Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network
Abstract
1. Introduction
2. Results
2.1. Annotation of miRNA Genes in the SL4.0 Genome
2.2. Tomato miRNAs Are Regulated in an Organ- and Time-Dependent Manner in Response to Sulfate Deficiency
2.3. Analysis of Regulatory Elements in miRNA Promoters Shows Enrichment of TF Families Involved in Plant Responses to Stress
2.4. Organ-Specific Targets of Sulfate-Responsive miRNAs Reveal Distinct Regulatory Programs in Leaves and Roots
2.5. Cross-Species Comparison Reveals Broader miRNA Regulatory Functions in Tomato
3. Discussion
3.1. An Updated Annotation of miRNAs on the SL4.0 Genome
3.2. miRNA Responses to Sulfate Deficiency Are Organ- and Time-Specific and Integrate Crosstalks with Other Nutrients, Development, and Stress Responses
3.3. Expanded Functional Roles and Targets of Sulfate-Responsive miRNAs in Tomato
4. Materials and Methods
4.1. miRNA Annotation in the SL4.0 Genome Assembly
4.2. Plant Material and Growth Conditions
4.3. Plant Growth and Sulfate Content Analysis
4.4. sRNA Library Preparation and Sequencing
4.5. sRNA-Seq Read Alignment and Differential Expression Analysis
4.6. RNA-Seq Read Alignment and Differential Expression Analysis
4.7. Degradome-Seq Analysis
4.8. RT-qPCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maruyama-Nakashita, A. Metabolic Changes Sustain the Plant Life in Low-Sulfur Environments. Curr. Opin. Plant Biol. 2017, 39, 144–151. [Google Scholar] [CrossRef]
- Scherer, W. Sulfur in Soils. Z. Pflanzenernährung Bodenkd. 2009, 172, 326–335. [Google Scholar] [CrossRef]
- Takahashi, H. Sulfate Transport Systems in Plants: Functional Diversity and Molecular Mechanisms Underlying Regulatory Coordination. J. Exp. Bot. 2019, 70, 4075–4087. [Google Scholar] [CrossRef]
- Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes. Annu. Rev. Plant Biol. 2011, 62, 157–184. [Google Scholar] [CrossRef]
- Hinckley, E.-L.S.; Driscoll, C.T. Sulfur Fertiliser Use in the Midwestern US Increases as Atmospheric Sulfur Deposition Declines with Improved Air Quality. Commun. Earth Environ. 2022, 3, 324. [Google Scholar] [CrossRef]
- Aarabi, F.; Naake, T.; Fernie, A.R.; Hoefgen, R. Coordinating Sulfur Pools under Sulfate Deprivation. Trends Plant Sci. 2020, 25, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2022, 18, 2030082. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Hoefgen, R. Sulphur Systems Biology—Making Sense of Omics Data. J. Exp. Bot. 2019, 70, 4155–4170. [Google Scholar] [CrossRef]
- Fernández, J.D.; Miño, I.; Canales, J.; Vidal, E.A. Gene Regulatory Networks Underlying Sulfate Deficiency Responses in Plants. J. Exp. Bot. 2024, 75, 2781–2798. [Google Scholar] [CrossRef]
- Maruyama-Nakashita, A.; Inoue, E.; Watanabe-Takahashi, A.; Yamaya, T.; Takahashi, H. Transcriptome Profiling of Sulfur-Responsive Genes in Arabidopsis Reveals Global Effects of Sulfur Nutrition on Multiple Metabolic Pathways. Plant Physiol. 2003, 132, 597–605. [Google Scholar] [CrossRef]
- Bielecka, M.; Watanabe, M.; Morcuende, R.; Scheible, W.-R.; Hawkesford, M.J.; Hesse, H.; Hoefgen, R. Transcriptome and Metabolome Analysis of Plant Sulfate Starvation and Resupply Provides Novel Information on Transcriptional Regulation of Metabolism Associated with Sulfur, Nitrogen and Phosphorus Nutritional Responses in Arabidopsis. Front. Plant Sci. 2015, 5, 805. [Google Scholar] [CrossRef]
- Henríquez-Valencia, C.; Arenas-M, A.; Medina, J.; Canales, J. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 470. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhou, Y.; Liu, H.; Sun, S.; Liu, Z.; Liu, Y.; Yang, J.; Hu, M.; Guan, L.; Sun, X. Regulation of Nitrogen Metabolism by COE2 under Low Sulfur Stress in Arabidopsis. Plant Sci. 2024, 346, 112137. [Google Scholar] [CrossRef] [PubMed]
- Maruyama-Nakashita, A.; Nakamura, Y.; Tohge, T.; Saito, K.; Takahashi, H. Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. Plant Cell 2006, 18, 3235–3251. [Google Scholar] [CrossRef] [PubMed]
- Dietzen, C.; Koprivova, A.; Whitcomb, S.J.; Langen, G.; Jobe, T.O.; Hoefgen, R.; Kopriva, S. The Transcription Factor EIL1 Participates in the Regulation of Sulfur-Deficiency Response. Plant Physiol. 2020, 184, 2120–2136. [Google Scholar] [CrossRef] [PubMed]
- Apodiakou, A.; Alseekh, S.; Hoefgen, R.; Whitcomb, S.J. Overexpression of SLIM1 Transcription Factor Accelerates Vegetative Development in Arabidopsis thaliana. Front. Plant Sci. 2024, 15, 1327152. [Google Scholar] [CrossRef]
- Gigolashvili, T.; Berger, B.; Mock, H.-P.; Müller, C.; Weisshaar, B.; Flügge, U.-I. The Transcription Factor HIG1/MYB51 Regulates Indolic Glucosinolate Biosynthesis in Arabidopsis thaliana: HIG1 and Glucosinolate Biosynthesis. Plant J. 2007, 50, 886–901. [Google Scholar] [CrossRef]
