Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Participants’ Characteristics
3.2. MRI Acquisition Protocols
3.2.1. Structural Morphometry (8/17 Studies)
3.2.2. Resting-State Connectivity (4/17 Studies)
3.2.3. Task-Based fMRI (5/17 Studies)
- (a)
- Clinical reasoning: internal-medicine trainees solved USMLE/ABIM multiple-choice cases [25], isolating reading, answering, and post hoc reflection phases.
- (b)
- Psychosocial stress: the ScanSTRESS block design juxtaposed mental arithmetic under social evaluative threat with control blocks [32].
- (c)
- Empathy for pain: nurses viewed video clips of hands receiving painful vs. soft stimuli [35].
- (d)
- Cognitive control: paediatric residents performed an event-related Stroop colour-word task [37].
- (e)
- Working-memory load: women on long-term sick leave completed a 2-back verbal task and a continuous visual-recognition paradigm [38].
3.2.4. Hybrid and Longitudinal Designs
3.3. fMRI Outcomes
3.3.1. Task-Evoked Activation
3.3.2. Rest-State Connectivity
3.4. Structural MRI Outcomes
3.4.1. Amygdala: Hypertrophy, Female-Specific
3.4.2. Striatum: Caudate and Putamen Atrophy, Male-Biased
3.4.3. Prefrontal Cortex: Thinning or Reduced Grey-Matter Density
3.4.4. Hippocampus: Largely Intact
3.4.5. Other Cortical and Cerebellar Findings
3.5. Correlation of MRI Findings with Cognitive and Behavioural Outcomes
3.5.1. Compensatory Executive Overdrive
3.5.2. Limbic Dysregulation of Emotion and Empathy
3.5.3. Striato-Frontal Control of Mental Fatigue, Memory, and Reward
3.5.4. Network Integrity as a Barometer of Clinical Course
3.6. Neuro-Endocrine and Molecular Correlates
3.6.1. HPA-Axis Markers
3.6.2. Immune and Inflammatory Signals
3.6.3. Transcriptomic Alignment
4. Discussion
4.1. Amygdala Volume, Stress, HPA Imbalance
4.2. Roles of Frontal Gyrus and Precuneus
4.3. Volumes of vmPFC, Insula, and Thalamus
4.4. Dysfunction of the Reward System
4.5. Left STG Thinning
4.6. Abnormal dACC Response to Stress
4.7. Rich-Club Weakening Captures a Systems-Level Cost of Burnout
4.8. Burnout and Empathy
4.9. Impaired Resting-State Functional Connectivity
4.10. Excessive DLPFC Activity and Reduced Neural Efficiency
4.11. Reduced DLPFC Activation During Cognitive Demands
4.12. No Changes in the Hippocampus
4.13. Connectomic Disintegration in Burnout
4.14. Hierarchical Connectome Disruptions and Transcriptomic Drivers in Occupational Burnout
5. Appeal to Policymakers
6. Interventions That Can Reverse the Neural Changes in Burnout
6.1. Mindfulness
6.2. Physical Activity
6.3. Psychological Interventions
6.4. fMRI-Neurofeedback
6.5. Non-Invasive Brain Stimulation
6.6. Prevention Is Better than Cure
7. Open Questions
7.1. Causality and Temporal Dynamics
7.2. Sex Differences and Hormonal Influences
7.3. Converging vs. Diverging Structural Markers
7.4. Functional Network Integrity and Cognitive Efficiency
7.5. Clinical Translation and Individual Prediction
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Burn-Out an “Occupational Phenomenon”: International Classification of Diseases. Available online: https://www.who.int/news/item/28-05-2019-burn-out-an-occupational-phenomenon-international-classification-of-diseases (accessed on 27 May 2025).
- Maslach, C.; Jackson, S.E. The Measurement of Experienced Burnout. J. Organ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Edú-Valsania, S.; Laguía, A.; Moriano, J.A. Burnout: A Review of Theory and Measurement. Int. J. Environ. Res. Public Health 2022, 19, 1780. [Google Scholar] [CrossRef]
- Dobešová Cakirpaloglu, S.; Cakirpaloglu, P.; Skopal, O.; Kvapilová, B.; Schovánková, T.; Vévodová, Š.; Greaves, J.P.; Steven, A. Strain and serenity: Exploring the interplay of stress, burnout, and well-being among healthcare professionals. Front. Psychol. 2024, 15, 1415996. [Google Scholar] [CrossRef] [PubMed]
- Gavelin, H.M.; Domellöf, M.E.; Åström, E.; Nelson, A.; Launder, N.H.; Neely, A.S.; Lampit, A. Cognitive function in clinical burnout: A systematic review and meta-analysis. Work Stress 2021, 36, 86–104. [Google Scholar] [CrossRef]
- Demerouti, E. Burnout: A comprehensive review. Z. Arb. Wiss. 2024, 78, 492–504. [Google Scholar] [CrossRef]
- Hammarström, P.; Rosendahl, S.; Gruber, M.; Nordin, S. Somatic symptoms in burnout in a general adult population. J. Psychosom. Res. 2023, 168, 111217. [Google Scholar] [CrossRef]
- Rotenstein, L.S.; Torre, M.; Ramos, M.A.; Rosales, R.C.; Guille, C.; Sen, S.; Mata, D.A. Prevalence of Burnout Among Physicians: A Systematic Review. JAMA 2018, 320, 1131–1150. [Google Scholar] [CrossRef]
- Getie, A.; Ayenew, T.; Amlak, B.T.; Gedfew, M.; Edmealem, A.; Kebede, W.M. Global prevalence and contributing factors of nurse burnout: An umbrella review of systematic review and meta-analysis. BMC Nurs. 2025, 24, 596. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ramachandran, P.; Dilipkumar, R.; Kaur, P. Global estimate of burnout among the public health workforce: A systematic review and meta-analysis. Hum. Resour. Health 2024, 22, 30. [Google Scholar] [CrossRef]
- Abdul Aziz, A.F.; Ong, T. Prevalence and associated factors of burnout among working adults in Southeast Asia: Results from a public health assessment. Front. Public Health 2024, 12, 1326227. [Google Scholar] [CrossRef]
- Martinez, M.F.; O’Shea, K.J.; Kern, M.C.; Chin, K.L.; Dinh, J.V.; Bartsch, S.M.; Weatherwax, C.; Velmurugan, K.; Heneghan, J.L.; Moran, T.H.; et al. The health and economic burden of employee burnout to U.S. employers. Am. J. Prev. Med. 2025, 68, 645–655. [Google Scholar] [CrossRef]
- Hodkinson, A.; Zhou, A.; Johnson, J.; Geraghty, K.; Riley, R.; Zhou, A.; Panagopoulou, E.; Chew-Graham, C.A.; Peters, D.; Esmail, A.; et al. Associations of physician burnout with career engagement and quality of patient care: Systematic review and meta-analysis. BMJ 2022, 378, e070442. [Google Scholar] [CrossRef]
- Ryan, E.; Hore, K.; Power, J.; Jackson, T. The relationship between physician burnout and depression, anxiety, suicidality and substance abuse: A mixed methods systematic review. Front. Public Health 2023, 11, 1133484. [Google Scholar] [CrossRef]
- John, A.; Bouillon-Minois, J.B.; Bagheri, R.; Pélissier, C.; Charbotel, B.; Llorca, P.M.; Zak, M.; Ugbolue, U.C.; Baker, J.S.; Dutheil, F. The influence of burnout on cardiovascular disease: A systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1326745. [Google Scholar] [CrossRef]
- Kremers, S.H.M.; Beulens, J.W.J.; Strikwerda, M.; Remmelzwaal, S.; Schoonmade, L.J.; van der Beek, A.J.; Elders, P.J.M.; Rutters, F. The association of burnout and vital exhaustion with (measures of) the metabolic syndrome: A systematic review and meta-analysis. Health Psychol. 2025. [Google Scholar] [CrossRef]
- Strikwerda, M.; Beulens, J.W.; Remmelzwaal, S.; Schoonmade, L.J.; van Straten, A.; Schram, M.T.; Elders, P.J.; Rutters, F. The Association of Burnout and Vital Exhaustion with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Psychosom. Med. 2021, 83, 1013–1030. [Google Scholar] [CrossRef]
- Ahola, K.; Väänänen, A.; Koskinen, A.; Kouvonen, A.; Shirom, A. Burnout as a predictor of all-cause mortality among industrial employees: A 10-year prospective register-linkage study. J. Psychosom. Res. 2010, 69, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, M.; Galletta, K.; Cavallaro, M.; Mormina, E.; Cannizzaro, M.T.; Lanzafame, L.R.M.; D’Angelo, T.; Blandino, A.; Vinci, S.L.; Granata, F. T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights Into Imaging 2024, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Owrangi, A.M.; Greer, P.B.; Glide-Hurst, C.K. MRI-only treatment planning: Benefits and challenges. Phys. Med. Biol. 2018, 63, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Auer, T.; Schwarcz, A.; Horváth, R.A.; Barsi, P.; Janszky, J. Functional magnetic resonance imaging in neurology. Ideggyogy Szle 2008, 61, 16–23. [Google Scholar]
- Zhan, X.; Yu, R. A Window into the Brain: Advances in Psychiatric fMRI. BioMed Res. Int. 2015, 2015, 542467. [Google Scholar] [CrossRef]
