T Cell Activation Induces Synthesis of CD47 Proteoglycan Isoforms and Their Release in Extracellular Vesicles
Abstract
1. Introduction
2. Results
2.1. Activation- and Thrombospondin-1-Dependent Regulation of T-Cell Proteoglycan Biosynthesis
2.2. T Cell Activation Induces Release of Proteoglycan Isoforms of CD47 and APLP2
2.3. Activation Stimulates Release of Proteoglycan Isoforms of CD47 and APLP2 by Primary Human T Cells
2.4. T Cell Activation Stiumulates the Release of CD47 and APLP2 Glycoforms Associated with EVs
2.5. B Cell Line Activation Modulates CD47 Glycosylation and Release in EVs
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Reagents
4.2. Primary T Cell Isolation
4.3. Proteoglycan and Glycosaminoglycan Analysis
4.4. Extracellular Vesicle Extraction and Metabolic Labelling
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APLP2 | Amyloid precursor-like protein-2 |
CHPF | Chondroitin polymerizing factor |
CHST | Carbohydrate sulfotransferase |
CHSY | Chondroitin sulfate synthase |
EVs | Extracellular vesicles |
EXT | Exostosin glycosyltransferase |
HSPG | Heparan sulfate proteoglycan |
NDST | N-deacetylase/N-sulfotransferase (heparan glucosaminyl) |
PMA | Phorbol 12-myristate 13-acetate |
SDS | Sodium dodecyl sulfate |
SIRPα | Signal regulatory protein-α |
TSP1 | Thrombospondin-1 |
References
- Medeiros, G.F.; Mendes, A.; Castro, R.A.; Bau, E.C.; Nader, H.B.; Dietrich, C.P. Distribution of sulfated glycosaminoglycans in the animal kingdom: Widespread occurrence of heparin-like compounds in invertebrates. Biochim. Biophys. Acta 2000, 1475, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Esko, J.D.; Linhardt, R.J. Proteins that Bind Sulfated Glycosaminoglycans. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor: New York, NY, USA, 2009. [Google Scholar]
- Esko, J.D.; Linhardt, R.J.; Prestegard, J.P. Proteins That Bind Sulfated Glycosaminoglycans. In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Eds.; Cold Spring Harbor: New York, NY, USA, 2015; pp. 493–502. [Google Scholar]
- Gallagher, J.T.; Walker, A. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem. J. 1985, 230, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Stringer, S.E.; Gallagher, J.T. Heparan sulphate. Int. J. Biochem. Cell Biol. 1997, 29, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, B.L.; Melrose, J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int. J. Mol. Sci. 2023, 24, 14101. [Google Scholar] [CrossRef]
- Iozzo, R.V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Afratis, N.; Gialeli, C.; Nikitovic, D.; Tsegenidis, T.; Karousou, E.; Theocharis, A.D.; Pavao, M.S.; Tzanakakis, G.N.; Karamanos, N.K. Glycosaminoglycans: Key players in cancer cell biology and treatment. FEBS J. 2012, 279, 1177–1197. [Google Scholar] [CrossRef]
- Xu, D.; Prestegard, J.H.; Linhardt, R.J.; Esko, J.D. Proteins That Bind Sulfated Glycosaminoglycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor: New York, NY, USA, 2022; pp. 517–528. [Google Scholar]
- Bishop, J.R.; Schuksz, M.; Esko, J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446, 1030–1037. [Google Scholar] [CrossRef]
- De Cat, B.; David, G. Developmental roles of the glypicans. Semin. Cell Dev. Biol. 2001, 12, 117–125. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Cheng, W.; Hou, B.; Wong, R.C.W. The Role of Heparan Sulfate in Bone Repair and Regeneration. Calcif. Tissue Int. 2025, 116, 102. [Google Scholar] [CrossRef]
- Ye, F.; Li, M.; Liu, M.; Wu, X.; Tian, F.; Gong, Y.; Cao, Y.; Zhang, J.; Zhang, X.; Qin, C.; et al. Co-Aggregation of Syndecan-3 with beta-Amyloid Aggravates Neuroinflammation and Cognitive Impairment in 5xFAD Mice. Int. J. Mol. Sci. 2025, 26, 5502. [Google Scholar] [CrossRef]
- Parish, C.R. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 2006, 6, 633–643. [Google Scholar] [CrossRef]