- Aarabi, F.; Kusajima, M.; Tohge, T.; Konishi, T.; Gigolashvili, T.; Takamune, M.; Sasazaki, Y.; Watanabe, M.; Nakashita, H.; Fernie, A.R.; et al. Sulfur Deficiency–Induced Repressor Proteins Optimize Glucosinolate Biosynthesis in Plants. Sci. Adv. 2016, 2, e1601087. [Google Scholar] [CrossRef]
- Aarabi, F.; Rakpenthai, A.; Barahimipour, R.; Gorka, M.; Alseekh, S.; Zhang, Y.; Salem, M.A.; Brückner, F.; Omranian, N.; Watanabe, M.; et al. Sulfur Deficiency-Induced Genes Affect Seed Protein Accumulation and Composition under Sulfate Deprivation. Plant Physiol. 2021, 187, 2419–2434. [Google Scholar] [CrossRef]
- Kawashima, C.G.; Yoshimoto, N.; Maruyama-Nakashita, A.; Tsuchiya, Y.N.; Saito, K.; Takahashi, H.; Dalmay, T. Sulphur Starvation Induces the Expression of microRNA-395 and One of Its Target Genes but in Different Cell Types. Plant J. 2009, 57, 313–321. [Google Scholar] [CrossRef]
- Kawashima, C.G.; Matthewman, C.A.; Huang, S.; Lee, B.-R.; Yoshimoto, N.; Koprivova, A.; Rubio-Somoza, I.; Todesco, M.; Rathjen, T.; Saito, K.; et al. Interplay of SLIM1 and miR395 in the Regulation of Sulfate Assimilation in Arabidopsis: miR395 in the Control of S Assimilation. Plant J. 2011, 66, 863–876. [Google Scholar] [CrossRef]
- Liang, G.; Yang, F.; Yu, D. MicroRNA395 Mediates Regulation of Sulfate Accumulation and Allocation in Arabidopsis thaliana: miRNA395 and Sulfate Homeostasis. Plant J. 2010, 62, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q.; Xiang, A.L.; Che, L.L.; Chen, S.; Li, H.; Song, J.B.; Yang, Z.M. A Set of miRNAs from Brassica napus in Response to Sulphate Deficiency and Cadmium Stress: S Deficiency- and Cd-Regulated miRNAs from B. napus. Plant Biotechnol. J. 2010, 8, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hui, S.; Lv, Y.; Zhang, M.; Chen, D.; Tian, J.; Zhang, H.; Liu, H.; Cao, J.; Xie, W.; et al. miR395-Regulated Sulfate Metabolism Exploits Pathogen Sensitivity to Sulfate to Boost Immunity in Rice. Mol. Plant 2022, 15, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, Y.; Jagadeeswaran, G.; Li, Y.; Gowdu, K.; Sunkar, R. Identification and Temporal Expression Analysis of Conserved and Novel microRNAs in Sorghum. Genomics 2011, 98, 460–468. [Google Scholar] [CrossRef]
- Jagadeeswaran, G.; Zheng, Y.; Li, Y.; Shukla, L.I.; Matts, J.; Hoyt, P.; Macmil, S.L.; Wiley, G.B.; Roe, B.A.; Zhang, W.; et al. Cloning and Characterization of Small RNAs from Medicago truncatula Reveals Four Novel Legume-specific microRNA Families. New Phytol. 2009, 184, 85–98. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Arazi, T.; Khedia, J. Tomato MicroRNAs and Their Functions. Int. J. Mol. Sci. 2022, 23, 11979. [Google Scholar] [CrossRef]
- Barciszewska-Pacak, M.; Milanowska, K.; Knop, K.; Bielewicz, D.; Nuc, P.; Plewka, P.; Pacak, A.M.; Vazquez, F.; Karlowski, W.; Jarmolowski, A.; et al. Arabidopsis microRNA Expression Regulation in a Wide Range of Abiotic Stress Responses. Front. Plant Sci. 2015, 6, 410. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Crops and Livestock Products. 2023. Available online: https://www.fao.org/faostat/En/#data/QC (accessed on 21 August 2025).
- Kimura, S.; Sinha, N. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb. Protoc. 2008, 2008, pdb.emo105. [Google Scholar] [CrossRef]
- Gupta, P.; Dhar, H.; Sharma, Y.P.; Jaglan, S. Tomato as a Model Plant to Understand Plant–Microbial Interactions. In Biotechnological Advances for Disease Tolerance in Plants; Singh, K., Kaur, R., Deshmukh, R., Eds.; Springer Nature: Singapore, 2024; pp. 317–335. ISBN 978-981-9988-73-0. [Google Scholar]
- Eaton, S.V. Effects of Sulfur Deficiency on Growth and Metabolism of Tomato. Bot. Gaz. 1951, 112, 300–307. [Google Scholar] [CrossRef]
- Lopez, J.; Tremblay, N.; Voogt, W.; Dubé, S.; Gosselin, A. Effects of Varying Sulfate Concentrations on Growth, Physiology and Yield of the Greenhouse Tomato. Sci. Hortic. 1996, 67, 207–217. [Google Scholar] [CrossRef]
- Xu, H.L.; Lopez, J.; Rachii, F.; Tremblay, N.; Gauthier, L.; Desjardins, Y.; Gosselin, A. Effect of Sulphate on Photosynthesis in Greenhouse–Grown Tomato Plants. Physiol. Plant. 1996, 96, 722–726. [Google Scholar] [CrossRef]
- Alhendawi, R.A.; Kirkby, E.A.; Pilbeam, D.J. Evidence That Sulfur Deficiency Enhances Molybdenum Transport in Xylem Sap of Tomato Plants. J. Plant Nutr. 2005, 28, 1347–1353. [Google Scholar] [CrossRef]
- Zuchi, S.; Cesco, S.; Varanini, Z.; Pinton, R.; Astolfi, S. Sulphur Deprivation Limits Fe-Deficiency Responses in Tomato Plants. Planta 2009, 230, 85–94. [Google Scholar] [CrossRef]