- Bayes, A.; Tavella, G.; Parker, G. The biology of burnout: Causes and consequences. World J. Biol. Psychiatry 2021, 22, 686–698. [Google Scholar] [CrossRef]
- Khammissa, R.A.G.; Nemutandani, S.; Feller, G.; Lemmer, J.; Feller, L. Burnout phenomenon: Neurophysiological factors, clinical features, and aspects of management. J. Int. Med. Res. 2022, 50, 3000605221106428. [Google Scholar] [CrossRef] [PubMed]
- Durning, S.J.; Costanzo, M.; Artino, A.R., Jr.; Dyrbye, L.N.; Beckman, T.J.; Schuwirth, L.; Holmboe, E.; Roy, M.J.; Wittich, C.M.; Lipner, R.S.; et al. Functional Neuroimaging Correlates of Burnout among Internal Medicine Residents and Faculty Members. Front. Psychiatry 2013, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, N.; Khorashad Sorouri, B.; Lundmark, A.; Seiger, R.; Savic, I. Occupational stress is associated with sex and subregion specific modifications of the amygdala volumes. Stress 2023, 26, 2247102. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Tei, S.; Takahashi, H.; Fujino, J. Structural brain correlates of burnout severity in medical professionals: A voxel-based morphometric study. Neurosci. Lett. 2022, 772, 136484. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Neely, A.S.; Dunås, T.; Eskilsson, T.; Järvholm, L.S.; Boraxbekk, C.J. Mental fatigue in stress-related exhaustion disorder: Structural brain correlates, clinical characteristics and relations with cognitive functioning. Neuroimage Clin. 2020, 27, 102337. [Google Scholar] [CrossRef]
- Blix, E.; Perski, A.; Berglund, H.; Savic, I. Long-term occupational stress is associated with regional reductions in brain tissue volumes. PLoS ONE 2013, 8, e64065. [Google Scholar] [CrossRef]
- Savic, I.; Perski, A.; Osika, W. MRI Shows that Exhaustion Syndrome Due to Chronic Occupational Stress is Associated with Partially Reversible Cerebral Changes. Cereb. Cortex 2018, 28, 894–906. [Google Scholar] [CrossRef]
- Savic, I. Structural changes of the brain in relation to occupational stress. Cereb. Cortex 2015, 25, 1554–1564. [Google Scholar] [CrossRef]
- Bärtl, C.; Henze, G.I.; Peter, H.L.; Giglberger, M.; Bohmann, P.; Speicher, N.; Konzok, J.; Kreuzpointner, L.; Waller, L.; Walter, H.; et al. Neural and cortisol responses to acute psychosocial stress in work-related burnout: The Regensburg Burnout Project. Psychoneuroendocrinology 2024, 161, 106926. [Google Scholar] [CrossRef]
- Chen, M.; Su, Q.; Zhao, Z.; Li, T.; Yao, Z.; Zheng, W.; Han, L.; Hu, B. Rich Club Reorganization in Nurses Before and After the Onset of Occupational Burnout: A Longitudinal MRI Study. J. Magn. Reson. Imaging 2024, 60, 1918–1931. [Google Scholar] [CrossRef]
- Arthur Cully, S.; Björnsdotter, M. Lateral prefrontal cortex thickness is associated with stress but not cognitive fatigue in exhaustion disorder. Front. Psychiatry 2023, 14, 1314667, Erratum in Front. Psychiatry 2024, 15, 1431572. [Google Scholar] [CrossRef]
- Tei, S.; Becker, C.; Kawada, R.; Fujino, J.; Jankowski, K.F.; Sugihara, G.; Murai, T.; Takahashi, H. Can we predict burnout severity from empathy-related brain activity? Transl. Psychiatry 2014, 4, e393. [Google Scholar] [CrossRef]
- Golkar, A.; Johansson, E.; Kasahara, M.; Osika, W.; Perski, A.; Savic, I. The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLoS ONE 2014, 9, e104550. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, A.P.; Amaro, E., Jr.; Farhat, S.C.; Schvartsman, C. Higher burnout scores in paediatric residents are associated with increased brain activity during attentional functional magnetic resonance imaging task. Acta Paediatr. 2016, 105, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Sandström, A.; Säll, R.; Peterson, J.; Salami, A.; Larsson, A.; Olsson, T.; Nyberg, L. Brain activation patterns in major depressive disorder and work stress-related long-term sick leave among Swedish females. Stress 2012, 15, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Sandström, A.; Peterson, J.; Sandström, E.; Lundberg, M.; Nystrom, I.-L.R.; Nyberg, L.; Olsson, T. Cognitive deficits in relation to personality type and hypothalamic-pituitary-adrenal (HPA) axis dysfunction in women with stress-related exhaustion. Scand. J. Psychol. 2011, 52, 71–82. [Google Scholar] [CrossRef]
- Shang, Y.; Yang, Y.; Zheng, G.; Zhao, Z.; Wang, Y.; Yang, L.; Han, L.; Yao, Z.; Hu, B. Aberrant functional network topology and effective connectivity in burnout syndrome. Clin. Neurophysiol. 2022, 138, 163–172. [Google Scholar] [CrossRef]
- Shang, Y.; Su, Q.; Ma, R.; Chen, M.; Zhao, Z.; Yao, C.; Han, L.; Yao, Z.; Hu, B. Functional Connectome Hierarchy Distortions in Female Nurses with Occupational Burnout and Its Gene Expression Signatures. J. Magn. Reson. Imaging 2024, 59, 2124–2136. [Google Scholar] [CrossRef]
- Hu, P.; Lu, Y.; Pan, B.X.; Zhang, W.H. New Insights into the Pivotal Role of the Amygdala in Inflammation-Related Depression and Anxiety Disorder. Int. J. Mol. Sci. 2022, 23, 11076. [Google Scholar] [CrossRef]
- Zhang, W.H.; Zhang, J.Y.; Holmes, A.; Pan, B.X. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol. Psychiatry 2021, 89, 847–856. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, T.H.; He, Y.; Pan, H.Q.; Zhang, W.H.; Yin, X.P.; Tian, X.L.; Li, B.M.; Wang, X.D.; Holmes, A.; et al. Chronic Stress Remodels Synapses in an Amygdala Circuit–Specific Manner. Biol. Psychiatry 2019, 85, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ge, T.T.; Yin, G.; Cui, R.; Zhao, G.; Yang, W. Stress-Induced Functional Alterations in Amygdala: Implications for Neuropsychiatric Diseases. Front. Neurosci. 2018, 12, 367. [Google Scholar] [CrossRef] [PubMed]
- Melamed, S.; Ugarten, U.; Shirom, A.; Kahana, L.; Lerman, Y.; Froom, P. Chronic burnout, somatic arousal and elevated salivary cortisol levels. J. Psychosom. Res. 1999, 46, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Pilger, A.; Haslacher, H.; Meyer, B.M.; Lackner, A.; Nassan-Agha, S.; Nistler, S.; Stangelmaier, C.; Endler, G.; Mikulits, A.; Priemer, I.; et al. Midday and nadir salivary cortisol appear superior to cortisol awakening response in burnout assessment and monitoring. Sci. Rep. 2018, 8, 9151. [Google Scholar] [CrossRef]
- Penz, M.; Stalder, T.; Miller, R.; Ludwig, V.M.; Kanthak, M.K.; Kirschbaum, C. Hair cortisol as a biological marker for burnout symptomatology. Psychoneuroendocrinology 2018, 87, 218–221. [Google Scholar] [CrossRef]
- De Vente, W.; Olff, M.; Van Amsterdam, J.G.; Kamphuis, J.H.; Emmelkamp, P.M. Physiological differences between burnout patients and healthy controls: Blood pressure, heart rate, and cortisol responses. Occup. Environ. Med. 2003, 60 (Suppl. S1), i54–i61. [Google Scholar] [CrossRef]
- Ibar, C.; Fortuna, F.; Gonzalez, D.; Jamardo, J.; Jacobsen, D.; Pugliese, L.; Giraudo, L.; Ceres, V.; Mendoza, C.; Repetto, E.M.; et al. Evaluation of stress, burnout and hair cortisol levels in health workers at a University Hospital during COVID-19 pandemic. Psychoneuroendocrinology 2021, 128, 105213. [Google Scholar] [CrossRef]
- Marcil, M.J.; Cyr, S.; Marin, M.F.; Rosa, C.; Tardif, J.C.; Guay, S.; Guertin, M.C.; Genest, C.; Forest, J.; Lavoie, P.; et al. Hair cortisol change at COVID-19 pandemic onset predicts burnout among health personnel. Psychoneuroendocrinology 2022, 138, 105645. [Google Scholar] [CrossRef]
- Zuccarella-Hackl, C.; Princip, M.; Holzgang, S.A.; Sivakumar, S.; Kuenburg, A.; Pazhenkottil, A.P.; Gomez Vieito, D.; von Känel, R. Cortisol Reactivity to Acute Psychosocial Stress in Physician Burnout. Biomedicines 2024, 12, 335. [Google Scholar] [CrossRef]
