Light and Shadows: Insights from Large-Scale Visual Screens for Arabidopsis Leaf Morphology Mutants
Abstract
1. Introduction
2. Leaf Morphology Mutants Studied Since 2009
2.1. Leaf Morphology Mutants with Defects in Translation
2.2. Leaf Morphology Mutants with Defects in Chloroplast Biogenesis and Function
2.3. Leaf Morphology Mutants Altered in Cell Wall Biosynthesis
2.4. Leaf Morphology Mutants with Defects in Auxin Homeostasis
2.5. Leaf Morphology Mutants with Impaired miRNA Biogenesis and Function
2.6. Leaf Morphology Mutants with Altered Epigenetic Machinery
3. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Parinov, S.; Sundaresan, V. Functional genomics in Arabidopsis: Large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 2000, 11, 157–161. [Google Scholar] [CrossRef]
- Waddington, C.H. The genetic control of wing development in Drosophila. J. Genet. 1940, 41, 75–113. [Google Scholar] [CrossRef]
- Nüsslein-Volhard, C.; Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.L.; Horvitz, H.R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 1985, 110, 17–72. [Google Scholar] [CrossRef] [PubMed]
- Nolan, P.M.; Peters, J.; Strivens, M.; Rogers, D.; Hagan, J.; Spurr, N.; Gray, I.C.; Vizor, L.; Brooker, D.; Whitehill, E.; et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 2000, 25, 440–443. [Google Scholar] [CrossRef]
- de Angelis, M.H.; Flaswinkel, H.; Fuchs, H.; Rathkolb, B.; Soewarto, D.; Marschall, S.; Heffner, S.; Pargent, W.; Wuensch, K.; Jung, M.; et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 2000, 25, 444–447. [Google Scholar] [CrossRef]
- Furnes, B.; Schimenti, J. Fast forward to new genes in mammalian reproduction. J. Physiol. 2007, 578, 25–32. [Google Scholar] [CrossRef]
- Weber, J.; de la Rosa, J.; Grove, C.S.; Schick, M.; Rad, L.; Baranov, O.; Strong, A.; Pfaus, A.; Friedrich, M.J.; Engleitner, T.; et al. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat. Commun. 2019, 10, 1415. [Google Scholar] [CrossRef]
- Laibach, F.J.B.A. Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot. Arch. 1943, 44, 439–455. [Google Scholar]
- Meinke, D.W.; Sussex, I.M. Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev. Biol. 1979, 72, 50–61. [Google Scholar] [CrossRef]
- Mayer, U.; Torres-Ruiz, R.A.; Berleth, T.; Miséra, S.; Jürgens, G. Mutations affecting body organization in the Arabidopsis embryo. Nature 1991, 353, 402–407. [Google Scholar] [CrossRef]
- McElver, J.; Tzafrir, I.; Aux, G.; Rogers, R.; Ashby, C.; Smith, K.; Thomas, C.; Schetter, A.; Zhou, Q.; Cushman, M.A.; et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 2001, 159, 1751–1763. [Google Scholar] [CrossRef]
- Berná, G.; Robles, P.; Micol, J.L. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 1999, 152, 729–742. [Google Scholar] [CrossRef]
- Page, D.R.; Grossniklaus, U. The art and design of genetic screens: Arabidopsis thaliana. Nat. Rev. Genet. 2002, 3, 124–136. [Google Scholar] [CrossRef]
- Perkins, L.A.; Holderbaum, L.; Tao, R.; Hu, Y.; Sopko, R.; McCall, K.; Yang-Zhou, D.; Flockhart, I.; Binari, R.; Shim, H.S.; et al. The Transgenic RNAi Project at Harvard Medical School: Resources and validation. Genetics 2015, 201, 843–852. [Google Scholar] [CrossRef]
- Zirin, J.; Hu, Y.; Liu, L.; Yang-Zhou, D.; Colbeth, R.; Yan, D.; Ewen-Campen, B.; Tao, R.; Vogt, E.; VanNest, S.; et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. Genetics 2020, 214, 755–767. [Google Scholar] [CrossRef]
- Bazopoulou, D.; Tavernarakis, N. The NemaGENETAG initiative: Large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 2009, 137, 39–46. [Google Scholar] [CrossRef]