- Zuchi, S.; Watanabe, M.; Hubberten, H.-M.; Bromke, M.; Osorio, S.; Fernie, A.R.; Celletti, S.; Paolacci, A.R.; Catarcione, G.; Ciaffi, M.; et al. The Interplay between Sulfur and Iron Nutrition in Tomato. Plant Physiol. 2015, 169, 2624–2639. [Google Scholar] [CrossRef]
- Hasan, M.K.; Liu, C.-X.; Pan, Y.-T.; Ahammed, G.J.; Qi, Z.-Y.; Zhou, J. Melatonin Alleviates Low-Sulfur Stress by Promoting Sulfur Homeostasis in Tomato Plants. Sci. Rep. 2018, 8, 10182. [Google Scholar] [CrossRef]
- Canales, J.; Uribe, F.; Henríquez-Valencia, C.; Lovazzano, C.; Medina, J.; Vidal, E.A. Transcriptomic Analysis at Organ and Time Scale Reveals Gene Regulatory Networks Controlling the Sulfate Starvation Response of Solanum lycopersicum. BMC Plant Biol. 2020, 20, 385. [Google Scholar] [CrossRef]
- Coppa, E.; Vigani, G.; Aref, R.; Savatin, D.; Bigini, V.; Hell, R.; Astolfi, S. Differential Modulation of Target of Rapamycin Activity under Single and Combined Iron and Sulfur Deficiency in Tomato Plants. Plant J. 2023, 115, 127–138. [Google Scholar] [CrossRef]
- Chen, S.; Han, J.; Wu, S.; Guo, S.; Tang, Y.; Zheng, Y.; Hu, L.; Zhang, X.; Zhang, P.; Zhang, H.; et al. From Non-Coding RNAs to Histone Modification: The Epigenetic Mechanisms in Tomato Fruit Ripening and Quality Regulation. Plant Physiol. Biochem. 2024, 215, 109070. [Google Scholar] [CrossRef]
- Narayanan, M. Fruits Ripening and Maturity: Role of Non-Coding RNA. In Non-Coding RNA in Plants; Elsevier: Amsterdam, The Netherlands, 2025; pp. 249–264. ISBN 978-0-443-21784-5. [Google Scholar]
- Li, Q.; Shen, H.; Yuan, S.; Dai, X.; Yang, C. miRNAs and lncRNAs in Tomato: Roles in Biotic and Abiotic Stress Responses. Front. Plant Sci. 2023, 13, 1094459. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Liu, J.; Zhang, H.; Wang, T. The Regulatory Roles of Plant miRNAs in Biotic Stress Responses. Biochem. Biophys. Res. Commun. 2025, 755, 151568. [Google Scholar] [CrossRef]
- Lunardon, A.; Johnson, N.R.; Hagerott, E.; Phifer, T.; Polydore, S.; Coruh, C.; Axtell, M.J. Integrated Annotations and Analyses of Small RNA–Producing Loci from 47 Diverse Plants. Genome Res. 2020, 30, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Baldrich, P.; Bélanger, S.; Kong, S.; Pokhrel, S.; Tamim, S.; Teng, C.; Schiebout, C.; Gurazada, S.G.R.; Gupta, P.; Patel, P.; et al. The Evolutionary History of Small RNAs in Solanaceae. Plant Physiol. 2022, 189, 644–665. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, T.C.D.S.; Alves, T.C.; Caneschi, C.M.; Santana, D.D.R.G.; Fernandes-Brum, C.N.; Reis, G.L.D.; Daude, M.M.; Ribeiro, T.H.C.; Gómez, M.M.D.; Lima, A.A.; et al. New Insights into Tomato microRNAs. Sci. Rep. 2018, 8, 16069. [Google Scholar] [CrossRef]
- Guo, Z.; Kuang, Z.; Wang, Y.; Zhao, Y.; Tao, Y.; Cheng, C.; Yang, J.; Lu, X.; Hao, C.; Wang, T.; et al. PmiREN: A Comprehensive Encyclopedia of Plant miRNAs. Nucleic Acids Res. 2020, 48, D1114–D1121. [Google Scholar] [CrossRef]
- Fernandez-Pozo, N.; Menda, N.; Edwards, J.D.; Saha, S.; Tecle, I.Y.; Strickler, S.R.; Bombarely, A.; Fisher-York, T.; Pujar, A.; Foerster, H.; et al. The Sol Genomics Network (SGN)—From Genotype to Phenotype to Breeding. Nucleic Acids Res. 2015, 43, D1036–D1041. [Google Scholar] [CrossRef] [PubMed]
- Alonge, M.; Wang, X.; Benoit, M.; Soyk, S.; Pereira, L.; Zhang, L.; Suresh, H.; Ramakrishnan, S.; Maumus, F.; Ciren, D.; et al. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020, 182, 145–161.e23. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Jiao, C.; Stravoravdis, S.; Hosmani, P.S.; Saha, S.; Zhang, J.; Mainiero, S.; Strickler, S.R.; Catala, C.; et al. Genome of Solanum pimpinellifolium Provides Insights into Structural Variants during Tomato Breeding. Nat. Commun. 2020, 11, 5817. [Google Scholar] [CrossRef]
- Takei, H.; Shirasawa, K.; Kuwabara, K.; Toyoda, A.; Matsuzawa, Y.; Iioka, S.; Ariizumi, T. De Novo Genome Assembly of Two Tomato Ancestors, Solanum pimpinellifolium and Solanum lycopersicum Var. Cerasiforme, by Long-Read Sequencing. DNA Res. 2021, 28, dsaa029. [Google Scholar] [CrossRef]
- Powell, A.F.; Feder, A.; Li, J.; Schmidt, M.H.-W.; Courtney, L.; Alseekh, S.; Jobson, E.M.; Vogel, A.; Xu, Y.; Lyon, D.; et al. A Solanum lycopersicoides Reference Genome Facilitates Insights into Tomato Specialized Metabolism and Immunity. Plant J. 2022, 110, 1791–1810. [Google Scholar] [CrossRef]
- Nagasaki, H.; Shirasawa, K.; Hoshikawa, K.; Isobe, S.; Ezura, H.; Aoki, K.; Hirakawa, H. Genomic Variation across Distribution of Micro-Tom, a Model Cultivar of Tomato (Solanum lycopersicum). DNA Res. 2024, 31, dsae016. [Google Scholar] [CrossRef]