- Traunmüller, C.; Stefitz, R.; Gaisbachgrabner, K.; Hofmann, P.; Roessler, A.; Schwerdtfeger, A.R. Psychophysiological concomitants of burnout: Evidence for different subtypes. J. Psychosom. Res. 2019, 118, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Perski, A.; Ekstedt, M.; Johansson, T.; Lindström, M.; Holm, K. The morning salivary cortisol response in burnout. J. Psychosom. Res. 2005, 59, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wingenfeld, K.; Schulz, M.; Damkroeger, A.; Rose, M.; Driessen, M. Elevated diurnal salivary cortisol in nurses is associated with burnout but not with vital exhaustion. Psychoneuroendocrinology 2009, 34, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dai, J.; Li, J. Mediating effects of hair cortisol on the mutual association of job burnout and insomnia: A retrospective exploratory study. J. Psychiatr. Res. 2019, 117, 62–67. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Bröde, P.; Claus, M.; Golka, K.; Hengstler, J.G.; Watzl, C.; Wascher, E.; Getzmann, S. The association between hair cortisol and burnout is moderated by age, psychosocial, and immunological markers. Brain Behav. Immun. Health 2024, 43, 100909. [Google Scholar] [CrossRef]
- Kaltenegger, H.C.; Marques, M.D.; Becker, L.; Rohleder, N.; Nowak, D.; Wright, B.J.; Weigl, M. Prospective associations of technostress at work, burnout symptoms, hair cortisol, and chronic low-grade inflammation. Brain Behav. Immun. 2024, 117, 320–329. [Google Scholar] [CrossRef]
- Munshi, S.; Loh, M.K.; Ferrara, N.; DeJoseph, M.R.; Ritger, A.; Padival, M.; Record, M.J.; Urban, J.H.; Rosenkranz, J.A. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav. Immun. 2020, 84, 180–199. [Google Scholar] [CrossRef]
- Mommersteeg, P.M.; Heijnen, C.J.; Kavelaars, A.; van Doornen, L.J. Immune and endocrine function in burnout syndrome. Psychosom. Med. 2006, 68, 879–886. [Google Scholar] [CrossRef]
- von Känel, R.; Bellingrath, S.; Kudielka, B.M. Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J. Psychosom. Res. 2008, 65, 51–59. [Google Scholar] [CrossRef]
- Mommersteeg, P.M.; Heijnen, C.J.; Kavelaars, A.; van Doornen, L.J. The HPA-axis and immune function in burnout. Prog. Brain Res. 2008, 167, 281–285. [Google Scholar]
- Vyas, A.; Mitra, R.; Shankaranarayana Rao, B.S.; Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 2002, 22, 6810–6818. [Google Scholar] [CrossRef]
- Murphy, D.D.; Segal, M. Progesterone prevents estradiol-induced dendritic spine formation in cultured hippocampal neurons. Neuroendocrinology 2000, 72, 133–143. [Google Scholar] [CrossRef]
- Luine, V.; Frankfurt, M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 2013, 239, 34–45. [Google Scholar] [CrossRef]
- Tuscher, J.J.; Luine, V.; Frankfurt, M.; Frick, K.M. Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus. J. Neurosci. 2016, 36, 1483–1489. [Google Scholar] [CrossRef]
- Kogler, L.; Müller, V.I.; Seidel, E.M.; Boubela, R.; Kalcher, K.; Moser, E.; Habel, U.; Gur, R.C.; Eickhoff, S.B.; Derntl, B. Sex differences in the functional connectivity of the amygdalae in association with cortisol. Neuroimage 2016, 134, 410–423. [Google Scholar] [CrossRef]
- Yan, L.; Zhong, X.; Yang, L.; Long, H.; Ji, P.; Jin, X.; Liu, L. Gender Differences in Job Burnout, Career Choice Regret, and Depressive Symptoms Among Chinese Dental Postgraduates: A Cross-Sectional Study. Front. Public Health 2022, 10, 832359. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, L.; Gillespie, G.L.; Smith, C.; Davis, K.G. Gender differences in burnout among US nurse leaders during COVID-19 pandemic: An online cross-sectional survey study. BMJ Open 2024, 14, e089885. [Google Scholar] [CrossRef] [PubMed]
- Lyubarova, R.; Salman, L.; Rittenberg, E. Gender Differences in Physician Burnout: Driving Factors and Potential Solutions. Perm. J. 2023, 27, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hanakawa, T.; Dimyan, M.A.; Hallett, M. Motor planning, imagery, and execution in the distributed motor network: A time-course study with functional MRI. Cereb. Cortex 2008, 18, 2775–2788. [Google Scholar] [CrossRef]
- Derrfuss, J.; Brass, M.; von Cramon, D.Y. Cognitive control in the posterior frontolateral cortex: Evidence from common activations in task coordination, interference control, and working memory. Neuroimage 2004, 23, 604–612. [Google Scholar] [CrossRef]
- Miri Ashtiani, S.N.; Daliri, M.R. Identification of cognitive load-dependent activation patterns using working memory task-based fMRI at various levels of difficulty. Sci. Rep. 2023, 13, 16476. [Google Scholar] [CrossRef]
- Veer, I.M.; Oei, N.Y.; Spinhoven, P.; van Buchem, M.A.; Elzinga, B.M.; Rombouts, S.A. Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. Neuroimage 2011, 57, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Hebscher, M.; Ibrahim, C.; Gilboa, A. Precuneus stimulation alters the neural dynamics of autobiographical memory retrieval. Neuroimage 2020, 210, 116575. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Li, Q.; Yang, J.; Yang, Q.; Li, E.; Liu, Y.; Jiang, L.; Li, C.; Zhao, B. Precuneus activation correlates with the vividness of dynamic and static imagery: An fMRI study. Front. Hum. Neurosci. 2025, 19, 1516058. [Google Scholar] [CrossRef] [PubMed]
- Durning, S.J.; Costanzo, M.E.; Artino, A.R.; Graner, J.; van der Vleuten, C.; Beckman, T.J.; Wittich, C.M.; Roy, M.J.; Holmboe, E.S.; Schuwirth, L. Neural basis of nonanalytical reasoning expertise during clinical evaluation. Brain Behav. 2015, 5, e00309. [Google Scholar] [CrossRef]
- Murphy, R.J. Depersonalization/Derealization Disorder and Neural Correlates of Trauma-related Pathology: A Critical Review. Innov. Clin. Neurosci. 2023, 20, 53–59. [Google Scholar]
- Perlstein, W.M.; Carter, C.S.; Noll, D.C.; Cohen, J.D. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry 2001, 158, 1105–1113. [Google Scholar] [CrossRef]
- Townsend, J.; Bookheimer, S.Y.; Foland–Ross, L.C.; Sugar, C.A.; Altshuler, L.L. fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Res. 2010, 182, 22–29. [Google Scholar] [CrossRef]
- McEwen, B.S.; Nasca, C.; Gray, J.D. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016, 41, 3–23. [Google Scholar] [CrossRef]
- Woo, E.; Sansing, L.H.; Arnsten, A.F.T.; Datta, D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress 2021, 5, 24705470211029254. [Google Scholar] [CrossRef] [PubMed]
- Alexandra Kredlow, M.; Fenster, R.J.; Laurent, E.S.; Ressler, K.J.; Phelps, E.A. Prefrontal cortex, amygdala, and threat processing: Implications for PTSD. Neuropsychopharmacology 2022, 47, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Quirk, G.J.; Beer, J.S. Prefrontal involvement in the regulation of emotion: Convergence of rat and human studies. Curr. Opin. Neurobiol. 2006, 16, 723–727. [Google Scholar] [CrossRef]
- Urry, H.L.; van Reekum, C.M.; Johnstone, T.; Kalin, N.H.; Thurow, M.E.; Schaefer, H.S.; Jackson, C.A.; Frye, C.J.; Greischar, L.L.; Alexander, A.L.; et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J. Neurosci. 2006, 26, 4415–4425. [Google Scholar] [CrossRef]
- Jennings, J.R.; Allen, B.; Gianaros, P.J.; Thayer, J.F.; Manuck, S.B. Focusing neurovisceral integration: Cognition, heart rate variability, and cerebral blood flow. Psychophysiology 2015, 52, 214–224. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
- Golonka, K.; Gawlowska, M.; Mojsa-Kaja, J.; Marek, T. Psychophysiological Characteristics of Burnout Syndrome: Resting-State EEG Analysis. BioMed Res. Int. 2019, 2019, 3764354. [Google Scholar] [CrossRef]
- Afek, N.; Harmatiuk, D.; Gawłowska, M.; Ferreira, J.M.A.; Golonka, K.; Tukaiev, S.; Popov, A.; Marek, T. Functional connectivity in burnout syndrome: A resting-state EEG study. Front. Hum. Neurosci. 2025, 19, 1481760. [Google Scholar] [CrossRef]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Ohman, A.; Dolan, R.J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef]
- Gu, X.; Hof, P.R.; Friston, K.J.; Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 2013, 521, 3371–3388. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel—Now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Rolls, A. Immunoception: The insular cortex perspective. Cell Mol. Immunol. 2023, 20, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Kerezoudis, P.; Howe, C.L.; Wu, L.J.; Lundstrom, B.N.; Van Gompel, J.J. Insula and the Immune System: More than mere Co-existence? Neurosci. Bull. 2022, 38, 1271–1273. [Google Scholar] [CrossRef]