- The International Mouse Knockout Consortium. A mouse for all reasons. Cell 2007, 128, 9–13. [Google Scholar] [CrossRef]
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R.; et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Sessions, A.; Burke, E.; Presting, G.; Aux, G.; McElver, J.; Patton, D.; Dietrich, B.; Ho, P.; Bacwaden, J.; Ko, C.; et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell 2002, 14, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Meinke, D.W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 2020, 226, 306–325. [Google Scholar] [CrossRef]
- Ponce, M.R.; Micol, J.L. A cornucopia of mutants for understanding plant embryo development. New Phytol. 2020, 226, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Macknight, R.; Bancroft, I.; Page, T.; Lister, C.; Schmidt, R.; Love, K.; Westphal, L.; Murphy, G.; Sherson, S.; Cobbett, C.; et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 1997, 89, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Robles, P.; Micol, J.L. Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Mol. Genet. Genomics 2001, 266, 12–19. [Google Scholar] [CrossRef]
- Serrano-Cartagena, J.; Robles, P.; Ponce, M.R.; Micol, J.L. Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol. Genet. Genomics 1999, 261, 725–739. [Google Scholar] [CrossRef]
- Wilson-Sánchez, D.; Rubio-Díaz, S.; Muñoz-Viana, R.; Pérez-Pérez, J.M.; Jover-Gil, S.; Ponce, M.R.; Micol, J.L. Leaf phenomics: A systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J. 2014, 79, 878–891. [Google Scholar] [CrossRef]
- Ali, S.; Khan, N.; Xie, L. Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 5132. [Google Scholar] [CrossRef]
- Aneja, P.; Sanyal, R.; Ranjan, A. Leaf growth in third dimension: A perspective of leaf thickness from genetic regulation to ecophysiology. New Phytol. 2025, 245, 989–999. [Google Scholar] [CrossRef]
- Coen, E.; Prusinkiewicz, P. Developmental timing in plants. Nat. Commun. 2024, 15, 2674. [Google Scholar] [CrossRef]
- Coen, E.; Cosgrove, D.J. The mechanics of plant morphogenesis. Science 2023, 379, eade8055. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Hu, B.; Zhang, C. microRNAs and Their Roles in Plant Development. Front. Plant Sci. 2022, 13, 824240. [Google Scholar] [CrossRef]
- Fakih, Z.; Germain, H. Implication of ribosomal protein in abiotic and biotic stress. Planta 2025, 261, 85. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, V.; Sprakel, J.; Weijers, D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. Nat. Plants 2021, 7, 1548–1559. [Google Scholar] [CrossRef]
- Guo, K.; Huang, C.; Miao, Y.; Cosgrove, D.J.; Hsia, K.J. Leaf morphogenesis: The multifaceted roles of mechanics. Mol. Plant 2022, 15, 1098–1119. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, B.P.; Kaur, N.S.; Routier-Kierzkowska, A.L.; Burian, A. From stress to growth: Mechanical tissue interactions in developing organs. Curr. Opin. Plant Biol. 2025, 86, 102759. [Google Scholar] [CrossRef]
- Liu, S.; Jobert, F.; Rahneshan, Z.; Doyle, S.M.; Robert, S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. Annu. Rev. Plant Biol. 2021, 72, 525–550. [Google Scholar] [CrossRef]
- Lv, Z.; Zhao, W.; Kong, S.; Li, L.; Lin, S. Overview of molecular mechanisms of plant leaf development: A systematic review. Front. Plant Sci. 2023, 14, 1293424. [Google Scholar] [CrossRef]
- Ma, J.; Li, H. The formation of shapes: Interplay of genes during leaf developmental processes. Forests 2022, 13, 1726. [Google Scholar] [CrossRef]