- Shirasawa, K.; Ariizumi, T. Near-Complete Genome Assembly of Tomato (Solanum lycopersicum) Cultivar Micro-Tom. Plant Biotechnol. 2024, 41, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J. ShortStack: Comprehensive Annotation and Quantification of Small RNA Genes. RNA 2013, 19, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.R.; Yeoh, J.M.; Coruh, C.; Axtell, M.J. Improved Placement of Multi-Mapping Small RNAs. G3 Genes|Genomes|Genet. 2016, 6, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Cui, J.; Wang, H.; Qi, X.; Kuo, L.-Y.; Ma, H.; Gao, L.; Mo, B.; Chen, X. Conservation and Divergence of Small RNA Pathways and microRNAs in Land Plants. Genome Biol. 2017, 18, 158. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, S.; Hernandez, A.G.; Wechter, W.P.; Fei, Z.; Ling, K.-S. Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation. PLoS ONE 2012, 7, e37127. [Google Scholar] [CrossRef]
- Romero-Rodríguez, B.; Petek, M.; Jiao, C.; Križnik, M.; Zagorščak, M.; Fei, Z.; Bejarano, E.R.; Gruden, K.; Castillo, A.G. Transcriptional and Epigenetic Changes during Tomato Yellow Leaf Curl Virus Infection in Tomato. BMC Plant Biol. 2023, 23, 651. [Google Scholar] [CrossRef]
- Huang, Y.; Kendall, T.; Mosher, R. Pol IV-Dependent siRNA Production Is Reduced in Brassica rapa. Biology 2013, 2, 1210–1223. [Google Scholar] [CrossRef]
- Jin, W.; Wu, F. Characterization of miRNAs Associated with Botrytis cinerea Infection of Tomato Leaves. BMC Plant Biol. 2015, 15, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Hardcastle, T.J.; Canto Pastor, A.; Yip, W.H.; Tang, S.; Baulcombe, D.C. A Novel DCL2-Dependent miRNA Pathway in Tomato Affects Susceptibility to RNA Viruses. Genes Dev. 2018, 32, 1155–1160. [Google Scholar] [CrossRef]
- Dong, F.; Wang, C.; Dong, Y.; Hao, S.; Wang, L.; Sun, X.; Liu, S. Differential Expression of microRNAs in Tomato Leaves Treated with Different Light Qualities. BMC Genom. 2020, 21, 37. [Google Scholar] [CrossRef]
- Islam, W.; Tauqeer, A.; Waheed, A.; Zeng, F. MicroRNA Mediated Plant Responses to Nutrient Stress. Int. J. Mol. Sci. 2022, 23, 2562. [Google Scholar] [CrossRef] [PubMed]
- Berger, Y.; Harpaz-Saad, S.; Brand, A.; Melnik, H.; Sirding, N.; Alvarez, J.P.; Zinder, M.; Samach, A.; Eshed, Y.; Ori, N. The NAC-Domain Transcription Factor GOBLET Specifies Leaflet Boundaries in Compound Tomato Leaves. Development 2009, 136, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Hendelman, A.; Stav, R.; Zemach, H.; Arazi, T. The Tomato NAC Transcription Factor SlNAM2 Is Involved in Flower-Boundary Morphogenesis. J. Exp. Bot. 2013, 64, 5497–5507. [Google Scholar] [CrossRef] [PubMed]
- Rosas Cárdenas, F.; Ruiz Suárez, Y.; Cano Rangel, R.; Luna Garcia, V.; González Aguilera, K.; Marsch Martínez, N.; De Folter, S. Effect of Constitutive miR164 Expression on Plant Morphology and Fruit Development in Arabidopsis and Tomato. Agronomy 2017, 7, 48. [Google Scholar] [CrossRef]
- Gupta, S.K.; Vishwakarma, A.; Kenea, H.D.; Galsurker, O.; Cohen, H.; Aharoni, A.; Arazi, T. CRISPR/Cas9 Mutants of Tomato MICRORNA164 Genes Uncover Their Functional Specialization in Development. Plant Physiol. 2021, 187, 1636–1652. [Google Scholar] [CrossRef]
- Dong, Y.; Tang, M.; Huang, Z.; Song, J.; Xu, J.; Ahammed, G.J.; Yu, J.; Zhou, Y. The miR164a-NAM3 Module Confers Cold Tolerance by Inducing Ethylene Production in Tomato. Plant J. 2022, 111, 440–456. [Google Scholar] [CrossRef]
- Lin, D.; Zhu, X.; Qi, B.; Gao, Z.; Tian, P.; Li, Z.; Lin, Z.; Zhang, Y.; Huang, T. SlMIR164A Regulates Fruit Ripening and Quality by Controlling SlNAM2 and SlNAM3 in Tomato. Plant Biotechnol. J. 2022, 20, 1456–1469. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Duan, W.; Meng, L.; Li, J.; Song, H.; Xu, X. Overexpression of Sly-miR164a in Tomato Decreases Expression of NAC and Delays Pre- and Postharvest Ripening of Fruit. Postharvest Biol. Technol. 2023, 195, 112132. [Google Scholar] [CrossRef]
- Madhawan, A.; Bhunia, R.K.; Kumar, P.; Sharma, V.; Sinha, K.; Fandade, V.; Rahim, M.S.; Parveen, A.; Mishra, A.; Roy, J. Interaction between Long Noncoding RNA (Lnc663) and microRNA (miR1128) Regulates PDAT-like Gene Activity in Bread Wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2023, 203, 108040. [Google Scholar] [CrossRef]
- Wang, Y.; Itaya, A.; Zhong, X.; Wu, Y.; Zhang, J.; Van Der Knaap, E.; Olmstead, R.; Qi, Y.; Ding, B. Function and Evolution of a MicroRNA That Regulates a Ca2+-ATPase and Triggers the Formation of Phased Small Interfering RNAs in Tomato Reproductive Growth. Plant Cell 2011, 23, 3185–3203. [Google Scholar] [CrossRef]
- Xia, R.; Meyers, B.C.; Liu, Z.; Beers, E.P.; Ye, S.; Liu, Z. MicroRNA Superfamilies Descended from miR390 and Their Roles in Secondary Small Interfering RNA Biogenesis in Eudicots. Plant Cell 2013, 25, 1555–1572. [Google Scholar] [CrossRef]