- Loggia, M.L.; Chonde, D.B.; Akeju, O.; Arabasz, G.; Catana, C.; Edwards, R.R.; Hill, E.; Hsu, S.; Izquierdo-Garcia, D.; Ji, R.R.; et al. Evidence for brain glial activation in chronic pain patients. Brain 2015, 138 Pt 3, 604–615. [Google Scholar] [CrossRef]
- Yoshii, T.; Oishi, N.; Ikoma, K.; Nishimura, I.; Sakai, Y.; Matsuda, K.; Yamada, S.; Tanaka, M.; Kawata, M.; Narumoto, J.; et al. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model. Sci. Rep. 2017, 7, 12731. [Google Scholar] [CrossRef]
- Wylie, G.R.; Yao, B.; Genova, H.M.; Chen, M.H.; DeLuca, J. Using functional connectivity changes associated with cognitive fatigue to delineate a fatigue network. Sci. Rep. 2020, 10, 21927. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef]
- Nakajima, M.; Halassa, M.M. Thalamic control of functional cortical connectivity. Curr. Opin. Neurobiol. 2017, 44, 127–131. [Google Scholar] [CrossRef]
- Ergenoglu, T.; Demiralp, T.; Bayraktaroglu, Z.; Ergen, M.; Beydagi, H.; Uresin, Y. Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn. Brain Res. 2004, 20, 376–383. [Google Scholar] [CrossRef]
- Saint-Cyr, J.A. Frontal-striatal circuit functions: Context, sequence, and consequence. J. Int. Neuropsychol. Soc. 2003, 9, 103–127. [Google Scholar] [CrossRef]
- Bamford, I.J.; Bamford, N.S. The Striatum’s Role in Executing Rational and Irrational Economic Behaviors. Neuroscientist 2019, 25, 475–490. [Google Scholar] [CrossRef]
- Westbrook, A.; van den Bosch, R.; Määttä, J.I.; Hofmans, L.; Papadopetraki, D.; Cools, R.; Frank, M.J. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science 2020, 367, 1362–1366. [Google Scholar] [CrossRef]
- Westbrook, A.; Frank, M.J.; Cools, R. A mosaic of cost-benefit control over cortico-striatal circuitry. Trends Cogn. Sci. 2021, 25, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Zurawek, D.; Faron-Górecka, A.; Kuśmider, M.; Kolasa, M.; Gruca, P.; Papp, M.; Dziedzicka-Wasylewska, M. Mesolimbic dopamine D2 receptor plasticity contributes to stress resilience in rats subjected to chronic mild stress. Psychopharmacology 2013, 227, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Dziedzicka-Wasylewska, M.; Willner, P.; Papp, M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav. Pharmacol. 1997, 8, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Klimek, V.; Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology 1994, 115, 441–446. [Google Scholar] [CrossRef]
- Floresco, S.B. Prefrontal dopamine and behavioral flexibility: Shifting from an “inverted-U” toward a family of functions. Front. Neurosci. 2013, 7, 62. [Google Scholar] [CrossRef]
- Cools, R.; D’Esposito, M. Inverted-U–Shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 2011, 69, e113–e125. [Google Scholar] [CrossRef]
- Weber, M.A.; Conlon, M.M.; Stutt, H.R.; Wendt, L.; Ten Eyck, P.; Narayanan, N.S. Quantifying the inverted U: A meta-analysis of prefrontal dopamine, D1 receptors, and working memory. Behav. Neurosci. 2022, 136, 207–218. [Google Scholar] [CrossRef]
- Baik, J.H. Stress and the dopaminergic reward system. Exp. Mol. Med. 2020, 52, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, K.; Yuzurihara, M.; Ishige, A.; Sasaki, H.; Chui, D.H.; Tabira, T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci. 2000, 20, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, A.; Braver, T.S. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron 2016, 89, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.; Behan, P.O. Fatigue and basal ganglia. J. Neurol. Sci. 2000, 179 (Suppl. S1–2), 34–42. [Google Scholar] [CrossRef] [PubMed]
- Hickok, G.; Poeppel, D. Neural basis of speech perception. Handb. Clin. Neurol. 2015, 129, 149–160. [Google Scholar] [CrossRef]
- Mesgarani, N.; Chang, E.F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 2012, 485, 233–236. [Google Scholar] [CrossRef]
- Leff, A.P.; Schofield, T.M.; Crinion, J.T.; Seghier, M.L.; Grogan, A.; Green, D.W.; Price, C.J. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: Evidence from 210 patients with stroke. Brain 2009, 132 Pt 12, 3401–3410. [Google Scholar] [CrossRef]
- Vander Ghinst, M.; Bourguignon, M.; Op de Beeck, M.; Wens, V.; Marty, B.; Hassid, S.; Choufani, G.; Jousmäki, V.; Hari, R.; Van Bogaert, P.; et al. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene. J. Neurosci. 2016, 36, 1596–1606. [Google Scholar] [CrossRef]
- Yi, H.G.; Leonard, M.K.; Chang, E.F. The Encoding of Speech Sounds in the Superior Temporal Gyrus. Neuron 2019, 102, 1096–1110. [Google Scholar] [CrossRef]
- Parker, N.; Patel, Y.; Jackowski, A.P.; Pan, P.M.; Salum, G.A.; Pausova, Z.; Paus, T. Saguenay Youth Study and the IMAGEN Consortium. Assessment of Neurobiological Mechanisms of Cortical Thinning During Childhood and Adolescence and Their Implications for Psychiatric Disorders. JAMA Psychiatry 2020, 77, 1127–1136. [Google Scholar]
- Natu, V.S.; Gomez, J.; Barnett, M.; Jeska, B.; Kirilina, E.; Jaeger, C.; Zhen, Z.; Cox, S.; Weiner, K.S.; Weiskopf, N.; et al. Apparent thinning of human visual cortex during childhood is associated with myelination. Proc. Natl. Acad. Sci. USA 2019, 116, 20750–20759. [Google Scholar] [CrossRef]
- Vidal-Pineiro, D.; Parker, N.; Shin, J.; French, L.; Grydeland, H.; Jackowski, A.P.; Mowinckel, A.M.; Patel, Y.; Pausova, Z.; Salum, G.; et al. Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing. Cellular correlates of cortical thinning throughout the lifespan. Sci. Rep. 2020, 10, 21803. [Google Scholar]
- Henckens, M.J.; Klumpers, F.; Everaerd, D.; Kooijman, S.C.; van Wingen, G.A.; Fernández, G. Interindividual differences in stress sensitivity: Basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress. Soc. Cogn. Affect. Neurosci. 2016, 11, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.N.; Jentsch, V.L.; Langer, K.; Hagedorn, B.; Höffken, O.; Wolf, O.T.; Merz, C.J. What a difference timing makes: Cortisol effects on neural underpinnings of emotion regulation. Neurobiol. Stress 2023, 25, 100544. [Google Scholar] [CrossRef] [PubMed]
- Aberizk, K.; Collins, M.A.; Addington, J.; Bearden, C.E.; Cadenhead, K.S.; Cornblatt, B.A.; Mathalon, D.H.; McGlashan, T.H.; Perkins, D.O.; Tsuang, M.T.; et al. Life Event Stress and Reduced Cortical Thickness in Youth at Clinical High Risk for Psychosis and Healthy Control Subjects. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 171–179. [Google Scholar] [CrossRef]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef]
- Etkin, A.; Egner, T.; Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 2011, 15, 85–93. [Google Scholar] [CrossRef]
- Whitton, A.E.; Van’t Veer, A.; Kakani, P.; Dillon, D.G.; Ironside, M.L.; Haile, A.; Crowley, D.J.; Pizzagalli, D.A. Acute stress impairs frontocingulate activation during error monitoring in remitted depression. Psychoneuroendocrinology 2017, 75, 164–172. [Google Scholar] [CrossRef]
- Riedel, L.; van den Heuvel, M.P.; Markett, S. Trajectory of rich club properties in structural brain networks. Hum. Brain Mapp. 2022, 43, 4239–4253. [Google Scholar] [CrossRef]
- Kim, D.J.; Min, B.K. Rich-club in the brain’s macrostructure: Insights from graph theoretical analysis. Comput. Struct. Biotechnol. J. 2020, 18, 1761–1773. [Google Scholar] [CrossRef]
- Wheelock, M.D.; Rangaprakash, D.; Harnett, N.G.; Wood, K.H.; Orem, T.R.; Mrug, S.; Granger, D.A.; Deshpande, G.; Knight, D.C. Psychosocial stress reactivity is associated with decreased whole-brain network efficiency and increased amygdala centrality. Behav. Neurosci. 2018, 132, 561–572. [Google Scholar] [CrossRef]
- van Leijsen, E.M.C.; van Uden, I.W.M.; Bergkamp, M.I.; van der Holst, H.M.; Norris, D.G.; Claassen, J.A.H.R.; Kessels, R.P.C.; de Leeuw, F.E.; Tuladhar, A.M. Longitudinal changes in rich club organization and cognition in cerebral small vessel disease. Neuroimage Clin. 2019, 24, 102048. [Google Scholar] [CrossRef] [PubMed]