- Nakayama, H. Leaf form diversity and evolution: A never-ending story in plant biology. J. Plant Res. 2024, 137, 547–560. [Google Scholar] [CrossRef]
- Nakayama, H.; Koga, H.; Long, Y.; Hamant, O.; Ferjani, A. Looking beyond the gene network—Metabolic and mechanical cell drivers of leaf morphogenesis. J. Cell Sci. 2022, 135, jcs259611. [Google Scholar] [CrossRef]
- Navarro-Cartagena, S.; Micol, J.L. Is auxin enough? Cytokinins and margin patterning in simple leaves. Trends Plant Sci. 2023, 28, 54–73. [Google Scholar] [CrossRef] [PubMed]
- Norris, K.; Hopes, T.; Aspden, J.L. Ribosome heterogeneity and specialization in development. Wiley Interdiscip. Rev. RNA 2021, 12, e1644. [Google Scholar] [CrossRef]
- Poethig, R.S.; Fouracre, J. Temporal regulation of vegetative phase change in plants. Dev. Cell 2024, 59, 4–19. [Google Scholar] [CrossRef]
- Scarpella, E. Leaf Vein Patterning. Annu. Rev. Plant Biol. 2024, 75, 377–398. [Google Scholar] [CrossRef]
- Schneider, M.; Van Bel, M.; Inzé, D.; Baekelandt, A. Leaf growth—Complex regulation of a seemingly simple process. Plant J. 2024, 117, 1018–1051. [Google Scholar] [CrossRef]
- Tsukaya, H. The leaf meristem enigma: The relationship between the plate meristem and the marginal meristem. Plant Cell 2021, 33, 3194–3206. [Google Scholar] [CrossRef]
- Wang, H.; Kong, F.; Zhou, C. From genes to networks: The genetic control of leaf development. J. Integr. Plant Biol. 2021, 63, 1181–1196. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 2021, 69, 3566–3584. [Google Scholar] [CrossRef] [PubMed]
- Zuch, D.T.; Doyle, S.M.; Majda, M.; Smith, R.S.; Robert, S.; Torii, K.U. Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. Plant Cell 2022, 34, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.M.; Candela, H.; Robles, P.; Quesada, V.; Ponce, M.R.; Micol, J.L. Lessons from a search for leaf mutants in Arabidopsis thaliana. Int. J. Dev. Biol. 2009, 53, 1623–1634. [Google Scholar] [CrossRef]
- Ban, N.; Beckmann, R.; Cate, J.H.; Dinman, J.D.; Dragon, F.; Ellis, S.R.; Lafontaine, D.L.; Lindahl, L.; Liljas, A.; Lipton, J.M.; et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 2014, 24, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Scarpin, M.R.; Busche, M.; Martinez, R.E.; Harper, L.C.; Reiser, L.; Szakonyi, D.; Merchante, C.; Lan, T.; Xiong, W.; Mo, B.; et al. An updated nomenclature for plant ribosomal protein genes. Plant Cell 2023, 35, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Van Lijsebettens, M.; Vanderhaeghen, R.; De Block, M.; Bauw, G.; Villarroel, R.; Van Montagu, M. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 1994, 13, 3378–3388. [Google Scholar] [CrossRef] [PubMed]
- Van Minnebruggen, A.; Neyt, P.; De Groeve, S.; Coussens, G.; Ponce, M.R.; Micol, J.L.; Van Lijsebettens, M. The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. Physiol. Plant 2010, 138, 91–101. [Google Scholar] [CrossRef]
- Casanova-Sáez, R.; Candela, H.; Micol, J.L. Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci. Rep. 2014, 4, 4122. [Google Scholar] [CrossRef]
- Horiguchi, G.; Mollá-Morales, A.; Pérez-Pérez, J.M.; Kojima, K.; Robles, P.; Ponce, M.R.; Micol, J.L.; Tsukaya, H. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Plant J. 2011, 65, 724–736. [Google Scholar] [CrossRef]
- Micol-Ponce, R.; Sarmiento-Mañús, R.; Fontcuberta-Cervera, S.; Cabezas-Fuster, A.; de Bures, A.; Sáez-Vásquez, J.; Ponce, M.R. SMALL ORGAN4 is a ribosome biogenesis factor involved in 5.8S ribosomal RNA maturation. Plant Physiol. 2020, 184, 2022–2039. [Google Scholar] [CrossRef]
