Local Forms of Vigna unguiculata—Response to Osmotic Stress at Vegetative Growth Stage
Abstract
1. Introduction
2. Results
2.1. General Response to Osmotic Stress in Cowpea Accessions at Vegetative Growth Stage
2.2. Enzymatic ROS Scavenging System in Cowpea Under Osmotic Stress
2.2.1. SOD Activity Changes
2.2.2. CAT Activity Changes
2.2.3. GR Activity Changes
2.2.4. GST Activity Changes
2.2.5. POX Activity Changes
3. Discussion
4. Materials and Methods
4.1. Plant Material, Growth and Stress Conditions
4.2. Growth Parameters, Leaf Water Status, Membrane Stability, and Leaf Pigment Content
4.3. Oxidative Stress Markers and Stress Responsive Metabolites
4.4. Protein Extraction, PAGE, and Antioxidant Enzyme Activity Staining
4.5. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latef, A.A.H.A.; Ahmad, P. Legumes and breeding under abiotic stress: An overview. In Legumes Under Environmental Stress: Yield, Improvement and Adaptations; Azooz, M.M., Ahmad, P., Eds.; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2015; p. 315. [Google Scholar]
- Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Leterme, P. Recommendations by healt organizations for pulse consumption. Brit. J. Nutr. 2002, 88, 239–242. [Google Scholar] [CrossRef]
- Carvalho, M.; Lino-Neto, T.; Rosa, E.; Carnide, V. Cowpea: A legume crop for a challenging environment. J. Sci. Food Agric. 2017, 97, 4273–4284. [Google Scholar] [CrossRef]
- Jeuffroy, M.-H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry peas. Biogeosciences 2013, 10, 1787–1797. [Google Scholar] [CrossRef]
- Magrini, M.-B.; Anton, M.; Cholez, C.; Corre-Hellou, G.; Duc, G.; Jeuffroy, M.-H.; Meynard, J.-M.; Pelzer, E.; Voisin, A.-S.; Walrand, S. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol. Econ. 2016, 126, 152–162. [Google Scholar] [CrossRef]
- Stoilova, T.; Simova-Stoilova, L. Bulgarian Cowpea Landraces—Agrobiological and Morphological Characteristics and Seed Biochemical Composition. Agriculture 2024, 14, 2339. [Google Scholar] [CrossRef]
- Santos, R.; Carvalho, M.; Rosa, E.; Carnide, V.; Castro, I. Root and Agro-Morphological Traits Performance in Cowpea under Drought Stress. Agronomy 2020, 10, 1604. [Google Scholar] [CrossRef]
- Singh, V.O.; Shekhawat, N.; Singh, K.; Gowthami, R. Assessment of genetic variability and inter-character association in the germplasm of cowpea (Vigna unguiculata L. Walp) in hot arid climate. Legume Res.-Int. J. 2020, 43, 332–336. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef] [PubMed]
- Iseki, K.; Takahashi, Y.; Muto, C.; Naito, K.; Tomooka, N. Diversity of drought tolerance in the genus vigna. Front. Plant Sci. 2018, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Matos, M.; Castro, I.; Monteiro, E.; Rosa, E.; Lino-Neto, T.; Carnide, V. Screening of worldwide cowpea collection to drought tolerant at a germination stage. Sci. Hortic. 2019, 247, 107–115. [Google Scholar] [CrossRef]
- Santos, M.P.; Cogo, A.J.D.; Aragão, F.J. Variabilities in water deficit tolerance among cowpea (Vigna unguiculata L. Walp.) genotypes. South Afr. J. Bot. 2023, 163, 552–560. [Google Scholar] [CrossRef]
- Mofokeng, M.A.; Mashingaidze, K. Breeding and genetic management of drought in cowpea: Progress and technologies. Aust. J. Crop Sci. 2019, 13, 1920–1926. [Google Scholar] [CrossRef]