- Langley, C.; Masuda, N.; Godwin, S.; De Marco, G.; Smith, A.D.; Jones, R.; Bruce, J.; Thai, N.J. Dysfunction of basal ganglia functional connectivity associated with subjective and cognitive fatigue in multiple sclerosis. Front. Neurosci. 2023, 17, 1194859. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, T.; Oishi, N.; Kobayashi, K.; Ueno, T.; Yoshimura, S.; Murai, T.; Fujiwara, H. Psychological resilience is correlated with dynamic changes in functional connectivity within the default mode network during a cognitive task. Sci. Rep. 2020, 10, 17760. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, W.; Lee, J.E.; Lee, J.; Kim, Y.T.; Lee, S.K.; Oh, S.S.; Park, K.S.; Koh, S.B.; Kim, C.; et al. Changes in intrinsic functional brain connectivity related to occupational stress of firefighters. Psychiatry Res. 2022, 314, 114688. [Google Scholar] [CrossRef]
- Geng, H.; Li, X.; Chen, J.; Li, X.; Gu, R. Decreased Intra- and Inter-Salience Network Functional Connectivity is Related to Trait Anxiety in Adolescents. Front. Behav. Neurosci. 2016, 9, 350. [Google Scholar] [CrossRef]
- Coetzee, S.K.; Laschinger, H.K.S. Toward a comprehensive, theoretical model of compassion fatigue: An integrative literature review. Nurs. Health Sci. 2018, 20, 4–15. [Google Scholar] [CrossRef]
- Quesque, F.; Brass, M. The Role of the Temporoparietal Junction in Self-Other Distinction. Brain Topogr. 2019, 32, 943–955. [Google Scholar] [CrossRef]
- Martin, A.K.; Kessler, K.; Cooke, S.; Huang, J.; Meinzer, M. The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking. J. Neurosci. 2020, 40, 3089–3095. [Google Scholar] [CrossRef]
- Jääskeläinen, I.P.; Kosonogov, V. Perspective taking in the human brain: Complementary evidence from neuroimaging studies with media-based naturalistic stimuli and artificial controlled paradigms. Front. Hum. Neurosci. 2023, 17, 1051934. [Google Scholar] [CrossRef]
- Saxe, R.; Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 2003, 19, 1835–1842. [Google Scholar] [CrossRef]
- Santiesteban, I.; Banissy, M.J.; Catmur, C.; Bird, G. Functional lateralization of temporoparietal junction-imitation inhibition, visual perspective-taking and theory of mind. Eur. J. Neurosci. 2015, 42, 2527–2533. [Google Scholar] [CrossRef]
- Javadzadeh, A.; Sheikholeslami, F.; Maroufizadeh, S.; Javadi-Pashaki, N. The relationship between alexithymia and burnout in nurses: A cross-sectional study. J. Nurs. Rep. Clin. Pract. 2024, 3, 426–434. [Google Scholar] [CrossRef]
- Kittleson, A.R.; Woodward, N.D.; Heckers, S.; Sheffield, J.M. The insula: Leveraging cellular and systems-level research to better understand its roles in health and schizophrenia. Neurosci. Biobehav. Rev. 2024, 160, 105643. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, J.; Servaas, M.N.; Goerlich, K.S.; Bruggeman, R.; Horton, P.; Costafreda, S.G.; Aleman, A. Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neurosci. Biobehav. Rev. 2013, 37, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, Y.; Zhao, X.; Hu, W.; Zhang, M.; Ren, Y.; Wei, Z.; Yang, J. Stress-induced cortisol response predicts empathy for pain: The role of task-based connectivity between the insula and sensorimotor cortex during acute stress. Neurobiol. Stress 2024, 33, 100682. [Google Scholar] [CrossRef]
- Zhou, H. Relationship between empathy and burnout as well as potential affecting and mediating factors from the perspective of clinical nurses: A systematic review. BMC Nurs. 2025, 24, 38. [Google Scholar] [CrossRef]
- Cairns, P.; Isham, A.E.; Zachariae, R. The association between empathy and burnout in medical students: A systematic review and meta-analysis. BMC Med. Educ. 2024, 24, 640. [Google Scholar] [CrossRef]
- Sripada, R.K.; King, A.P.; Garfinkel, S.N.; Wang, X.; Sripada, C.S.; Welsh, R.C.; Liberzon, I. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci. 2012, 37, 241–249. [Google Scholar] [CrossRef]
- Etkin, A.; Prater, K.E.; Hoeft, F.; Menon, V.; Schatzberg, A.F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 2010, 167, 545–554. [Google Scholar] [CrossRef]
- Manto, M.; Bower, J.M.; Conforto, A.B.; Delgado-García, J.M.; da Guarda, S.N.; Gerwig, M.; Habas, C.; Hagura, N.; Ivry, R.B.; Mariën, P.; et al. Consensus paper: Roles of the cerebellum in motor control—The diversity of ideas on cerebellar involvement in movement. Cerebellum 2012, 11, 457–487. [Google Scholar] [CrossRef]
- Baumann, O.; Mattingley, J.B. Cerebellum and Emotion Processing. Adv. Exp. Med. Biol. 2022, 1378, 25–39. [Google Scholar] [PubMed]
- Moreno-Rius, J. The cerebellum under stress. Front. Neuroendocr. 2019, 54, 100774. [Google Scholar] [CrossRef] [PubMed]
- Ciapponi, C.; Li, Y.; Osorio Becerra, D.A.; Rodarie, D.; Casellato, C.; Mapelli, L.; D’Angelo, E. Variations on the theme: Focus on cerebellum and emotional processing. Front. Syst. Neurosci. 2023, 17, 1185752. [Google Scholar] [CrossRef] [PubMed]
- Chin, P.W.; Augustine, G.J. The cerebellum and anxiety. Front. Cell. Neurosci. 2023, 17, 1130505. [Google Scholar] [CrossRef]
- Zhu, J.N.; Yung, W.H.; Kwok-Chong Chow, B.; Chan, Y.S.; Wang, J.J. The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res. Rev. 2006, 52, 93–106. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Raskind, M.A.; Taylor, F.B.; Connor, D.F. The Effects of Stress Exposure on Prefrontal Cortex: Translating Basic Research into Successful Treatments for Post-Traumatic Stress Disorder. Neurobiol. Stress 2015, 1, 89–99. [Google Scholar] [CrossRef]
- Gardner, M.; Lightman, S.; Kuh, D.; Comijs, H.; Deeg, D.; Gallacher, J.; Geoffroy, M.C.; Kivimaki, M.; Kumari, M.; Power, C.; et al. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and cognitive capability at older ages: Individual participant meta-analysis of five cohorts. Sci. Rep. 2019, 9, 4555. [Google Scholar] [CrossRef]
- Sălcudean, A.; Popovici, R.A.; Pitic, D.E.; Sârbu, D.; Boroghina, A.; Jomaa, M.; Salehi, M.A.; Kher, A.A.M.; Lica, M.M.; Bodo, C.R.; et al. Unraveling the Complex Interplay Between Neuroinflammation and Depression: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 1645. [Google Scholar] [CrossRef]
- Maier, M.; Powell, D.; Murchie, P.; Allan, J.L. Systematic review of the effects of decision fatigue in healthcare professionals on medical decision-making. Health Psychol. Rev. 2025, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Hermans, E.J.; van Marle, H.J.; Luo, J.; Fernández, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 2009, 66, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.P.; Vanelzakker, M.B.; Shin, L.M. Emotion and cognition interactions in PTSD: A review of neurocognitive and neuroimaging studies. Front. Integr. Neurosci. 2012, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, J.; Kim, H.D.; Cruz, A.B. Neural correlates of executive function and attention in children with ADHD: An ALE meta-analysis of task-based functional connectivity studies. Psychiatry Res. 2025, 345, 116338. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Bellgrove, M.A.; Brikell, I.; Cortese, S.; Hartman, C.A.; Hollis, C.; Newcorn, J.H.; Philipsen, A.; Polanczyk, G.V.; Rubia, K.; et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2024, 10, 11. [Google Scholar] [CrossRef]
- Li, W.; Douglas Ward, B.; Liu, X.; Chen, G.; Jones, J.L.; Antuono, P.G.; Li, S.J.; Goveas, J.S. Disrupted small world topology and modular organisation of functional networks in late-life depression with and without amnestic mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1097–1105. [Google Scholar] [CrossRef]
- Xu, J.; Chen, F.; Lei, D.; Zhan, W.; Sun, X.; Suo, X.; Peng, Z.; Wang, T.; Zhang, J.; Gong, Q. Disrupted Functional Network Topology in Children and Adolescents with Post-traumatic Stress Disorder. Front. Neurosci. 2018, 12, 709. [Google Scholar] [CrossRef]
- Kowalczyk, O.S.; Pauls, A.M.; Fusté, M.; Williams, S.C.R.; Hazelgrove, K.; Vecchio, C.; Seneviratne, G.; Pariante, C.M.; Dazzan, P.; Mehta, M.A. Neurocognitive correlates of working memory and emotional processing in postpartum psychosis: An fMRI study. Psychol. Med. 2021, 51, 1724–1732. [Google Scholar] [CrossRef]