- Navarro-Quiles, C.; Mateo-Bonmatí, E.; Candela, H.; Robles, P.; Martínez-Laborda, A.; Fernández, Y.; Šimura, J.; Ljung, K.; Rubio, V.; Ponce, M.R.; et al. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. Front. Plant Sci. 2022, 13, 1009895. [Google Scholar] [CrossRef]
- Bridges, C.B.; Morgan, T.H. The Third-Chromosome Group of Mutant Characters of Drosophila melanogaster; Carnegie Institution of Washington: Washington, DC, USA, 1923; No. 327. [Google Scholar] [CrossRef]
- Marygold, S.J.; Roote, J.; Reuter, G.; Lambertsson, A.; Ashburner, M.; Millburn, G.H.; Harrison, P.M.; Yu, Z.; Kenmochi, N.; Kaufman, T.C.; et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 2007, 8, R216. [Google Scholar] [CrossRef]
- Uzair, M.; Long, H.; Zafar, S.A.; Patil, S.B.; Chun, Y.; Li, L.; Fang, J.; Zhao, J.; Peng, L.; Yuan, S.; et al. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. Plant Physiol. 2021, 186, 497–518. [Google Scholar] [CrossRef]
- Williams, M.E.; Sussex, I.M. Developmental regulation of ribosomal protein L16 genes in Arabidopsis thaliana. Plant J. 1995, 8, 65–76. [Google Scholar] [CrossRef]
- Weijers, D.; Franke-van Dijk, M.; Vencken, R.J.; Quint, A.; Hooykaas, P.; Offringa, R. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 2001, 128, 4289–4299. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Liu, Z.; Rochaix, J.D.; Sun, X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front. Plant Sci. 2022, 13, 980237. [Google Scholar] [CrossRef]
- Mateo-Bonmatí, E.; Casanova-Sáez, R.; Candela, H.; Micol, J.L. Rapid identification of angulata leaf mutations using next-generation sequencing. Planta 2014, 240, 1113–1122. [Google Scholar] [CrossRef]
- Skalitzky, C.A.; Martin, J.R.; Harwood, J.H.; Beirne, J.J.; Adamczyk, B.J.; Heck, G.R.; Cline, K.; Fernandez, D.E. Plastids contain a second sec translocase system with essential functions. Plant Physiol. 2011, 155, 354–369. [Google Scholar] [CrossRef]
- Jarvis, P.; Chen, L.J.; Li, H.; Peto, C.A.; Fankhauser, C.; Chory, J. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 1998, 282, 100–103. [Google Scholar] [CrossRef]
- Shimoni-Shor, E.; Hassidim, M.; Yuval-Naeh, N.; Keren, N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ. 2010, 33, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Voith von Voithenberg, L.; Park, J.; Stübe, R.; Lux, C.; Lee, Y.; Philippar, K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front. Plant Sci. 2019, 10, 1264. [Google Scholar] [CrossRef]
- Koussevitzky, S.; Stanne, T.M.; Peto, C.A.; Giap, T.; Sjögren, L.L.; Zhao, Y.; Clarke, A.K.; Chory, J. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 2007, 63, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Sáez, R.; Mateo-Bonmatí, E.; Kangasjärvi, S.; Candela, H.; Micol, J.L. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. J. Exp. Bot. 2014, 65, 2391–2404. [Google Scholar] [CrossRef]
- Muñoz-Nortes, T.; Pérez-Pérez, J.M.; Ponce, M.R.; Candela, H.; Micol, J.L. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis. Plant J. 2017, 89, 870–884. [Google Scholar] [CrossRef]
- Kong, F.; Deng, Y.; Zhou, B.; Wang, G.; Wang, Y.; Meng, Q. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J. Exp. Bot. 2014, 65, 143–158. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Z.; Ouyang, M.; Xu, X.; Xiong, H.; Wang, Q.; Grimm, B.; Rochaix, J.D.; Zhang, L. The DnaJ proteins DJA6 and DJA5 are essential for chloroplast iron–sulfur cluster biogenesis. EMBO J. 2021, 40, e106742. [Google Scholar] [CrossRef]