- Nunes, C.; Moreira, R.; Pais, I.; Semedo, J.; Simões, F.; Veloso, M.M.; Scotti-Campos, P. Cowpea Physiological Responses to Terminal Drought—Comparison between Four Landraces and a Commercial Variety. Plants 2022, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Egashira, C.; Hashiguchi, Y.; Kurauchi, E.; Tatsumi, Y.; Nakagawa, A.C.S.; Hamaoka, N.; Ishibashi, M.Y.I.-I.; Ishibashi, Y. A rapid translocation of photoassimilates from source organs maintains grain yield in cowpea subjected to drought stress during grain filling. Biol. Plant. 2007, 64, 529–534. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Ayub, M.A.; Rehman, M.Z.; Sohail, M.I.; Usman, M.; Khalid, H.; Naz, K. Regulation of drought stress in plants. In Plant Life Under Changing Environment; Academic Press: San Diego, CA, USA, 2020; pp. 77–104. [Google Scholar] [CrossRef]
- de Melo, A.A.R.; de Araújo, M.A.; Mendes, N.A.C.; dos Reis, A.R. Drought stress disrupts biological nitrogen fixation and starch accumulation compromising growth and yield of cowpea plants. Plant Physiol. Biochem. 2025, 224, 109931. [Google Scholar] [CrossRef]
- Anjum, S.; Xie, X.; Wang, L.; Saleem, M.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.; Anee, T.; Parvin, K.; Nahar, K.; Mahmud, J.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Oxidant and antioxidant signaling in plants, a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005, 28, 1056–1071. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, A.; Noctor, G.; Baker, A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012, 525, 181–194. [Google Scholar] [CrossRef]
- Van Doorn, W.G.; Ketsa, S. Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biol. Technol. 2014, 95, 64–69. [Google Scholar] [CrossRef]
- Mitra, J. Genetics and genetic improvement of drought resistance of crop plants. Curr. Sci 2001, 80, 758–763. [Google Scholar]
- Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229, 247–261. [Google Scholar] [CrossRef]
- Agbicodo, E.M.; Fatokun, C.A.; Muranaka, S.; Visser, R.G.F.; Linden Van Der, C.G. Breeding drought tolerant cowpea: Constraints, accomplishments, and future prospects. Euphytica 2009, 167, 353–370. [Google Scholar] [CrossRef]
- Cardona-Ayala, C.E.; Jarma-Orozco, A. Drought adaptation mechanisms in the cowpea (Vigna unguiculata L. Walp.). A review. Revista Columb. Cienc. Agrar. 2013, 7, 277–288. [Google Scholar]
- Hamidou, F.; Zombre, G.; Diouf, O.; Diop, N.N.; Guinko, S.; Braconnier, S. Physiological, biochemical and agromorphological responses of five cowpea genotypes (Vigna unguiculata L. Walp.) to water deficit under glasshouse conditions. Biotechnol. Agron. Soc. Environ. 2007, 11, 225–234. [Google Scholar]
- de Souza Silva, J.; da Costa, R.S.; da Silva, B.A.; Mesquita, R.O.; da Silva, T.I.; Oliveira, M.M.; de Sousa Lopes, L. Physiological and Biochemical Aspects Involved in Tolerance to Water Deficit in Traditional Cowpea. J. Soil Sci. Plant Nutr. 2024, 24, 1519–1533. [Google Scholar] [CrossRef]