- Li, S.; Weerda, R.; Milde, C.; Wolf, O.T.; Thiel, C.M. Effects of acute psychosocial stress on neural activity to emotional and neutral faces in a face recognition memory paradigm. Brain Imaging Behav. 2014, 8, 598–610. [Google Scholar] [CrossRef]
- George, G.C.; Keding, T.J.; Heyn, S.A.; Herringa, R.J. Longitudinal hippocampal circuit change differentiates persistence and remission of pediatric posttraumatic stress disorder. Depress. Anxiety 2022, 39, 8–18. [Google Scholar] [CrossRef]
- Hakamata, Y.; Mizukami, S.; Izawa, S.; Moriguchi, Y.; Hori, H.; Matsumoto, N.; Hanakawa, T.; Inoue, Y.; Tagaya, H. Childhood trauma affects autobiographical memory deficits through basal cortisol and prefrontal-extrastriate functional connectivity. Psychoneuroendocrinology 2021, 127, 105172. [Google Scholar] [CrossRef]
- Goldfarb, E.V.; Rosenberg, M.D.; Seo, D.; Constable, R.T.; Sinha, R. Hippocampal seed connectome-based modeling predicts the feeling of stress. Nat. Commun. 2020, 11, 2650. [Google Scholar] [CrossRef]
- Tsuchiyagaito, A.; Sánchez, S.M.; Misaki, M.; Kuplicki, R.; Park, H.; Paulus, M.P.; Guinjoan, S.M. Intensity of repetitive negative thinking in depression is associated with greater functional connectivity between semantic processing and emotion regulation areas. Psychol. Med. 2023, 53, 5488–5499. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Zu, M.; Fan, S.; Kai, Y.; Zhang, J.; Ji, Y.; Pang, X.; Tian, Y. Electroconvulsive therapy enhances degree centrality in the orbitofrontal cortex in depressive rumination. Psychiatry Res. Neuroimaging 2024, 337, 111765. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Sacchet, M.D.; Connolly, C.G.; Margulies, D.S.; Tymofiyeva, O.; Paulus, M.P.; Simmons, A.N.; Gotlib, I.H.; Yang, T.T. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder. Neuropsychopharmacology 2017, 42, 2434–2445. [Google Scholar] [CrossRef]
- Yang, Y.; Zhen, Y.; Wang, X.; Liu, L.; Zheng, Y.; Zheng, Z.; Zheng, H.; Tang, S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front. Neurosci. 2024, 18, 1385920. [Google Scholar] [CrossRef]
- He, M.; Zhu, H.; Wang, X.; Zhou, L.; Zhang, J. Mapping PTSD-Related Brain Dysregulation with Connectome Gradient Analysis. J. Magn. Reson. Imaging 2025. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Zhang, G.W.; Sun, W.J.; Huang, J.J.; Zhang, L.I.; Tao, H.W. Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states. Nat. Commun. 2024, 15, 8575. [Google Scholar] [CrossRef] [PubMed]
- Mamsa, S.S.A.; Ellison, G.; Koehn, J.; Inder-Smith, K.; Evans, C.W.; Graham, R.M.; Howard, D.L.; Hackett, M.J. Correlative analysis of metallomic gene expression and metal ion content within the mouse hippocampus. Metallomics 2025, 17, mfaf009. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Q.; Liu, Y.; Zhang, Y.; Sun, L.; Ma, X.; Song, N.; Xie, J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct. Target. Ther. 2025, 10, 31. [Google Scholar] [CrossRef]
- Tarnacka, B.; Jopowicz, A.; Maślińska, M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int. J. Mol. Sci. 2021, 22, 7820. [Google Scholar] [CrossRef]
- Badia-Soteras, A.; Mak, A.; Blok, T.M.; Boers-Escuder, C.; van den Oever, M.C.; Min, R.; Smit, A.B.; Verheijen, M.H.G. Astrocyte-Synapse Structural Plasticity in Neurodegenerative and Neuropsychiatric Diseases. Biol. Psychiatry 2025, in press. [Google Scholar] [CrossRef]
- Yao, T.; Chao, Y.P.; Huang, C.M.; Lee, H.C.; Liu, C.Y.; Li, K.W.; Hsu, A.L.; Tung, Y.T.; Wu, C.W. Impacts of night shift on medical professionals: A pilot study of brain connectivity and gut microbiota. Front. Neurosci. 2025, 19, 1503176. [Google Scholar] [CrossRef]
- Murata, E.M.; Pritschet, L.; Grotzinger, H.; Taylor, C.M.; Jacobs, E.G. Circadian Rhythms Tied to Changes in Brain Morphology in a Densely Sampled Male. J Neurosci 2024, 44, e0573242024. [Google Scholar] [CrossRef]
- Thornton, C.; Panagiotopoulou, M.; Chowdhury, F.A.; Diehl, B.; Duncan, J.S.; Gascoigne, S.J.; Besne, G.; McEvoy, A.W.; Miserocchi, A.; Smith, B.C.; et al. Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo. Nat. Commun. 2024, 15, 8527. [Google Scholar] [CrossRef] [PubMed]
- Fendel, J.C.; Bürkle, J.J.; Göritz, A.S. Mindfulness-Based Interventions to Reduce Burnout and Stress in Physicians: A Systematic Review and Meta-Analysis. Acad. Med. 2021, 96, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, H.J.; Bin Mahmud, M.S.; Rajendran, P.; Jiang, Y.; Cheng, L.; Wang, W. Effectiveness of mindfulness-based interventions on psychological well-being, burnout and post-traumatic stress disorder among nurses: A systematic review and meta-analysis. J. Clin. Nurs. 2023, 32, 2323–2338. [Google Scholar] [CrossRef] [PubMed]
- Suleiman-Martos, N.; Gomez-Urquiza, J.L.; Aguayo-Estremera, R.; Cañadas-De La Fuente, G.A.; De La Fuente-Solana, E.I.; Albendín-García, L. The effect of mindfulness training on burnout syndrome in nursing: A systematic review and meta-analysis. J. Adv. Nurs. 2020, 76, 1124–1140. [Google Scholar] [CrossRef]
- Hathaisaard, C.; Wannarit, K.; Pattanaseri, K. Mindfulness-based interventions reducing and preventing stress and burnout in medical students: A systematic review and meta-analysis. Asian J. Psychiatry 2022, 69, 102997. [Google Scholar] [CrossRef]
- Gomutbutra, P.; Yingchankul, N.; Chattipakorn, N.; Chattipakorn, S.; Srisurapanont, M. The Effect of Mindfulness-Based Intervention on Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Controlled Trials. Front. Psychol. 2020, 11, 2209. [Google Scholar] [CrossRef]
- Chmiel, J.; Malinowska, A.; Rybakowski, F.; Leszek, J. The Effectiveness of Mindfulness in the Treatment of Methamphetamine Addiction Symptoms: Does Neuroplasticity Play a Role? Brain Sci. 2024, 14, 320. [Google Scholar] [CrossRef]
- Hölzel, B.K.; Carmody, J.; Vangel, M.; Congleton, C.; Yerramsetti, S.M.; Gard, T.; Lazar, S.W. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. Neuroimaging 2011, 191, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T.; McGarvey, M.; Quinn, B.T.; Dusek, J.A.; Benson, H.; et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Gotink, R.A.; Vernooij, M.W.; Ikram, M.A.; Niessen, W.J.; Krestin, G.P.; Hofman, A.; Tiemeier, H.; Hunink, M.G.M. Meditation and yoga practice are associated with smaller right amygdala volume: The Rotterdam study. Brain Imaging Behav. 2018, 12, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Taren, A.A.; Gianaros, P.J.; Greco, C.M.; Lindsay, E.K.; Fairgrieve, A.; Brown, K.W.; Rosen, R.K.; Ferris, J.L.; Julson, E.; Marsland, A.L.; et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: A randomized controlled trial. Soc. Cogn. Affect. Neurosci. 2015, 10, 1758–1768. [Google Scholar] [CrossRef]
- Mas-Cuesta, L.; Baltruschat, S.; Cándido, A.; Verdejo-Lucas, C.; Catena-Verdejo, E.; Catena, A. Brain changes following mindfulness: Reduced caudate volume is associated with decreased positive urgency. Behav. Brain Res. 2024, 461, 114859. [Google Scholar] [CrossRef]
- Bremer, B.; Wu, Q.; Mora Álvarez, M.G.; Hölzel, B.K.; Wilhelm, M.; Hell, E.; Tavacioglu, E.E.; Torske, A.; Koch, K. Mindfulness meditation increases default mode, salience, and central executive network connectivity. Sci. Rep. 2022, 12, 13219. [Google Scholar] [CrossRef]
- Doll, A.; Hölzel, B.K.; Boucard, C.C.; Wohlschläger, A.M.; Sorg, C. Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Front. Hum. Neurosci. 2015, 9, 461. [Google Scholar] [CrossRef]
- Yue, W.L.; Ng, K.K.; Koh, A.J.; Perini, F.; Doshi, K.; Zhou, J.H.; Lim, J. Mindfulness-based therapy improves brain functional network reconfiguration efficiency. Transl. Psychiatry 2023, 13, 345. [Google Scholar] [CrossRef]
- Qin, K.; Lei, D.; Yang, J.; Li, W.; Tallman, M.J.; Duran, L.R.P.; Blom, T.J.; Bruns, K.M.; Cotton, S.; Sweeney, J.A.; et al. Network-level functional topological changes after mindfulness-based cognitive therapy in mood dysregulated adolescents at familial risk for bipolar disorder: A pilot study. BMC Psychiatry 2021, 21, 213. [Google Scholar] [CrossRef]