- Susek, R.E.; Ausubel, F.M.; Chory, J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 1993, 74, 787–799. [Google Scholar] [CrossRef]
- Wu, G.Z.; Bock, R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. Plant Cell 2021, 33, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Xu, D.; Lenzen, B.; Brachmann, A.; Yapa, M.M.; Doroodian, P.; Schmitz-Linneweber, C.; Masuda, T.; Hua, Z.; Leister, D.; et al. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. Plant Commun. 2024, 5, 101069. [Google Scholar] [CrossRef]
- Quesada, V.; Sarmiento-Mañús, R.; González-Bayón, R.; Hricová, A.; Ponce, M.R.; Micol, J.L. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS ONE 2013, 8, e53378. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yu, Q.B.; Li, Z.R.; Ye, L.S.; Xu, L.; Yang, Z.N. Porphobilinogen deaminase HEMC interacts with the PPR-protein AtECB2 for chloroplast RNA editing. Plant J. 2017, 92, 546–556. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, J.; Chory, J. Unraveling the linkage between retrograde signaling and RNA metabolism in plants. Trends Plant Sci. 2020, 25, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Quesada, V.; Sarmiento-Mañús, R.; González-Bayón, R.; Hricová, A.; Pérez-Marcos, R.; Graciá-Martínez, E.; Medina-Ruiz, L.; Leyva-Díaz, E.; Ponce, M.R.; Micol, J.L. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant J. 2011, 68, 738–753. [Google Scholar] [CrossRef]
- Babiychuk, E.; Vandepoele, K.; Wissing, J.; Garcia-Diaz, M.; De Rycke, R.; Akbari, H.; Joubès, J.; Beeckman, T.; Jänsch, L.; Frentzen, M.; et al. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc. Natl. Acad. Sci. USA 2011, 108, 6674–6679. [Google Scholar] [CrossRef] [PubMed]
- Robles, P.; Quesada, V. Research progress in the molecular functions of plant mTERF proteins. Cells 2021, 10, 205. [Google Scholar] [CrossRef]
- Mollá-Morales, A.; Sarmiento-Mañús, R.; Robles, P.; Quesada, V.; Pérez-Pérez, J.M.; González-Bayón, R.; Hannah, M.A.; Willmitzer, L.; Ponce, M.R.; Micol, J.L. Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J. 2011, 65, 335–345. [Google Scholar] [CrossRef]
- Shibata, H.; Ochiai, H.; Sawa, Y.; Miyoshi, S. Localization of carbamoylphosphate synthetase and aspartate carbamoyltransferase in chloroplasts. Plant Physiol. 1986, 80, 126–129. [Google Scholar] [CrossRef]
- Piérard, A.; Glansdorff, N.; Mergeay, M.; Wiame, J.M. Control of the biosynthesis of carbamoyl phosphate in Escherichia coli. J. Mol. Biol. 1965, 14, 23–36. [Google Scholar] [CrossRef]
- Coschigano, K.T.; Melo-Oliveira, R.; Lim, J.; Coruzzi, G.M. Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 1998, 10, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Somerville, C.R. Isolation of photorespiration mutants in Arabidopsis thaliana. In Methods in Chloroplast Molecular Biology; Edelman, M., Hallick, R.B., Chua, N.-H., Eds.; Elsevier Biomedical Press: Amsterdam, The Netherlands; New York, NY, USA, 1982; pp. 129–138. [Google Scholar]
- Somerville, C.R.; Ogren, W.L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 1980, 286, 257–259. [Google Scholar] [CrossRef]
- Muñoz-Nortes, T.; Pérez-Pérez, J.M.; Sarmiento-Mañús, R.; Candela, H.; Micol, J.L. Deficient glutamate biosynthesis triggers a concerted upregulation of ribosomal protein genes in Arabidopsis. Sci. Rep. 2017, 7, 6164. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Mañús, R.; Fontcuberta-Cervera, S.; González-Bayón, R.; Hannah, M.A.; Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V.; Quesada, V.; Ponce, M.R.; Micol, J.L. Analysis of the Arabidopsis venosa4-0 mutant supports the role of VENOSA4 in dNTP metabolism. Plant Sci. 2023, 335, 111819. [Google Scholar] [CrossRef]