- Bahadur, A.; Mishra, V.K.; Singh, A.K.; Singh, B. Evaluation of physiological and yield traits in cowpea for screening of drought tolerance lines. Indian J. Hortic. 2017, 74, 393–398. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Sakellariou, M.; Mylona, P.V. Seed Phenotyping and Genetic Diversity Assessment of Cowpea (V. unguiculata) Germplasm Collection. Agronomy 2023, 13, 274. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef]
- Stoilova, T.; Pereira, G. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata L. Walp.) using morphological traits. Afr. J. Agric. Res. 2013, 8, 208–215. [Google Scholar]
- Lazaridi, E.; Ntatsi, G.; Savvas, D.; Bebeli, P.J. Diversity in cowpea (Vigna unguiculata L. Walp.) local populations from Greece. Genet. Resour. Crop Evol. 2016, 64, 1529–1551. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; López-Aguilar, R.; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernández, A. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J. Agron. Crop. Sci. 2002, 188, 235–247. [Google Scholar] [CrossRef]
- Matsui, T.; Singh, B.B. Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp. Agric. 2003, 39, 29–38. [Google Scholar] [CrossRef]
- Poudel, S.; Valsala Sankarapillai, L.; Sivarathri, B.S.; Hosahalli, V.; Harkess, R.L.; Bheemanahalli, R. Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance. Agriculture 2025, 15, 1075. [Google Scholar] [CrossRef]
- A Ibrahim, T.A.; Ali Abdel-ati, K.E.S.; M Khaled, K.A.; Azoz, S.N.; Hassan, A.A. Physiological, Molecular and Anatomical Studies on Drought Tolerance in Cowpea. Egypt. J. Soil Sci. 2025, 65, 253–274. [Google Scholar] [CrossRef]
- Gull, M.; Sofi, P.A.; Mir, R.R.; Shafi, S.; Ara, A. Characterising response of root and shoot traits in cowpea (Vigna unguiculata L.) under water stress in laboratory and greenhouse. Agricult. Res. J. 2020, 57, 315. [Google Scholar] [CrossRef]
- Miri, M.; Ghooshchi, F.; Tohidi Moghadam, H.R.; Larijani, H.; Kasraie, P. Cowpea seeds from plants subjected to restricted-and full-irrigation regimes show differential phytochemical activity. Bot. Stud. 2022, 63, 30. [Google Scholar] [CrossRef]
- Carvalho, M.; Castro, I.; Moutinho-Pereira, J.; Correia, C.; Egea-Cortines, M.; Matos, M.; Rosa, E.; Carnide, V.; Lino-Neto, T. Evaluating stress responses in cowpea under drought stress. J. Plant Physiol. 2019, 241, 153001. [Google Scholar] [CrossRef]
- Macedo Nunes Costa, M.M.; Alves Fernandes Távora, F.J.; Nunes de Pinho, J.L.; Oliveira Melo, F.I. Yield, yield components and growth and distribution of roots of cowpea under water stress. (Produção, componentes de produção, crescimento e distribuição das raízes de caupi submetido à deficiêncy hídrica). Pesqui. Agropecu. Bras. 1997, 32, 43–50. [Google Scholar] [CrossRef]
- Beyaz, R. Morphological and biochemical changes in shoot and root organs of common vetch (Vicia sativa L.) after exposure to drought stress. Scienceasia 2022, 48, 51–56. [Google Scholar] [CrossRef]
- Öktem, H.A.; Eyidoðan, F.; Demirba, D.; Bayraç, A.T.; Öz, M.T.; Özgür, E.; Selçuk, F.; Yücel, M. Antioxidant responses of lentil to cold and drought stress. J. Plant Biochem. Biotechnol. 2008, 17, 15–21. [Google Scholar] [CrossRef]
- Das, S.; Kar, R.K. Reactive oxygen species-mediated promotion of root growth under mild water stress during early seedling stage of Vigna radiata L. Wilczek. J. Plant Growth Regul. 2016, 36, 1–10. [Google Scholar] [CrossRef]