- Sharp, P.B.; Sutton, B.P.; Paul, E.J.; Sherepa, N.; Hillman, C.H.; Cohen, N.J.; Kramer, A.F.; Prakash, R.S.; Heller, W.; Telzer, E.H.; et al. Mindfulness training induces structural connectome changes in insula networks. Sci. Rep. 2018, 8, 7929. [Google Scholar] [CrossRef]
- Naczenski, L.M.; Vries, J.D.; Hooff, M.L.M.V.; Kompier, M.A.J. Systematic review of the association between physical activity and burnout. J. Occup. Health 2017, 59, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Ochentel, O.; Humphrey, C.; Pfeifer, K. Efficacy of Exercise Therapy in Persons with Burnout. A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2018, 17, 475–484. [Google Scholar]
- Mincarone, P.; Bodini, A.; Tumolo, M.R.; Sabina, S.; Colella, R.; Mannini, L.; Sabato, E.; Leo, C.G. Association Between Physical Activity and the Risk of Burnout in Health Care Workers: Systematic Review. JMIR Public Health Surveill. 2024, 10, e49772. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef]
- Verstynen, T.D.; Lynch, B.; Miller, D.L.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Basak, C.; Szabo, A.; Olson, E.A.; Wojcicki, T.R.; et al. Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults. J. Aging Res. 2012, 2012, 939285. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, C.; Martínez, R.M.; Etnier, J.L.; Cheng, Y. Habitual physical activity mediates the acute exercise-induced modulation of anxiety-related amygdala functional connectivity. Sci. Rep. 2019, 9, 19787. [Google Scholar] [CrossRef]
- Ko, Y.W.; Kim, S.M.; Kang, K.D.; Han, D.H. Changes in Functional Connectivity Between Default Mode Network and Attention Network in Response to Changes in Aerobic Exercise Intensity. Psychiatry Investig. 2023, 20, 27–34. [Google Scholar] [CrossRef]
- Walsh, E.I.; Smith, L.; Northey, J.; Rattray, B.; Cherbuin, N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res. Rev. 2020, 60, 101044. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Pierce, J.R. Insulin-like growth factor I as a biomarker of health, fitness, and training status. Med. Sci. Sports Exerc. 2010, 42, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Balberova, O.V.; Bykov, E.V.; Shnayder, N.A.; Petrova, M.M.; Gavrilyuk, O.A.; Kaskaeva, D.S.; Soloveva, I.A.; Petrov, K.V.; Mozheyko, E.Y.; Medvedev, G.V.; et al. The “Angiogenic Switch” and Functional Resources in Cyclic Sports Athletes. Int. J. Mol. Sci. 2021, 22, 6496. [Google Scholar] [CrossRef]
- Liu, P.Z.; Nusslock, R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front. Neurosci. 2018, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Brockett, A.T.; LaMarca, E.A.; Gould, E. Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS ONE 2015, 10, e0124859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Tan, J.; Zhou, H.H.; Cao, M.; Zou, Y. Long-term exercise training and inflammatory biomarkers in healthy subjects: A meta-analysis of randomized controlled trials. Front. Psychol. 2023, 14, 1253329. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.L.; Hansen, I.; Bogdan, R. A systematic review of structural neuroimaging markers of psychotherapeutic and pharmacological treatment for obsessive-compulsive disorder. Front. Psychiatry 2025, 15, 1432253. [Google Scholar] [CrossRef]
- Schrammen, E.; Roesmann, K.; Rosenbaum, D.; Redlich, R.; Harenbrock, J.; Dannlowski, U.; Leehr, E.J. Functional neural changes associated with psychotherapy in anxiety disorders—A meta-analysis of longitudinal fMRI studies. Neurosci. Biobehav. Rev. 2022, 142, 104895. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, H.; Wu, Y.; Xu, H.; Yu, J.; Zhong, Y.; Zhang, N.; Li, J.; Xu, Q.; Wang, C. Neural Effects of Cognitive Behavioral Therapy in Psychiatric Disorders: A Systematic Review and Activation Likelihood Estimation Meta-Analysis. Front. Psychol. 2022, 13, 853804. [Google Scholar] [CrossRef]
- Manthey, A.; Sierk, A.; Brakemeier, E.L.; Walter, H.; Daniels, J.K. Does trauma-focused psychotherapy change the brain? A systematic review of neural correlates of therapeutic gains in PTSD. Eur. J. Psychotraumatology 2021, 12, 1929025. [Google Scholar] [CrossRef]
- Sankar, A.; Melin, A.; Lorenzetti, V.; Horton, P.; Costafreda, S.G.; Fu, C.H.Y. A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Res. Neuroimaging 2018, 279, 31–39. [Google Scholar] [CrossRef]
- Barsaglini, A.; Sartori, G.; Benetti, S.; Pettersson-Yeo, W.; Mechelli, A. The effects of psychotherapy on brain function: A systematic and critical review. Prog. Neurobiol. 2014, 114, 1–14. [Google Scholar] [CrossRef]
- La Buissonniere-Ariza, V.; Fitzgerald, K.; Meoded, A.; Williams, L.L.; Liu, G.; Goodman, W.K.; Storch, E.A. Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J. Affect. Disord. 2021, 282, 1288–1307. [Google Scholar] [CrossRef] [PubMed]
- Machado-Sousa, M.; Bertolín, S.; Picó-Pérez, M.; Costa, A.D.; Vieira, R.; Alonso, P.; Menchón, J.M.; Morgado, P.; Soriano-Mas, C. Neurobiological correlates of CBT response in OCD through the analysis of resting state networks. Int. J. Clin. Health Psychol. 2025, 25, 100585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kircher, T.; Straube, B. The neural correlates of cognitive behavioral therapy: Recent progress in the investigation of patients with panic disorder. Behav. Res. Ther. 2014, 62, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Girelli, F.; Rossetti, M.G.; Perlini, C.; Bellani, M. Neural correlates of cognitive behavioral therapy-based interventions for bipolar disorder: A scoping review. J. Psychiatr. Res. 2024, 172, 351–359. [Google Scholar] [CrossRef]
- Seminowicz, D.A.; Shpaner, M.; Keaser, M.L.; Krauthamer, G.M.; Mantegna, J.; Dumas, J.A.; Newhouse, P.A.; Filippi, C.G.; Keefe, F.J.; Naylor, M.R. Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J. Pain 2013, 14, 1573–1584. [Google Scholar] [CrossRef]
- Mason, L.; Peters, E.; Williams, S.C.; Kumari, V. Brain connectivity changes occurring following cognitive behavioural therapy for psychosis predict long-term recovery. Transl. Psychiatry 2017, 7, e1001. [Google Scholar] [CrossRef]
- Meier, S.K.; Ray, K.L.; Waller, N.C.; Gendron, B.C.; Aytur, S.A.; Robin, D.A. Network Analysis of Induced Neural Plasticity Post-Acceptance and Commitment Therapy for Chronic Pain. Brain Sci. 2020, 11, 10. [Google Scholar] [CrossRef]
- Klimecki, O.M.; Leiberg, S.; Ricard, M.; Singer, T. Differential pattern of functional brain plasticity after compassion and empathy training. Soc. Cogn. Affect. Neurosci. 2014, 9, 873–879. [Google Scholar] [CrossRef]
- Krause, F.; Kogias, N.; Krentz, M.; Lührs, M.; Goebel, R.; Hermans, E.J. Self-regulation of stress-related large-scale brain network balance using real-time fMRI neurofeedback. Neuroimage 2021, 243, 118527. [Google Scholar] [CrossRef]
- Misaki, M.; Phillips, R.; Zotev, V.; Wong, C.K.; Wurfel, B.E.; Krueger, F.; Feldner, M.; Bodurka, J. Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: A connectome-wide investigation. Neuroimage Clin. 2018, 20, 543–555. [Google Scholar] [CrossRef]
- Zhao, Z.; Duek, O.; Seidemann, R.; Gordon, C.; Walsh, C.; Romaker, E.; Koller, W.N.; Horvath, M.; Awasthi, J.; Wang, Y.; et al. Amygdala downregulation training using fMRI neurofeedback in post-traumatic stress disorder: A randomized, double-blind trial. Transl. Psychiatry 2023, 13, 177. [Google Scholar] [CrossRef]
- Zhang, Y.; Becker, B.; Kendrick, K.M.; Zhang, Q.; Yao, S. Self-navigating the “Island of Reil”: A systematic review of real-time fMRI neurofeedback training of insula activity. Transl. Psychiatry 2025, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- Kratzke, I.M.; Campbell, A.; Yefimov, M.N.; Mosaly, P.R.; Adapa, K.; Meltzer-Brody, S.; Farrell, T.M.; Mazur, L.M. Pilot Study Using Neurofeedback as a Tool to Reduce Surgical Resident Burnout. J. Am. Coll. Surg. 2021, 232, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, J.; Haller, S.; Scharnowski, F.; Weiskopf, N.; Birbaumer, N.; Blefari, M.L.; Bruehl, A.B.; Cohen, L.G.; DeCharms, R.C.; Gassert, R.; et al. Real-time fMRI neurofeedback: Progress and challenges. Neuroimage 2013, 76, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, S.; Nakamura, M.; Noda, Y.; Izuno, T.; Saeki, T.; Iwanari, H.; Hirayasu, Y. Lateralized hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Psychiatry Clin. Neurosci. 2017, 71, 747–758. [Google Scholar] [CrossRef]