- Liu, G.; Liu, F.; Zhang, D.; Zhao, T.; Yang, H.; Jiang, J.; Li, J.; Zhang, H.; Xu, X. Integrating Omics Reveals That miRNA-Guided Genetic Regulation on Plant Hormone Level and Defense Response Pathways Shape Resistance to Cladosporium Fulvum in the Tomato Cf-10-Gene-Carrying Line. Front. Genet. 2023, 14, 1158631. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Hu, B.; Zhang, C. microRNAs and Their Roles in Plant Development. Front. Plant Sci. 2022, 13, 824240. [Google Scholar] [CrossRef] [PubMed]
- McLeay, R.C.; Bailey, T.L. Motif Enrichment Analysis: A Unified Framework and an Evaluation on ChIP Data. BMC Bioinform. 2010, 11, 165. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Maher, K.A.; Bajic, M.; Kajala, K.; Reynoso, M.; Pauluzzi, G.; West, D.A.; Zumstein, K.; Woodhouse, M.; Bubb, K.; Dorrity, M.W.; et al. Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. Plant Cell 2018, 30, 15–36. [Google Scholar] [CrossRef]
- Javed, T.; Shabbir, R.; Ali, A.; Afzal, I.; Zaheer, U.; Gao, S.-J. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. Plants 2020, 9, 491. [Google Scholar] [CrossRef]
- Bhoite, R.; Onyemaobi, O.; Halder, T.; Shankar, M.; Sharma, D. Transcription Factors—Insights into Abiotic and Biotic Stress Resilience and Crop Improvement. Curr. Plant Biol. 2025, 41, 100434. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Ai, Q.; Yu, D. Uncovering miRNAs Involved in Crosstalk between Nutrient Deficiencies in Arabidopsis. Sci. Rep. 2015, 5, 11813. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.; Zhang, S.; Liang, S.; Luan, W.; Ma, X. TarDB: An Online Database for Plant miRNA Targets and miRNA-Triggered Phased siRNAs. BMC Genom. 2021, 22, 348. [Google Scholar] [CrossRef] [PubMed]
- Iqrar, S.; Ashrafi, K.; Khan, S.; Saifi, M.; Nasrullah, N.; Abdin, M.Z. Set of miRNAs Involved in Sulfur Uptake and the Assimilation Pathway of Indian Mustard (B. Juncea) in Response to Sulfur Treatments. ACS Omega 2022, 7, 13228–13242. [Google Scholar] [CrossRef]
- Hsieh, L.-C.; Lin, S.-I.; Shih, A.C.-C.; Chen, J.-W.; Lin, W.-Y.; Tseng, C.-Y.; Li, W.-H.; Chiou, T.-J. Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiol. 2009, 151, 2120–2132. [Google Scholar] [CrossRef]
- Lundmark, M.; Kørner, C.J.; Nielsen, T.H. Global Analysis of microRNA in Arabidopsis in Response to Phosphate Starvation as Studied by Locked Nucleic Acid-Based Microarrays. Physiol. Plant. 2010, 140, 57–68. [Google Scholar] [CrossRef]
- Pant, B.D.; Musialak-Lange, M.; Nuc, P.; May, P.; Buhtz, A.; Kehr, J.; Walther, D.; Scheible, W.-R. Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing. Plant Physiol. 2009, 150, 1541–1555. [Google Scholar] [CrossRef]
- Rouached, H.; Secco, D.; Arpat, B.; Poirier, Y. The Transcription Factor PHR1 Plays a Key Role in the Regulation of Sulfate Shoot-to-Root Flux upon Phosphate Starvation in Arabidopsis. BMC Plant Biol. 2011, 11, 19. [Google Scholar] [CrossRef]
- Yamasaki, H.; Hayashi, M.; Fukazawa, M.; Kobayashi, Y.; Shikanai, T. SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell 2009, 21, 347–361. [Google Scholar] [CrossRef]
- Yamasaki, H.; Abdel-Ghany, S.E.; Cohu, C.M.; Kobayashi, Y.; Shikanai, T.; Pilon, M. Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. J. Biol. Chem. 2007, 282, 16369–16378. [Google Scholar] [CrossRef]
- Zhao, M.; Ding, H.; Zhu, J.-K.; Zhang, F.; Li, W.-X. Involvement of miR169 in the Nitrogen-Starvation Responses in Arabidopsis. New Phytol. 2011, 190, 906–915. [Google Scholar] [CrossRef]
- Li, W.-X.; Oono, Y.; Zhu, J.; He, X.-J.; Wu, J.-M.; Iida, K.; Lu, X.-Y.; Cui, X.; Jin, H.; Zhu, J.-K. The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance. Plant Cell 2008, 20, 2238–2251. [Google Scholar] [CrossRef]
- Zhao, B.; Ge, L.; Liang, R.; Li, W.; Ruan, K.; Lin, H.; Jin, Y. Members of miR-169 Family Are Induced by High Salinity and Transiently Inhibit the NF-YA Transcription Factor. BMC Mol. Biol. 2009, 10, 29. [Google Scholar] [CrossRef]
- Kang, H.; Singh, K.B. Characterization of Salicylic Acid-responsive, Arabidopsis Dof Domain Proteins: Overexpression of OBP3 Leads to Growth Defects. Plant J. 2000, 21, 329–339. [Google Scholar] [CrossRef]
- Ward, J.M.; Cufr, C.A.; Denzel, M.A.; Neff, M.M. The Dof Transcription Factor OBP3 Modulates Phytochrome and Cryptochrome Signaling in Arabidopsis. Plant Cell 2005, 17, 475–485. [Google Scholar] [CrossRef]