- Sarmiento-Mañús, R.; Fontcuberta-Cervera, S.; Kawade, K.; Oikawa, A.; Tsukaya, H.; Quesada, V.; Micol, J.L.; Ponce, M.R. Functional conservation and divergence of Arabidopsis VENOSA4 and human SAMHD1 in DNA repair. Heliyon 2024, 11, e41019. [Google Scholar] [CrossRef]
- Garton, S.; Knight, H.; Warren, G.J.; Knight, M.R.; Thorlby, G.J. crinkled leaves 8—A mutation in the large subunit of ribonucleotide reductase—Leads to defects in leaf development and chloroplast division in Arabidopsis thaliana. Plant J. 2007, 50, 118–127. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.M.; Esteve-Bruna, D.; González-Bayón, R.; Kangasjärvi, S.; Caldana, C.; Hannah, M.A.; Willmitzer, L.; Ponce, M.R.; Micol, J.L. Functional redundancy and divergence within the Arabidopsis RETICULATA-RELATED gene family. Plant Physiol. 2013, 162, 589–603. [Google Scholar] [CrossRef]
- Rédei, G.P.; Hirono, I. Linkage studies. Arab. Inf. Serv. 1964, 1, 9–10. [Google Scholar]
- Mateo-Bonmatí, E.; Casanova-Sáez, R.; Quesada, V.; Hricová, A.; Candela, H.; Micol, J.L. Plastid control of abaxial-adaxial patterning. Sci. Rep. 2015, 5, 15975. [Google Scholar] [CrossRef] [PubMed]
- Somerville, C.; Bauer, S.; Brininstool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paredez, A.; Persson, S.; Raab, T.; et al. Toward a systems approach to understanding plant cell walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef]
- Assaad, F.F.; Huet, Y.; Mayer, U.; Jürgens, G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J. Cell Biol. 2001, 152, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Touihri, S.; Müller, I.; Mayer, U.; Jürgens, G. Sec1/Munc18 protein stabilizes fusion-competent syntaxin for membrane fusion in Arabidopsis cytokinesis. Dev. Cell 2012, 22, 989–1000. [Google Scholar] [CrossRef]
- Ruiz-Bayón, A.; Cara-Rodríguez, C.; Sarmiento-Mañús, R.; Muñoz-Viana, R.; Lozano, F.M.; Ponce, M.R.; Micol, J.L. Roles of the Arabidopsis KEULE gene in postembryonic development. Int. J. Mol. Sci. 2024, 25, 6667. [Google Scholar] [CrossRef]
- Du, J.; Vandavasi, V.G.; Molloy, K.R.; Yang, H.; Massenburg, L.N.; Singh, A.; Kwansa, A.L.; Yingling, Y.G.; O’Neill, H.; Chait, B.T.; et al. Evidence for plant-conserved region mediated trimeric CESAs in plant Cellulose Synthase Complexes. Biomacromolecules 2022, 23, 3663–3677. [Google Scholar] [CrossRef] [PubMed]
- Fagard, M.; Desnos, T.; Desprez, T.; Goubet, F.; Refregier, G.; Mouille, G.; McCann, M.; Rayon, C.; Vernhettes, S.; Höfte, H. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 2000, 12, 2409–2424. [Google Scholar] [CrossRef]
- Rubio-Díaz, S.; Pérez-Pérez, J.M.; González-Bayón, R.; Muñoz-Viana, R.; Borrega, N.; Mouille, G.; Hernández-Romero, D.; Robles, P.; Höfte, H.; Ponce, M.R.; et al. Cell expansion-mediated organ growth is affected by mutations in three EXIGUA genes. PLoS ONE 2012, 7, e36500. [Google Scholar] [CrossRef]
- Gallei, M.; Luschnig, C.; Friml, J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Curr. Opin. Plant Biol. 2020, 53, 43–49. [Google Scholar] [CrossRef]
- Dubey, S.M.; Serre, N.B.C.; Oulehlová, D.; Vittal, P.; Fendrych, M. No time for transcription—Rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 2021, 13, a039891. [Google Scholar] [CrossRef]
- Gray, W.M.; del Pozo, J.C.; Walker, L.; Hobbie, L.; Risseeuw, E.; Banks, T.; Crosby, W.L.; Yang, M.; Ma, H.; Estelle, M. Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999, 13, 1678–1691. [Google Scholar] [CrossRef]