- Ghatak, S.; Maytin, E.V.; Mack, J.A.; Hascall, V.C.; Atanelishvili, I.; Moreno Rodriguez, R.; Markwald, R.R.; Misra, S. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int. J. Cell Biol. 2015, 2015, 834893. [Google Scholar] [CrossRef] [PubMed]
- Dreyfuss, J.L.; Regatieri, C.V.; Jarrouge, T.R.; Cavalheiro, R.P.; Sampaio, L.O.; Nader, H.B. Heparan sulfate proteoglycans: Structure, protein interactions and cell signaling. An. Acad. Bras. Cienc. 2009, 81, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Whitelock, J.; Melrose, J. Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3, 739–751. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Sadasivam, M.; Hamad, A.R.A. Syndecan-1-coating of interleukin-17-producing natural killer T cells provides a specific method for their visualization and analysis. World J. Diabetes 2017, 8, 130–134. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Sadasivam, M.; Hamad, A.R.A. Unexpected alliance between syndecan-1 and innate-like T cells to protect host from autoimmune effects of interleukin-17. World J. Diabetes 2018, 9, 220–225. [Google Scholar] [CrossRef]
- De Francesco, M.A.; Baronio, M.; Poiesi, C. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production. J. Biol. Chem. 2011, 286, 19541–19548. [Google Scholar] [CrossRef]
- Liu, L.; Takeda, K.; Akkoyunlu, M. Disease Stage-Specific Pathogenicity of CD138 (Syndecan 1)-Expressing T Cells in Systemic Lupus Erythematosus. Front. Immunol. 2020, 11, 1569. [Google Scholar] [CrossRef]
- Xie, T.; Liu, X.; Li, P. CD138 promotes the accumulation and activation of autoreactive T cells in autoimmune MRL/lpr mice. Exp. Ther. Med. 2023, 26, 568. [Google Scholar] [CrossRef]
- Kouwenberg, M.; Rops, A.; Bakker-van Bebber, M.; Diepeveen, L.; Gotte, M.; Hilbrands, L.; van der Vlag, J. Role of syndecan-1 in the interaction between dendritic cells and T cells. PLoS ONE 2020, 15, e0230835. [Google Scholar] [CrossRef]
- Novelli, L.; Barbati, C.; Ceccarelli, F.; Perricone, C.; Spinelli, F.R.; Alessandri, C.; Valesini, G.; Perricone, R.; Conti, F. CD44v3 and CD44v6 isoforms on T cells are able to discriminate different disease activity degrees and phenotypes in systemic lupus erythematosus patients. Lupus 2019, 28, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, Q.; Guo, Y.; Li, S.; Chen, Z.; Liu, K.; Cao, L.; Xie, M.; Wang, Y.; Jiang, Y.; et al. Serum syndecan-1 is related to severity and prognosis of COVID-19 patients: A perspective cohort study. BMC Pulm. Med. 2025, 25, 296. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.K.; Li, Y.; Luo, G. Syndecan 2 proteoglycan serves as a hepatitis B virus cell attachment receptor. J. Virol. 2025, 99, e0079625. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H.; Bezerra, F.F.; Soares, P.A.G. Sulfated Glycans in HIV Infection and Therapy. Curr. Pharm. Des. 2017, 23, 3405–3414. [Google Scholar] [CrossRef]
- Urbinati, C.; Milanesi, M.; Lauro, N.; Bertelli, C.; David, G.; D’Ursi, P.; Rusnati, M.; Chiodelli, P. HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021, 26, 7488. [Google Scholar] [CrossRef]
- Si, J.; Li, W.; Li, X.; Cao, L.; Chen, Z.; Jiang, Z. Heparanase confers temozolomide resistance by regulation of exosome secretion and circular RNA composition in glioma. Cancer Sci. 2021, 112, 3491–3506. [Google Scholar] [CrossRef]
- Thompson, C.A.; Purushothaman, A.; Ramani, V.C.; Vlodavsky, I.; Sanderson, R.D. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. 2013, 288, 10093–10099. [Google Scholar] [CrossRef]
- Wittrup, A.; Zhang, S.H.; ten Dam, G.B.; van Kuppevelt, T.H.; Bengtson, P.; Johansson, M.; Welch, J.; Morgelin, M.; Belting, M. ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: Evidence for heparan sulfate epitope specificity and role of both syndecan and glypican. J. Biol. Chem. 2009, 284, 32959–32967. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef]
