th Edition”. International Journal of Molecular Sciences, 26(17), 8439. https://doi.org/10.3390/ijms26178439