- Skirycz, A.; Radziejwoski, A.; Busch, W.; Hannah, M.A.; Czeszejko, J.; Kwaśniewski, M.; Zanor, M.; Lohmann, J.U.; De Veylder, L.; Witt, I.; et al. The DOF Transcription Factor OBP1 Is Involved in Cell Cycle Regulation in Arabidopsis thaliana. Plant J. 2008, 56, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Fornara, F.; Panigrahi, K.C.S.; Gissot, L.; Sauerbrunn, N.; Rühl, M.; Jarillo, J.A.; Coupland, G. Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Dev. Cell 2009, 17, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Corrales, A.-R.; Nebauer, S.G.; Carrillo, L.; Fernández-Nohales, P.; Marqués, J.; Renau-Morata, B.; Granell, A.; Pollmann, S.; Vicente-Carbajosa, J.; Molina, R.-V.; et al. Characterization of Tomato Cycling Dof Factors Reveals Conserved and New Functions in the Control of Flowering Time and Abiotic Stress Responses. J. Exp. Bot. 2014, 65, 995–1012. [Google Scholar] [CrossRef]
- Corrales, A.; Carrillo, L.; Lasierra, P.; Nebauer, S.G.; Dominguez-Figueroa, J.; Renau-Morata, B.; Pollmann, S.; Granell, A.; Molina, R.; Vicente-Carbajosa, J.; et al. Multifaceted Role of Cycling DOF Factor 3 (CDF3) in the Regulation of Flowering Time and Abiotic Stress Responses in Arabidopsis. Plant Cell Environ. 2017, 40, 748–764. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, H.; Ying, L.; Cai, W. AtDOF5.4/OBP4, a DOF Transcription Factor Gene That Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana. Sci. Rep. 2016, 6, 27705. [Google Scholar] [CrossRef]
- Henriques, R.; Wang, H.; Liu, J.; Boix, M.; Huang, L.; Chua, N. The Antiphasic Regulatory Module Comprising CDF5 and Its Antisense RNA FLORE Links the Circadian Clock to Photoperiodic Flowering. New Phytol. 2017, 216, 854–867. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Molina, R.V.; Carrillo, L.; Cebolla-Cornejo, J.; Sánchez-Perales, M.; Pollmann, S.; Domínguez-Figueroa, J.; Corrales, A.R.; Flexas, J.; Vicente-Carbajosa, J.; et al. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Front. Plant Sci. 2017, 8, 660. [Google Scholar] [CrossRef]
- Martín, G.; Veciana, N.; Boix, M.; Rovira, A.; Henriques, R.; Monte, E. The Photoperiodic Response of Hypocotyl Elongation Involves Regulation of CDF1 and CDF5 Activity. Physiol. Plant. 2020, 169, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, H.; Fang, M.; Lin, S.; Zhu, M.; Li, Y.; Jiang, L.; Cui, T.; Cui, Y.; Kui, H.; et al. The Dof Transcription Factor COG1 Acts as a Key Regulator of Plant Biomass by Promoting Photosynthesis and Starch Accumulation. Mol. Plant 2023, 16, 1759–1772. [Google Scholar] [CrossRef]
- Gentile, D.; Serino, G.; Frugis, G. CRF Transcription Factors in the Trade-off between Abiotic Stress Response and Plant Developmental Processes. Front. Genet. 2024, 15, 1377204. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.K.; Gupta, K.; Lopato, S.; Agarwal, P. Dehydration Responsive Element Binding Transcription Factors and Their Applications for the Engineering of Stress Tolerance. J. Exp. Bot. 2017, 68, 2135–2148. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Mu, R.; Cao, W.; Zhang, Z.; Zhang, J.; Chen, S. AtNAC2, a Transcription Factor Downstream of Ethylene and Auxin Signaling Pathways, Is Involved in Salt Stress Response and Lateral Root Development. Plant J. 2005, 44, 903–916. [Google Scholar] [CrossRef]
- Hasson, A.; Plessis, A.; Blein, T.; Adroher, B.; Grigg, S.; Tsiantis, M.; Boudaoud, A.; Damerval, C.; Laufs, P. Evolution and Diverse Roles of the CUP-SHAPED COTYLEDON Genes in Arabidopsis Leaf Development. Plant Cell 2011, 23, 54–68. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.-S.; Kim, S.-G.; Jung, J.-H.; Woo, J.-C.; Park, C.-M. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis. Plant Physiol. 2011, 156, 537–549. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, H.; Qian, X.; Li, A.; Zhao, G.; Jing, R. TaNAC2, a NAC-Type Wheat Transcription Factor Conferring Enhanced Multiple Abiotic Stress Tolerances in Arabidopsis. J. Exp. Bot. 2012, 63, 2933–2946. [Google Scholar] [CrossRef]
- Yang, F.; Ding, L.; Zhao, D.; Fan, H.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y.; Chen, L. Identification and Functional Analysis of Tomato MicroRNAs in the Biocontrol Bacterium Pseudomonas putida Induced Plant Resistance to Meloidogyne incognita. Phytopathology 2022, 112, 2372–2382. [Google Scholar] [CrossRef]
- Olmo, R.; Quijada, N.M.; Morán-Diez, M.E.; Hermosa, R.; Monte, E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int. J. Mol. Sci. 2024, 25, 1617. [Google Scholar] [CrossRef]