- Indira Chandran, V.; Welinder, C.; Mansson, A.S.; Offer, S.; Freyhult, E.; Pernemalm, M.; Lund, S.M.; Pedersen, S.; Lehtio, J.; Marko-Varga, G.; et al. Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma. Clin. Cancer Res. 2019, 25, 3115–3127. [Google Scholar] [CrossRef]
- Oldenborg, P.A.; Zheleznyak, A.; Fang, Y.F.; Lagenaur, C.F.; Gresham, H.D.; Lindberg, F.P. Role of CD47 as a marker of self on red blood cells. Science 2000, 288, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.N.; Van den Berg, T.K. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: Structure, function, and therapeutic target. Annu. Rev. Immunol. 2014, 32, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Autio, A.; Wang, H.; Velazquez, F.; Newton, G.; Parkos, C.A.; Engel, P.; Engelbertsen, D.; Lichtman, A.H.; Luscinskas, F.W. SIRPalpha—CD47 axis regulates dendritic cell-T cell interactions and TCR activation during T cell priming in spleen. PLoS ONE 2022, 17, e0266566. [Google Scholar] [CrossRef] [PubMed]
- Soto-Pantoja, D.R.; Kaur, S.; Roberts, D.D. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 212–230. [Google Scholar] [CrossRef]
- Kaur, S.; Roberts, D.D. Emerging functions of thrombospondin-1 in immunity. Semin. Cell Dev. Biol. 2024, 155 Pt B, 22–31. [Google Scholar] [CrossRef]
- Li, Z.; He, L.; Wilson, K.E.; Roberts, D.D. Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation. J. Immunol. 2001, 166, 2427–2436. [Google Scholar] [CrossRef]
- Li, Z.; Calzada, M.J.; Sipes, J.M.; Cashel, J.A.; Krutzsch, H.C.; Annis, D.; Mosher, D.F.; Roberts, D.D. Interactions of thrombospondins with a4b1 integrin and CD47 differentially modulate T cell behavior. J. Cell Biol. 2002, 157, 509–519. [Google Scholar] [CrossRef]
- Lamy, L.; Foussat, A.; Brown, E.J.; Bornstein, P.; Ticchioni, M.; Bernard, A. Interactions between CD47 and thrombospondin reduce inflammation. J. Immunol. 2007, 178, 5930–5939. [Google Scholar] [CrossRef]
- Kaur, S.; Kuznetsova, S.A.; Pendrak, M.L.; Sipes, J.M.; Romeo, M.J.; Li, Z.; Zhang, L.; Roberts, D.D. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J. Biol. Chem. 2011, 286, 14991–15002. [Google Scholar] [CrossRef]
- Ramanathan, S.; Mazzalupo, S.; Boitano, S.; Montfort, W.R. Thrombospondin-1 and angiotensin II inhibit soluble guanylyl cyclase through an increase in intracellular calcium concentration. Biochemistry 2011, 50, 7787–7799. [Google Scholar] [CrossRef]
- Miller, T.W.; Kaur, S.; Ivins-O’Keefe, K.; Roberts, D.D. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol. 2013, 32, 316–324. [Google Scholar] [CrossRef]
- Soto-Pantoja, D.R.; Terabe, M.; Ghosh, A.; Ridnour, L.A.; DeGraff, W.G.; Wink, D.A.; Berzofsky, J.A.; Roberts, D.D. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014, 74, 6771–6783. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.L.; Nath, P.R.; Allgauer, M.; Lessey-Morillon, E.C.; Sipes, J.M.; Ridnour, L.A.; Morillon Ii, Y.M.; Yu, Z.; Restifo, N.P.; Roberts, D.D. Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of mice bearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunol. Immunother. 2019, 68, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Stirling, E.R.; Terabe, M.; Wilson, A.S.; Kooshki, M.; Yamaleyeva, L.M.; Alexander-Miller, M.A.; Zhang, W.; Miller, L.D.; Triozzi, P.L.; Soto-Pantoja, D.R. Targeting the CD47/thrombospondin-1 signaling axis regulates immune cell bioenergetics in the tumor microenvironment to potentiate antitumor immune response. J. Immunother. Cancer 2022, 10, e004712. [Google Scholar] [CrossRef] [PubMed]