- Kalra, A.; Goel, S.; Elias, A.A. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. Plant Genome 2024, 17, e20395. [Google Scholar] [CrossRef]
- Min, X.; Lin, X.; Ndayambaza, B.; Wang, Y.; Liu, W. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC Plant Biol. 2020, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Moutinho-Pereira, J.M.; Jorge, T.F.; Correia, C.M.; Oliveira, M.R.; Rosa, E.A.; António, C.; Trindade, H. Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front. Plant Sci. 2017, 8, 586. [Google Scholar] [CrossRef]
- Verbrugge, N.; Hermans, C. Proline accumulation in plants. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Zegaoui, Z.; Planchais, S.; Cabassa, C.; Djebbar, R.; Belbachir, O.A.; Carol, P. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J. Plant Physiol. 2017, 218, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Arslan, I.; Reginato, M.; Cenzano, A.; Luna, M. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol. Biochem. 2016, 104, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.; Xu, X.; Gan, R.; Zhang, Y.; Xia, E.; Li, H. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 29, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Appiah, C.S.O.; Poku, S.A.; Ayeh, K.O. Comparative morphological and physiological responses of three cowpea (Vigna unguiculata L. WALP.) cultivars to induced water, salinity and combined water and salinity stresses. Pak. J. Bot. 2024, 56, 1679–1686. [Google Scholar] [CrossRef]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef]
- Slabbert, R.; Spreeth, M.; Krüger, G.H.J. Drought tolerance, traditional crops and biotechnology: Breeding towards sustainable development. South Afr. J. Bot. 2004, 70, 116–123. [Google Scholar] [CrossRef]
- Silva, R.G.; Vasconcelos, I.M.; Martins, T.F.; Varela, A.L.; Souza, P.F.; Lobo, A.K.; Silva, F.D.; Silveira, J.A.G.; Oliveira, J.T. Drought increases cowpea (Vigna unguiculata L. Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. Plant Physiol. Biochem. 2016, 109, 91–102. [Google Scholar] [CrossRef]
- de Araujo, E.D.; de Melo, A.S.; Rocha, M.D.S.; Carneiro, R.F.; Rocha, M.D.M. Genotyping variation on the antioxidative response of cowpea cultivars exposed to osmotic stress. Revista Caatinga 2017, 30, 928–937. [Google Scholar] [CrossRef]
- Diallo, S.; Badiane, F.A.; Diédhiou, I.; Diouf, M.; Ngom, M.; Diouf, D. Development of cowpea (Vigna unguiculata) mutant lines for dissecting resilience to drought through physiological and molecular crosstalk analysis. Plant Mol. Biol. Report. 2025, 43, 428–446. [Google Scholar] [CrossRef]
- Nair, A.S.; Abraham, T.K.; Jaya, D.S. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. J. Environ. Biol. 2008, 29, 689–691. [Google Scholar]
- Zhang, C.; Shi, S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front. Plant Sci. 2018, 9, 242. [Google Scholar] [CrossRef]
- Petrović, G.; Nikolić, Z.; Živanović, T.; Vasiljević, S.; Milošević, D.; Stanisavljević, N.; Samardžić, J. Drought-induced Changes in the Antioxidant System in Pisum sativum L. Legume Res. 2023, 46, 1445–1452. [Google Scholar]