- Sarkar, D.; Maji, R.K.; Dey, S.; Sarkar, A.; Ghosh, Z.; Kundu, P. Integrated miRNA and mRNA Expression Profiling Reveals the Response Regulators of a Susceptible Tomato Cultivar to Early Blight Disease. DNA Res. 2017, 24, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Aydinoglu, F. Elucidating the Regulatory Roles of microRNAs in Maize (Zea mays L.) Leaf Growth Response to Chilling Stress. Planta 2020, 251, 38. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.A.; Araus, V.; Lu, C.; Parry, G.; Green, P.J.; Coruzzi, G.M.; Gutiérrez, R.A. Nitrate-Responsive miR393/ AFB3 Regulatory Module Controls Root System Architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2010, 107, 4477–4482. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, S.; Zaman, S.; Anwar, A. CLC Gene Family in Solanum lycopersicum: Genome-Wide Identification, Expression, and Evolutionary Analysis of Tomato in Response to Salinity and Cd Stress. Front. Plant Sci. 2025, 16, 1547723. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Wang, C.; Ni, Y.; Liu, X. The Role of Chloride Channels in Plant Responses to NaCl. Int. J. Mol. Sci. 2023, 25, 19. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Zhang, Y.; Wu, C.; Wang, S.; Hao, L.; Wang, S.; Li, T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. Front. Plant Sci. 2017, 8, 526. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yoshimoto, N.; Inoue, E.; Watanabe-Takahashi, A.; Saito, K.; Takahashi, H. Posttranscriptional Regulation of High-Affinity Sulfate Transporters in Arabidopsis by Sulfur Nutrition. Plant Physiol. 2007, 145, 378–388. [Google Scholar] [CrossRef]
- Hirai, M.Y.; Fujiwara, T.; Chino, M.; Naito, S. Effects of Sulfate Concentrations on the Expression of a Soybean Seed Storage Protein Gene and Its Reversibility in Transgenic Arabidopsis thaliana. Plant Cell Physiol. 1995, 36, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, M.A.; Bremner, J.M. A Simple Turbidimetric Method of Determining Total Sulfur in Plant Materials. Agron. J. 1970, 62, 805–806. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The R Package Rsubread Is Easier, Faster, Cheaper and Better for Alignment and Quantification of RNA Sequencing Reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- Addo-Quaye, C.; Miller, W.; Axtell, M.J. CleaveLand: A Pipeline for Using Degradome Data to Find Cleaved Small RNA Targets. Bioinformatics 2009, 25, 130–131. [Google Scholar] [CrossRef]
- Zhao, S.; Fernald, R.D. Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef]
3 Weeks | 4 Weeks | |||
---|---|---|---|---|
miRNA | Roots log2 FC | Leaves log2 FC | Roots log2 FC | Leaves log2 FC |
Cardoso2018_sly-miR1128 | 0.88 | 1.08 | −0.58 | 1.21 |
Cardoso2018_sly-miR1446-1 | 0.67 | 1.31 | 0.53 | 3.53 |
Cardoso2018_sly-miR1446-2 | 0.63 | 0.64 | 0.72 | 3.47 |
Cardoso2018_sly-miR164f | 1.10 | 0.08 | 0.08 | 0.15 |
Cardoso2018_sly-miR167a-2 | −0.62 | −0.64 | 0.05 | −1.08 |
Cardoso2018_sly-miR171b-2 | −0.26 | −0.18 | −0.39 | −0.91 |
Cardoso2018_sly-miR171f | −1.17 | 0.47 | 0.20 | −0.15 |
Cardoso2018_sly-miR3627 | 0.30 | 0.73 | −0.76 | 1.31 |
Cardoso2018_sly-miR395a-1 | 3.96 | 3.93 | 4.91 | 5.65 |
Cardoso2018_sly-miR395a-2 | 3.71 | 3.39 | 3.83 | 6.17 |
Cardoso2018_sly-miR395a-3 | 3.45 | 3.29 | 5.17 | 5.44 |
Cardoso2018_sly-miR395a-4 | 4.02 | 3.44 | 4.26 | 5.67 |
Cardoso2018_sly-miR395g | 3.96 | 3.93 | 4.91 | 5.65 |
Cardoso2018_sly-miR398b | −0.82 | 0.02 | −1.30 | −1.29 |
Cardoso2018_sly-miR399a-4 | −1.60 | −0.07 | −4.07 | −2.28 |
Cardoso2018_sly-miR399i-1 | −2.03 | −0.17 | −1.59 | −2.87 |
Cardoso2018_sly-miR408a | −0.41 | −0.71 | −1.34 | −2.51 |
Cardoso2018_sly-miR5368 | 0.79 | 0.33 | 1.54 | 2.44 |
Cardoso2018_sly-miR8032 | 0.39 | 0.55 | 0.16 | 0.95 |
Lunardon2020_sly-b2.5r1-147852_MIRNA | 0.58 | 0.09 | 0.07 | 1.50 |
Lunardon2020_sly-b2.5r1-31088_MIRNA | −0.61 | −0.79 | 0.10 | −1.66 |
Lunardon2020_sly-b2.5r1-49254_MIRNA | −1.35 | −0.24 | −0.41 | −0.77 |
miRBase21_sly-MIR10528 | −1.07 | 0.04 | −0.06 | −0.61 |
miRBase21_sly-MIR10531 | 0.53 | 0.53 | 0.35 | 1.36 |
miRBase21_sly-MIR10539 | −0.17 | −0.96 | −1.42 | −2.32 |
miRBase21_sly-MIR167b | −0.44 | −0.83 | 0.14 | −2.09 |
miRBase21_sly-MIR169e | −1.87 | −1.95 | −1.08 | −3.40 |
miRBase21_sly-MIR172b | −2.13 | −0.21 | 0.10 | −1.27 |
miRBase21_sly-MIR390a | −0.36 | −0.21 | 0.51 | −1.21 |
miRBase21_sly-MIR395a | 3.63 | 3.67 | 5.52 | 5.90 |
miRBase21_sly-MIR395b | 4.16 | 3.10 | 2.38 | 6.09 |
miRBase21_sly-MIR397 | −0.44 | −0.66 | −0.55 | −2.09 |
miRBase21_sly-MIR403 | −0.94 | −0.36 | −0.02 | −0.52 |
miRBase21_sly-MIR408 | −0.56 | −0.88 | −0.70 | −2.12 |
miRBase21_sly-MIR5302a | 0.28 | 0.31 | 0.28 | 1.60 |
miRBase21_sly-MIR5302b | 0.28 | 0.31 | 0.28 | 1.60 |
miRBase21_sly-MIR827 | −1.63 | 0.44 | −0.49 | −2.60 |
miRBase21_sly-MIR9472 | 1.31 | 0.74 | 1.75 | 3.11 |
sly-b4.0r1-14493_MIRNA | 1.71 | 4.42 | 2.64 | 5.41 |
sly-b4.0r1-14505_MIRNA | 4.25 | 4.62 | 6.31 | 9.19 |
miRNA | miRNA Regulation | Target | Target Description | Organ | Target Regulation |
---|---|---|---|---|---|
miRBase21_sly-MIR10528 | D_3w | Solyc05g051230 | tRNA threonylcarbamoyladenosine dehydratase | Root | U_3w |
miRBase21_sly-MIR10539 | D_4w | Solyc12g006120 | Nuclear transcription factor Y subunit B | Leaves | D_3w |