- Cham, L.B.; Rosas-Umbert, M.; Lin, L.; Tolstrup, M.; Sogaard, O.S. Single-Cell Analysis Reveals That CD47 mRNA Expression Correlates with Immune Cell Activation, Antiviral Isgs, and Cytotoxicity. Cell Physiol. Biochem. 2024, 58, 322–335. [Google Scholar] [PubMed]
- Brandhorst, T.T.; Roy, R.; Wuthrich, M.; Nanjappa, S.; Filutowicz, H.; Galles, K.; Tonelli, M.; McCaslin, D.R.; Satyshur, K.; Klein, B. Structure and function of a fungal adhesin that binds heparin and mimics thrombospondin-1 by blocking T cell activation and effector function. PLoS Pathog. 2013, 9, e1003464. [Google Scholar] [CrossRef]
- Allen, L.B.; Capps, B.E.; Miller, E.C.; Clemmons, D.R.; Maile, L.A. Glucose-oxidized low-density lipoproteins enhance insulin-like growth factor I-stimulated smooth muscle cell proliferation by inhibiting integrin-associated protein cleavage. Endocrinology 2009, 150, 1321–1329. [Google Scholar] [CrossRef]
- Maile, L.A.; Capps, B.E.; Miller, E.C.; Allen, L.B.; Veluvolu, U.; Aday, A.W.; Clemmons, D.R. Glucose regulation of integrin-associated protein cleavage controls the response of vascular smooth muscle cells to insulin-like growth factor-I. Mol. Endocrinol. 2008, 22, 1226–1237. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, F.; Xu, L.; Yang, Y.G. Structural-functional diversity of CD47 proteoforms. Front. Immunol. 2024, 15, 1329562. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.P.; Elkahloun, A.G.; Wu, W.; Abu-Asab, M.S.; Roberts, D.D. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014, 37, 49–59. [Google Scholar] [CrossRef]
- Kaur, S.; Elkahloun, A.G.; Arakelyan, A.; Young, L.; Myers, T.G.; Otaizo-Carrasquero, F.; Wu, W.; Margolis, L.; Roberts, D.D. CD63, MHC class 1, and CD47 identify subsets of extracellular vesicles containing distinct populations of noncoding RNAs. Sci. Rep. 2018, 8, 2577. [Google Scholar] [CrossRef]
- Kaur, S.; Saldana, A.C.; Elkahloun, A.G.; Petersen, J.D.; Arakelyan, A.; Singh, S.P.; Jenkins, L.M.; Kuo, B.; Reginauld, B.; Jordan, D.G.; et al. CD47 interactions with exportin-1 limit the targeting of m(7)G-modified RNAs to extracellular vesicles. J. Cell Commun. Signal 2022, 16, 397–419. [Google Scholar] [CrossRef]
- Kaur, S.; Elkahloun, A.G.; Petersen, J.D.; Arakelyan, A.; Livak, F.; Singh, S.P.; Margolis, L.; Zimmerberg, J.; Roberts, D.D. CD63(+) and MHC Class I(+) Subsets of Extracellular Vesicles Produced by Wild-Type and CD47-Deficient Jurkat T Cells Have Divergent Functional Effects on Endothelial Cell Gene Expression. Biomedicines 2021, 9, 1705. [Google Scholar] [CrossRef]
- Li, J.P.; Kusche-Gullberg, M. Heparan Sulfate: Biosynthesis, Structure, and Function. Int. Rev. Cell Mol. Biol. 2016, 325, 215–273. [Google Scholar] [PubMed]
- Marques, C.; Reis, C.A.; Vives, R.R.; Magalhaes, A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front. Oncol. 2021, 11, 778752. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Kitagawa, H. Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta 2013, 1830, 4719–4733. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, M.I.; Green, J.M.; Lindberg, F.P.; Ticchioni, M.; Brown, E.J. Cell spreading distinguishes the mechanism of augmentation of T cell activation by integrin-associated protein/CD47 and CD28. Int. Immunol. 1999, 11, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.R.; Pal-Nath, D.; Kaur, S.; Gangaplara, A.; Meyer, T.J.; Cam, M.C.; Roberts, D.D. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022, 11, 2111909. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrugger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [Google Scholar] [CrossRef]
- Mathivanan, S. ExoCarta Database: Amyloid Beta (A4) Precursor-Like Protein 2. Available online: http://exocarta.org/gene_summary?gene_id=334 (accessed on 3 July 2025).
- Mathivanan, S. ExoCarta Database: CD47. Available online: http://exocarta.org/gene_summary?gene_id=961 (accessed on 3 July 2025).