- Esteve-Bruna, D.; Pérez-Pérez, J.M.; Ponce, M.R.; Micol, J.L. incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness. Plant Physiol. 2013, 161, 1303–1320. [Google Scholar] [CrossRef] [PubMed]
- Leyser, H.M.; Pickett, F.B.; Dharmasiri, S.; Estelle, M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996, 10, 403–413. [Google Scholar] [CrossRef]
- Rouse, D.; Mackay, P.; Stirnberg, P.; Estelle, M.; Leyser, O. Changes in auxin response from mutations in an AUX/IAA gene. Science 1998, 279, 1371–1373. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, F.; Overvoorde, P.J.; Theologis, A. IAA17/AXR3: Biochemical insight into an auxin mutant phenotype. Plant Cell 2001, 13, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.M.; Candela, H.; Robles, P.; López-Torrejón, G.; del Pozo, J.C.; Micol, J.L. A role for AUXIN RESISTANT3 in the coordination of leaf growth. Plant Cell Physiol. 2010, 51, 1661–1673. [Google Scholar] [CrossRef]
- Tian, Q.; Reed, J.W. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 1999, 126, 711–721. [Google Scholar] [CrossRef]
- Tian, Q.; Uhlir, N.J.; Reed, J.W. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 2002, 14, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Karampelias, M.; Neyt, P.; De Groeve, S.; Aesaert, S.; Coussens, G.; Rolčik, J.; Bruno, L.; De Winne, N.; Van Minnebruggen, A.; Van Montagu, M.; et al. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proc. Natl. Acad. Sci. USA 2016, 113, 2768–2773. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Wang, B.; Li, H.; Liu, R.; Kalia, R.K.; Zhu, J.K.; Chinnusamy, V. Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 18198–18203. [Google Scholar] [CrossRef]
- Petrášek, J.; Mravec, J.; Bouchard, R.; Blakeslee, J.J.; Abas, M.; Seifertová, D.; Wiśniewska, J.; Tadele, Z.; Kubeš, M.; Čovanová, M.; et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 2006, 312, 914–918. [Google Scholar] [CrossRef]
- Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 2007, 130, 1044–1056. [Google Scholar] [CrossRef]
- Zhang, J.; Nodzyński, T.; Pěnčik, A.; Rolčik, J.; Friml, J. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc. Natl. Acad. Sci. USA 2010, 107, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, X.; Zhen, W.; Nie, Y.; Li, Y.; Yuan, P.; Liu, Q.; Guo, S.; Shen, Z.; Zheng, B.; et al. SICKLE modulates lateral root development by promoting degradation of lariat intronic RNA. Plant Physiol. 2022, 190, 548–561. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Lian, H.; Song, P.; Wang, Y.; Duan, J.; Song, Z.; Cao, Y.; Xu, D.; Li, J.; et al. SICKLE represses photomorphogenic development of Arabidopsis seedlings via HY5- and PIF4-mediated signaling. J. Integr. Plant Biol. 2022, 64, 1706–1723. [Google Scholar] [CrossRef]
- Xiong, L.; Lee, B.; Ishitani, M.; Lee, H.; Zhang, C.; Zhu, J.K. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 2001, 15, 1971–1984. [Google Scholar] [CrossRef]
- Quintero, F.J.; Garciadeblás, B.; Rodríguez-Navarro, A. The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 1996, 8, 529–537. [Google Scholar] [CrossRef]
- Xiong, L.; Lee, H.; Huang, R.; Zhu, J.K. A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. Plant J. 2004, 40, 536–545. [Google Scholar] [CrossRef]
- Wilson, P.B.; Estavillo, G.M.; Field, K.J.; Pornsiriwong, W.; Carroll, A.J.; Howell, K.A.; Woo, N.S.; Lake, J.A.; Smith, S.M.; Harvey Millar, A.; et al. The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J. 2009, 58, 299–317. [Google Scholar] [CrossRef]