miRBase21_sly-MIR10539 | D_4w | Solyc12g006120 | Nuclear transcription factor Y subunit B | Leaves | D_3w |
miRBase21_sly-MIR10539 | D_4w | Solyc02g063450 | Glycine-rich domain-containing protein 2 | Leaves | D_3w_4w |
miRBase21_sly-MIR10539 | D_4w | Solyc10g079200 | Mitochondrial carnitine/acylcarnitine carrier-like protein | Leaves | D_3w_4w |
Cardoso2018_sly-miR1446-2 | U_4w | Solyc09g091700 | 2-alkenal reductase (NADP(+)-dependent)-like | Leaves | D_3w |
Cardoso2018_sly-miR167a-2 | D_4w | Solyc07g008860 | WD40 repeat | Leaves | U_3w_4w |
miRBase21_sly-MIR172b | D_4w | Solyc04g049800 | AP2-like ethylene-responsive transcription factor | Leaves | D_3w |
miRBase21_sly-MIR172b | D_4w | Solyc11g073055 | Zinc finger protein ZAT11 | Leaves | D_3w_4w |
Cardoso2018_sly-miR395a-3 | U_3w_4w | Solyc05g053300 | dihydrolipoamide dehydrogenase precursor | Leaves | D_3w_4w |
Cardoso2018_sly-miR395a-4 | U_3w_4w | Solyc09g082860 | ATP sulfurylase | Root | U_3w_4w |
Cardoso2018_sly-miR395a-4 | U_3w_4w | Solyc09g082860 | ATP sulfurylase | Leaves | U_4w |
Cardoso2018_sly-miR395g | U_3w_4w | Solyc08g080050 | PGR5-like protein 1A, chloroplastic | Leaves | D_3w_4w |
Cardoso2018_sly-miR395g | U_3w_4w | Solyc10g005690 | Chloride channel protein | Leaves | D_4w |
Cardoso2018_sly-miR395g | U_3w_4w | Solyc04g054730 | Sulfate transporter-like protein | Leaves | U_3w_4w |
Cardoso2018_sly-miR395g | U_3w_4w | Solyc04g054730 | Sulfate transporter-like protein | Root | U_3w_4w |
miRBase21_sly-MIR395a | U_3w_4w | Solyc09g082860 | ATP sulfurylase | Root | U_3w_4w |
miRBase21_sly-MIR395a | U_3w_4w | Solyc09g082860 | ATP sulfurylase | Leaves | U_4w |
Cardoso2018_sly-miR398b | D_4w | Solyc03g093140 | Glycerol-3-phosphate transporter 1-like protein | Leaves | D_3w_4w |
Cardoso2018_sly-miR398b | D_4w | Solyc08g081220 | Cytochrome P450 | Leaves | D_4w |
Cardoso2018_sly-miR398b | D_4w | Solyc01g067740 | Superoxide dismutase [Cu-Zn] 1 | Leaves | U_3w_4w |
Cardoso2018_sly-miR398b | D_4w | Solyc02g069100 | Cathepsin B-like cysteine proteinase | Leaves | U_3w_4w |
Cardoso2018_sly-miR398b | D_4w | Solyc05g005460 | DC1 domain-containing protein | Leaves | U_3w_4w |
miRBase21_sly-MIR5302a | U_4w | Solyc12g099940 | Acyl-CoA N-acyltransferases (NAT) superfamily protein | Leaves | D_3w |
miRBase21_sly-MIR5302a | U_4w | Solyc04g077640 | Serine carboxypeptidase | Leaves | U_3w_4w |
miRBase21_sly-MIR5302b | U_4w | Solyc04g079040 | Serine carboxypeptidase | Leaves | D_3w_4w |
Cardoso2018_sly-miR5368 | U_4w | Solyc06g066800 | Nucleotide-diphospho-sugar transferases superfamily protein | Leaves | D_3w_4w |
Cardoso2018_sly-miR5368 | U_4w | Solyc07g045080 | 2-alkenal reductase (NADP(+)-dependent)-like | Leaves | D_3w_4w |
Cardoso2018_sly-miR5368 | U_4w | Solyc12g049280 | NAD(P)-binding Rossmann-fold superfamily protein | Leaves | D_3w_4w |
Cardoso2018_sly-miR5368 | U_4w | Solyc09g011450 | Proteasome inhibitor-related protein | Leaves | U_3w |
Cardoso2018_sly-miR5368 | U_4w | Solyc05g014130 | COP1-interacting protein 4 | Leaves | U_4w |
miRBase21_sly-MIR827 | D_4w | Solyc08g007800 | SPX domain-containing protein | Leaves | D_3w |
sly-b4.0r1-14493_MIRNA | U_3w_4w | Solyc09g009540 | Alpha/beta-Hydrolases superfamily protein | Leaves | D_3w |
Lunardon2020_sly-b2.5r1-49254_MIRNA | D_3w | Solyc07g065380 | zinc transporter EF026083 | Root | D_3w_4w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landaeta-Sepúlveda, D.; Johnson, N.R.; Morales-Espinoza, J.; Tobar, M.; Sánchez, E.; Fernández, J.D.; Olivares-Yáñez, C.; Medina, J.; Canales, J.; Vidal, E.A. Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network. Int. J. Mol. Sci. 2025, 26, 8392. https://doi.org/10.3390/ijms26178392
Landaeta-Sepúlveda D, Johnson NR, Morales-Espinoza J, Tobar M, Sánchez E, Fernández JD, Olivares-Yáñez C, Medina J, Canales J, Vidal EA. Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network. International Journal of Molecular Sciences. 2025; 26(17):8392. https://doi.org/10.3390/ijms26178392
Chicago/Turabian StyleLandaeta-Sepúlveda, Diego, Nathan R. Johnson, Jonathan Morales-Espinoza, Mariola Tobar, Evelyn Sánchez, José D. Fernández, Consuelo Olivares-Yáñez, Joaquín Medina, Javier Canales, and Elena A. Vidal. 2025. "Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network" International Journal of Molecular Sciences 26, no. 17: 8392. https://doi.org/10.3390/ijms26178392
APA StyleLandaeta-Sepúlveda, D., Johnson, N. R., Morales-Espinoza, J., Tobar, M., Sánchez, E., Fernández, J. D., Olivares-Yáñez, C., Medina, J., Canales, J., & Vidal, E. A. (2025). Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network. International Journal of Molecular Sciences, 26(17), 8392. https://doi.org/10.3390/ijms26178392