- Susa, K.J.; Bradshaw, G.A.; Eisert, R.J.; Schilling, C.M.; Kalocsay, M.; Blacklow, S.C.; Kruse, A.C. A spatiotemporal map of co-receptor signaling networks underlying B cell activation. Cell Rep. 2024, 43, 114332. [Google Scholar] [CrossRef]
- Kong, S.; Thiruppathi, M.; Qiu, Q.; Lin, Z.; Dong, H.; Chini, E.N.; Prabhakar, B.S.; Fang, D. DBC1 is a suppressor of B cell activation by negatively regulating alternative NF-kappaB transcriptional activity. J. Immunol. 2014, 193, 5515–5524. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Federzoni, E.A.; Wang, X.; Dharmawan, A.; Hu, X.; Wang, H.; Hawley, R.J.; Stevens, S.; Sykes, M.; et al. CD47 cross-dressing by extracellular vesicles expressing CD47 inhibits phagocytosis without transmitting cell death signals. Elife 2022, 11, e73677. [Google Scholar] [CrossRef]
- Roberts, D.D. Interactions of thrombospondin with sulfated glycolipids and proteoglycans of human melanoma cells. Cancer Res. 1988, 48, 6785–6793. [Google Scholar] [PubMed]
- Legrand, N.; Huntington, N.D.; Nagasawa, M.; Bakker, A.Q.; Schotte, R.; Strick-Marchand, H.; de Geus, S.J.; Pouw, S.M.; Bohne, M.; Voordouw, A.; et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 13224–13229. [Google Scholar] [CrossRef] [PubMed]
- Sato-Hashimoto, M.; Saito, Y.; Ohnishi, H.; Iwamura, H.; Kanazawa, Y.; Kaneko, T.; Kusakari, S.; Kotani, T.; Mori, M.; Murata, Y.; et al. Signal regulatory protein alpha regulates the homeostasis of T lymphocytes in the spleen. J. Immunol. 2011, 187, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Liu, Z.; Uzunel, M.; Sundqvist, K.G. Endogenous thrombospondin-1 is a cell surface ligand for regulation of integrin dependent T lymphocyte adhesion. Blood 2006, 108, 3112–3120. [Google Scholar] [CrossRef]
- Lindberg, F.P.; Bullard, D.C.; Caver, T.E.; Gresham, H.D.; Beaudet, A.L.; Brown, E.J. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 1996, 274, 795–798. [Google Scholar] [CrossRef]
- Navarathna, D.H.; Stein, E.V.; Lessey-Morillon, E.C.; Nayak, D.; Martin-Manso, G.; Roberts, D.D. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS ONE 2015, 10, e0128220. [Google Scholar] [CrossRef]
- Nath, P.R.; Gangaplara, A.; Pal-Nath, D.; Mandal, A.; Maric, D.; Sipes, J.M.; Cam, M.; Shevach, E.M.; Roberts, D.D. CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus. Front. Immunol. 2018, 9, 2985. [Google Scholar] [CrossRef]
- Angabo, S.; Pandi, K.; David, K.; Steinmetz, O.; Makkawi, H.; Farhat, M.; Eli-Berchoer, L.; Darawshi, N.; Kawasaki, H.; Nussbaum, G. CD47 and thrombospondin-1 contribute to immune evasion by Porphyromonas gingivalis. Proc. Natl. Acad. Sci. USA 2024, 121, e2405534121. [Google Scholar] [CrossRef] [PubMed]
- Wenzek, C.; Steinbach, P.; Wirsdorfer, F.; Sutter, K.; Boehme, J.D.; Geffers, R.; Klopfleisch, R.; Bruder, D.; Jendrossek, V.; Buer, J.; et al. CD47 restricts antiviral function of alveolar macrophages during influenza virus infection. iScience 2022, 25, 105540. [Google Scholar] [CrossRef]
- Gallagher, S.; Turman, S.; Lekstrom, K.; Wilson, S.; Herbst, R.; Wang, Y. CD47 limits antibody dependent phagocytosis against non-malignant B cells. Mol. Immunol. 2017, 85, 57–65. [Google Scholar] [CrossRef]