- Boes, A.D.; Uitermarkt, B.D.; Albazron, F.M.; Lan, M.J.; Liston, C.; Pascual-Leone, A.; Dubin, M.J.; Fox, M.D. Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul 2018, 11, 575–581. [Google Scholar] [CrossRef]
- Gajawelli, N.; Geoly, A.D.; Batail, J.M.; Xiao, X.; Maron-Katz, A.; Cole, E.; Azeez, A.; Kratter, I.H.; Saggar, M.; Williams, N.R. Increased anti-correlation between the left dorsolateral prefrontal cortex and the default mode network following Stanford Neuromodulation Therapy (SNT): Analysis of a double-blinded, randomized, sham-controlled trial. NPJ Ment. Health Res. 2024, 3, 35. [Google Scholar] [CrossRef]
- Beynel, L.; Campbell, E.; Naclerio, M.; Galla, J.T.; Ghosal, A.; Michael, A.M.; Kimbrel, N.A.; Davis, S.W.; Appelbaum, L.G. The Effects of Functionally Guided, Connectivity-Based rTMS on Amygdala Activation. Brain Sci. 2021, 11, 494. [Google Scholar] [CrossRef]
- Guan, M.; Xie, Y.; Wang, Z.; Miao, Y.; Li, X.; Yu, S.; Wang, H.N. Brain connectivity and transcriptional changes induced by rTMS in first-episode major depressive disorder. Transl. Psychiatry 2025, 15, 159. [Google Scholar] [CrossRef]
- Van Noppen, P.; van Dun, K.; Depestele, S.; Verstraelen, S.; Meesen, R.; Manto, M. Transcranial direct current stimulation and attention skills in burnout patients: A randomized blinded sham-controlled pilot study. F1000Res 2020, 9, 116. [Google Scholar] [CrossRef]
- Adams, T.G.; Cisler, J.M.; Kelmendi, B.; George, J.R.; Kichuk, S.A.; Averill, C.L.; Anticevic, A.; Abdallah, C.G.; Pittenger, C. Transcranial direct current stimulation targeting the medial prefrontal cortex modulates functional connectivity and enhances safety learning in obsessive-compulsive disorder: Results from two pilot studies. Depress. Anxiety 2022, 39, 37–48. [Google Scholar] [CrossRef]
- Shoker, D.; Desmet, L.; Ledoux, N.; Héron, A. Effects of standardized mindfulness programs on burnout: A systematic review and original analysis from randomized controlled trials. Front. Public Health 2024, 12, 1381373. [Google Scholar] [CrossRef]
- Cohen, C.; Pignata, S.; Bezak, E.; Tie, M.; Childs, J. Workplace interventions to improve well-being and reduce burnout for nurses, physicians and allied healthcare professionals: A systematic review. BMJ Open 2023, 13, e071203. [Google Scholar] [CrossRef]
- Ong, N.Y.; Teo, F.J.J.; Ee, J.Z.Y.; Yau, C.E.; Thumboo, J.; Tan, H.K.; Ng, Q.X. Effectiveness of mindfulness-based interventions on the well-being of healthcare workers: A systematic review and meta-analysis. Gen. Psychiatry 2024, 37, e101115. [Google Scholar] [CrossRef] [PubMed]
Reference | Participants (Groups & n) | MRI Modality/Paradigm | Key Brain Regions & Direction of Effect | Burnout Dimension(s) Linked | Notable Moderators/Comments |
---|---|---|---|---|---|
Structural MRI | |||||
[26] | Exhaustion-syndrome 58 (22 M/36 F) vs. 65 controls | Structural MRI–amygdala/hippocampus subfields | Females only: ↑ Basal, Lateral, Central amygdala nuclei & whole amygdala (bilateral) | Occupational stress (MBI-GS) | Sex-specific hypertrophy; no hippocampal change |
[27] | Nurses 43 (32 F) | VBM (structural) | ↑ Burnout → ↓ GM in bilateral vmPFC & Left Insula (EE); ↓ Left vmPFC & Thalamus (DP) | Emotional exhaustion, depersonalization | vmPFC central node for stress modulation |
[28] | Exhaustion disorder 55 (High MF 30/Low-Mod 25) | Structural MRI | High mental fatigue → ↓ Caudate & Putamen volumes | Mental fatigue (CIS) | Caudate volume ↔ working-memory via fatigue (mediated) |
[29] | Chronic stress 30 vs. Controls 68 | VBM + manual volumetry | ↓ ACC & bilateral MFG GM; ↓ Caudate & Putamen volumes; no hippocampal/amygdala change | Burnout severity (MBI-GS) | Frontostriatal atrophy correlates with perceived stress |
[30] | Exhaustion syndrome 48 (↺ 25) vs. Controls 80 (↺ 19) | Structural MRI (baseline & 1.5-yr follow-up) | Baseline: ↓ PFC thickness, ↓ Caudate (♂), ↑ Amygdala (♀), ↓ STG; Follow-up: PFC & Caudate recover, Amygdala persists | Chronic stress | Pronounced sex differences; partial reversibility with rehab |
[31] | Burnout 40 vs. Controls 40 | Structural MRI | ↓ mPFC thickness; ↑ Amygdala volume; ↓ Caudate volume | Perceived stress/exhaustion | mPFC thinning ages faster under stress |
[34] | ED women 300 | Structural MRI–LPFC thickness | Small positive relation: stress ↑ ↔ thicker LPFC; LPFC unrelated to cognitive fatigue | Perceived stress; cognitive weariness | LPFC thickness neither mediates nor moderates stress–fatigue link |
[39] | Exhaustion women 20 vs. Controls 16 | Structural MRI–Hippocampal volumetry | No hippocampal change; cognitive deficits linked to blunted ACTH (not cortisol) & ↑ IL-1β | Burnout | Personality (↑ Harm avoidance) moderates vulnerability |
Functional MRI | |||||
[32] | Burnout 55 vs. Healthy 61 | Task-fMRI–ScanSTRESS | No mean activation differences; dACC: BO ↑, HC ↓ across time (exposure-time effect) | Burnout severity | dACC “neuro-inflexibility” may precede clinical burnout |
[25] | Physicians: Residents (10) vs. Faculty (17) | Task-fMRI–clinical reasoning (answer → read; reflect → read) |
| Emotional exhaustion ↑ activity; depersonalization ↓ activity | Effects only in residents → greater cognitive load & inefficiency |
[33] | Nurses (♀) 39 baseline → follow-up | Longitudinal rs-fMRI | Post-burnout: ↓ Rich-club, Feeder, Local connectivity (esp. mid/long range); weakened precuneus–basal-ganglia links | Emotional exhaustion; anxiety | Connectivity decline tracks symptom progression |
[35] | Nurses 25 | Task-fMRI–Empathy for pain | Higher burnout → ↓ AI/IFG & TPJ activation to pain | Emotional exhaustion, depersonalization | Supports emotional-dissonance (not compassion-fatigue) model |
[36] | Work-stress 40 vs. Controls 70 | rs-fMRI + EMG | Burnout: weaker amygdala → mPFC/dlPFC connectivity; stronger amygdala → Insula/Cerebellum; impaired down-regulation of negative affect | MBI-GS | Connectivity with ACC predicts emotion-regulation success |
[37] | Pediatric residents 28 | Task-fMRI–Stroop | Burnout ↑ → ↑ Right MFG/DLPFC activation (incongruent > congruent) | EE + DP composite | Indicates reduced cognitive efficiency under burnout |
[38] | Women: LTSL 10 vs. MDD 10 vs. Controls 10 | Task-fMRI–2-back & CVMT | LTSL group: hypoactivation in Left VLPFC & Right DLPFC (2-back); flattened diurnal cortisol | Work-stress burnout | Distinct from MDD despite similar symptoms |
[40] | Burnout 32 vs. Controls 30 | rs-fMRI + Graph theory | Burnout: ↑ Path length, ↓ Global efficiency; nodal ↑ Cuneus/Occipital, ↓ ACC centrality; ↓ Effective connectivity visual → Right Hippocampus | Full MBI | Suggests impaired global integration & sensory-memory loops |
[41] | Female nurses 33 vs. 32 | rs-fMRI + Gradient mapping + Transcriptomics | Burnout: distorted functional gradients (↑ eccentricity) in somatomotor & visual networks; linked to genes for circadian rhythm (↑) & synaptic function (↓) | EE & DP severity | Connectome changes map onto cell-type-specific gene sets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Kurpas, D. Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies. Int. J. Mol. Sci. 2025, 26, 8379. https://doi.org/10.3390/ijms26178379
Chmiel J, Kurpas D. Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies. International Journal of Molecular Sciences. 2025; 26(17):8379. https://doi.org/10.3390/ijms26178379
Chicago/Turabian StyleChmiel, James, and Donata Kurpas. 2025. "Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies" International Journal of Molecular Sciences 26, no. 17: 8379. https://doi.org/10.3390/ijms26178379
APA StyleChmiel, J., & Kurpas, D. (2025). Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies. International Journal of Molecular Sciences, 26(17), 8379. https://doi.org/10.3390/ijms26178379