- Gill, S.S.; Anjum, N.A.; Hasanuzzaman, M.; Gill, R.; Trivedi, D.K.; Ahmad, I.; Pereira, E.; Tuteja, N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 2013, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Labudda, M.; Azam, F.M.S. Glutathione-dependent responses of plants to drought: A review. Acta Soc. Bot. Pol. 2014, 83, 3–12. [Google Scholar] [CrossRef]
- Contour-Ansel, D.; Torres-Franklin, M.L.; Cruz De Carvalho, M.H.; D’Arcy-Lameta, A.; Zuily-Fodil, Y. Glutathione reductase in leaves of cowpea: Clonig of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and Absicisic Acid treatment. Ann Bot. 2006, 98, 1279–1287. [Google Scholar] [CrossRef]
- Torres-Franklin, M.L.; Contour-Ansel, D.; Zuily-Fodil, Y.; Pham-Thi, A.T. Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J. Plant Physiol. 2008, 165, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Gazendam, I.; Oelofse, D. Isolation of cowpea genes conferring drought tolerance: Construction of a cDNA drought expression library. Water SA 2007, 33, 387–392. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Chen, H.; Yang, X.; Yu, T.; Wang, Y.; Jiang, K.; Chen, Z.; Cui, X. Proteomic investigation of molecular mechanisms in response to PEG-induced drought stress in soybean roots. Plants 2022, 11, 1173. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Sun, A.; Wang, L.; Ren, C.; Liu, J.; Gao, X. Transcriptome analysis reveals key drought stress-responsive genes in soybean. Front. Genet. 2022, 13, 1060529. [Google Scholar] [CrossRef]
- Ji, W.; Zhu, Y.; Li, Y.; Yang, L.; Zhao, X.; Cai, H.; Bai, X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol. Lett. 2010, 32, 1173–1179. [Google Scholar] [CrossRef]
- López-Hidalgo, C.; Meijón, M.; Lamelas, L.; Valledor, L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ. 2021, 44, 1977–1986. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Hodges, D.M.; de Long, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Hansen, J.; Møller, I.B. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.A.D.; Alas, R.M.; Smith, R.J.; Lea, P.J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 1998, 104, 280–292. [Google Scholar] [CrossRef]
- Chandlee, J.M.; Scandalios, J.G. Gene expression during early kernel developmental in Zea mays. Dev. Genet. 1983, 4, 99–115. [Google Scholar] [CrossRef]
- Kirova, E.; Pecheva, D.; Simova-Stoilova, L. Drought response in winter wheat: Protection from oxidative stress and mutagenesis effect. Acta Physiol. Plant. 2021, 43, 8. [Google Scholar] [CrossRef]
- Anderson, M.D.; Prasad, T.K.; Stewart, C.R. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 1995, 109, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Bello, M.L.; Caccuri, A.M.; Galiazzo, F.; Federici, G. Detection of glutathione transferase activity on polyacrylamide gels. Analyt. Biochem. 1984, 143, 226–230. [Google Scholar] [CrossRef] [PubMed]
Accession/ Condition | Leaf WD% | Leaf EL% | Leaf Area (cm2 Plant−1) | Plant FW (g Plant−1) | Stem L (cm Plant−1) |
---|---|---|---|---|---|
A4E0007 c | 5.62 ab | 3.07 a | 153.68 c | 5.95 ab | 24.5 ab |
A4E0007 p | 9.48 bc | 9.07 ab | 86.15 ab | 2.42 a | 14.3 a |
B1E0103 c | 5.60 ab | 3.69 a | 168.45 cd | 5.65 ab | 18.2 ab |
B1E0103 p | 14.12 cd | 5.13 a | 71.32 ab | 2.74 ab | 10.1 a |