- Lee, Y.T.; Ko, E.J.; Lee, Y.; Lee, Y.N.; Bian, Z.; Liu, Y.; Kang, S.M. CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus. J. Virol. 2016, 90, 6746–6758. [Google Scholar] [CrossRef]
- Shi, L.; Bian, Z.; Chen, C.X.; Guo, Y.N.; Lv, Z.; Zeng, C.; Liu, Z.; Zen, K.; Liu, Y. CD47 deficiency ameliorates autoimmune nephritis in Fas(lpr) mice by suppressing IgG autoantibody production. J. Pathol. 2015, 237, 285–295. [Google Scholar] [CrossRef]
- Sowerby, J.M.; Rao, D.A. T cell-B cell interactions in human autoimmune diseases. Curr. Opin. Immunol. 2025, 93, 102539. [Google Scholar] [CrossRef]
- Kaur, S.; Cicalese, K.V.; Bannerjee, R.; Roberts, D.D. Preclinical and Clinical Development of Therapeutic Antibodies Targeting Functions of CD47 in the Tumor Microenvironment. Antib. Ther. 2020, 3, 179–192. [Google Scholar] [CrossRef]
- Sipes, J.M.; Murphy-Ullrich, J.E.; Roberts, D.D. Thrombospondins: Purification of human platelet thrombospondin-1. In Methods in Extracellular Matrix Biology; Academic Press: New York, NY, USA, 2018; Volume 143, pp. 347–369. [Google Scholar]
Gene | CD3+CD28 vs. Untreated WT CD8 T Cells (Fold) | p-Value | CD3+CD28 vs. Untreated Cd47−/− CD8 T Cells (Fold) | p-Value |
---|---|---|---|---|
Ext1 | - | NS * | - | NS |
Ext2 | - | NS | - | NS |
Ndst1 | - | NS | - | NS |
Chsy1 | 1.89 | 3.2 × 10−7 | 1.50 | 8.2 × 10−5 |
Chsy3 | - | NS | - | NS |
Chpf | 2.56 | 6.0 × 10−8 | 2.31 | 5.4 × 10−7 |
Chst3 | −2.53 | 3.3 × 10−4 | - | NS |
Chst11 | 2.04 | 1.8 × 10−4 | - | NS |
Glce | 1.70 | 5.0 × 10−7 | 1.52 | 1.4 × 10−5 |
Extl2 | 2.72 | 6.0 × 10−7 | - | NS |
Extl3 | NS | NS | ||
Hs2st1 | - | NS | - | NS |
Hs6st1 | - | NS | - | NS |
Treatment | Σ(3H dpm) | Σ(35S dpm) | Ratio 35S/3H |
---|---|---|---|
Undigested | 2500 | 628 | 0.25 |
Heparitinase digest | 1560 | 436 | 0.27 |
Chondroitinase digest | 1260 | 182 | 0.14 |
Anti-CD3-activated/Undigested | 22,980 | 4100 | 0.17 |
Anti-CD3/Heparitinase digest | 12,800 | 2820 | 0.21 |
Anti-CD3/Chondroitinase digest | 9700 | 1380 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, S.; Kuznetsova, S.A.; Sipes, J.M.; Singh, S.P.; Villasmil, R.; Roberts, D.D. T Cell Activation Induces Synthesis of CD47 Proteoglycan Isoforms and Their Release in Extracellular Vesicles. Int. J. Mol. Sci. 2025, 26, 8377. https://doi.org/10.3390/ijms26178377
Kaur S, Kuznetsova SA, Sipes JM, Singh SP, Villasmil R, Roberts DD. T Cell Activation Induces Synthesis of CD47 Proteoglycan Isoforms and Their Release in Extracellular Vesicles. International Journal of Molecular Sciences. 2025; 26(17):8377. https://doi.org/10.3390/ijms26178377
Chicago/Turabian StyleKaur, Sukhbir, Svetlana A. Kuznetsova, John M. Sipes, Satya P. Singh, Rafael Villasmil, and David D. Roberts. 2025. "T Cell Activation Induces Synthesis of CD47 Proteoglycan Isoforms and Their Release in Extracellular Vesicles" International Journal of Molecular Sciences 26, no. 17: 8377. https://doi.org/10.3390/ijms26178377
APA StyleKaur, S., Kuznetsova, S. A., Sipes, J. M., Singh, S. P., Villasmil, R., & Roberts, D. D. (2025). T Cell Activation Induces Synthesis of CD47 Proteoglycan Isoforms and Their Release in Extracellular Vesicles. International Journal of Molecular Sciences, 26(17), 8377. https://doi.org/10.3390/ijms26178377