B1E0102 c | 7.02 ab | 2.66 a | 198.39 e | 6.06 ab | 14.4 ab |
B1E0102 p | 18.13 d | 5.45 a | 52.63 a | 1.53 a | 7.9 a |
A8E0542 c | 8.23 ab | 3.66 a | 164.04 cd | 4.64 ab | 18.4 ab |
A8E0542 p | 18.13 d | 14.2 b | 60.86 ab | 1.54 a | 9.2 a |
BOE0034 c | 4.42 a | 3.80 a | 184.76 cd | 6.39 b | 24.7 b |
BOE0034 p | 16.99 d | 3.52 a | 95.08 b | 2.7 ab | 13.0 a |
Accession/ Condition | FRAP (Fe eq g−1 FW) | MDA (nmol g−1 FW) | Proline (µg g−1 FW) | |||
---|---|---|---|---|---|---|
Roots | Leaves | Roots | Leaves | Roots | Leaves | |
A4E0007 c | 14.32 ab | 106.7 a-d | 0.73 ab | 0.18 a | 20.42 a | 90.83 ab |
A4E0007 p | 23.55 bc | 89.56 ab | 0.80 ab | 0.21 a | 94.26 d | 114.0 bcd |
B1E0103 c | 15.49 ab | 108.0 a-d | 0.63 a | 0.28 ab | 22.07 a | 97.67 ab |
B1E0103 p | 30.29 bc | 98.15 a-d | 0.79 ab | 0.18 a | 45.30 b | 130.04 cd |
B1E0102 c | 9.81 a | 74.71 a | 0.75 ab | 0.12 a | 20.76 a | 93.32 ab |
B1E0102 p | 18.19 abc | 94.59 ab | 0.75 ab | 0.21 a | 57.21 c | 106.52 bc |
A8E0542 c | 27.75 bc | 134.9 d | 0.87 ab | 0.62 b | 25.51 a | 79.51 a |
A8E0542 p | 39.18 cd | 108.7 cd | 0.99 b | 0.62 b | 132.88 e | 135.26 d |
BOE0034 c | 18.48 abc | 76.96 ab | 0.84 ab | 0.15 a | 20.86 a | 95.72 ab |
BOE0034 p | 58.53 d | 130.12 cd | 1.51 c | 0.34 ab | 48.99 b | 116.4 bcd |
Accession/ Condition | Phenols (mg CAE g−1 FW) | Soluble sugars (mg g−1 FW) | Starch (mg g−1 FW) | |||
---|---|---|---|---|---|---|
Roots | Leaves | Roots | Leaves | Roots | Leaves | |
A4E0007 c | 1.51 ab | 3.626 ab | 7.88 a | 8.58 a | 3.99 ab | 23.24 d |
A4E0007 p | 1.70 ab | 4.55 d | 10.22 abc | 10.17 ab | 5.53 b | 18.34 cd |
B1E0103 c | 1.27 a | 3.54 a | 8.31 a | 10.13 ab | 3.98 ab | 8.96 ab |
B1E0103 p | 1.99 ab | 4.07 bc | 12.17 bc | 8.87 a | 7.94 c | 18.55 cd |
B1E0102 c | 1.30 a | 3.89 ab | 7.13 a | 8.75 a | 3.71 a | 7.84 a |
B1E0102 p | 2.26 b | 4.19 bc | 13.11 c | 13.93 ab | 8.68 cd | 7.35 a |
A8E0542 c | 1.14 a | 4.48 cd | 7.87 a | 11.67 ab | 3.26 a | 16.73 c |
A8E0542 p | 1.73 ab | 5.04 d | 10.33 abc | 10.16 ab | 7.91 c | 14.91 bc |
BOE0034 c | 1.45 ab | 3.81 a | 8.87 ab | 12.36 ab | 4.76 ab | 5.25 a |
BOE0034 p | 3.38 c | 5.01 d | 12.94 c | 17.23 b | 9.63 d | 9.38 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simova-Stoilova, L.; Gigova, L.; Velinov, V.; Stoilova, T. Local Forms of Vigna unguiculata—Response to Osmotic Stress at Vegetative Growth Stage. Int. J. Mol. Sci. 2025, 26, 8352. https://doi.org/10.3390/ijms26178352
Simova-Stoilova L, Gigova L, Velinov V, Stoilova T. Local Forms of Vigna unguiculata—Response to Osmotic Stress at Vegetative Growth Stage. International Journal of Molecular Sciences. 2025; 26(17):8352. https://doi.org/10.3390/ijms26178352
Chicago/Turabian StyleSimova-Stoilova, Lyudmila, Liliana Gigova, Valentin Velinov, and Tsvetelina Stoilova. 2025. "Local Forms of Vigna unguiculata—Response to Osmotic Stress at Vegetative Growth Stage" International Journal of Molecular Sciences 26, no. 17: 8352. https://doi.org/10.3390/ijms26178352
APA StyleSimova-Stoilova, L., Gigova, L., Velinov, V., & Stoilova, T. (2025). Local Forms of Vigna unguiculata—Response to Osmotic Stress at Vegetative Growth Stage. International Journal of Molecular Sciences, 26(17), 8352. https://doi.org/10.3390/ijms26178352