- Robles, P.; Fleury, D.; Candela, H.; Cnops, G.; Alonso-Peral, M.M.; Anami, S.; Falcone, A.; Caldana, C.; Willmitzer, L.; Ponce, M.R.; et al. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant Physiol. 2010, 152, 1357–1372. [Google Scholar] [CrossRef]
- Biedrón, M.; Banasiak, A. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. Plant Cell Rep. 2018, 37, 1215–1229. [Google Scholar] [CrossRef]
- Lin, W.H.; Wang, Y.; Mueller-Roeber, B.; Brearley, C.A.; Xu, Z.H.; Xue, H.W. At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis. Plant Physiol. 2005, 139, 1677–1691. [Google Scholar] [CrossRef]
- Zhang, J.; Vanneste, S.; Brewer, P.B.; Michniewicz, M.; Grones, P.; Kleine-Vehn, J.; Löfke, C.; Teichmann, T.; Bielach, A.; Cannoot, B.; et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev. Cell 2011, 20, 855–866. [Google Scholar] [CrossRef]
- Guan, T.; Müller, S.; Klier, G.; Panté, N.; Blevitt, J.M.; Haner, M.; Paschal, B.; Aebi, U.; Gerace, L. Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol. Biol. Cell 1995, 6, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Ferrández-Ayela, A.; Alonso-Peral, M.M.; Sánchez-García, A.B.; Micol-Ponce, R.; Pérez-Pérez, J.M.; Micol, J.L.; Ponce, M.R. Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel. PLoS ONE 2013, 8, e67661. [Google Scholar] [CrossRef]
- Parry, G.; Ward, S.; Cernac, A.; Dharmasiri, S.; Estelle, M. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 2006, 18, 1590–1603. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.H.; Hu, X.; Tang, W.; Zheng, X.; Kim, Y.S.; Lee, B.H.; Zhu, J.K. A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol. Cell. Biol. 2006, 26, 9533–9543. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Fukao, Y.; Iwamoto, M.; Haraguchi, T.; Hara-Nishimura, I. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 2010, 22, 4084–4097. [Google Scholar] [CrossRef]
- Parry, G. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J. Exp. Bot. 2014, 65, 6057–6067. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xiao, L.; Huang, P.; Cheng, Z.; Chen, F.; Miao, Y.; Fu, Y.F.; Chen, Q.; Zhang, X.M. Nucleoporin Nup98 participates in flowering regulation in a CONSTANS-independent mode. Plant Cell Rep. 2019, 38, 1263–1271. [Google Scholar] [CrossRef]
- Zhao, Q.; Meier, I. Identification and characterization of the Arabidopsis FG-repeat nucleoporin Nup62. Plant Signal. Behav. 2011, 6, 330–334. [Google Scholar] [CrossRef]
- Chen, G.; Xu, D.; Liu, Q.; Yue, Z.; Dai, B.; Pan, S.; Chen, Y.; Feng, X.; Hu, H. Regulation of FLC nuclear import by coordinated action of the NUP62-subcomplex and importin β SAD2. J. Integr. Plant Biol. 2023, 65, 2086–2106. [Google Scholar] [CrossRef]
- Wilson-Sánchez, D.; Martínez-López, S.; Navarro-Cartagena, S.; Jover-Gil, S.; Micol, J.L. Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves. New Phytol. 2018, 217, 1307–1321. [Google Scholar] [CrossRef] [PubMed]
- Roschzttardtz, H.; Paez-Valencia, J.; Dittakavi, T.; Jali, S.; Reyes, F.C.; Baisa, G.; Anne, P.; Gissot, L.; Palauqui, J.C.; Masson, P.H.; et al. The VASCULATURE COMPLEXITY AND CONNECTIVITY gene encodes a plant-specific protein required for embryo provasculature development. Plant Physiol. 2014, 166, 889–902. [Google Scholar] [CrossRef]
- Moubayidin, L.; Østergaard, L. Symmetry matters. New Phytol. 2015, 207, 985–990. [Google Scholar] [CrossRef]
- Pěnčík, A.; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, A.; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018, 69, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Pegler, J.L.; Grof, C.P.L.; Eamens, A.L. The plant microRNA Pathway: The production and action stages. Methods. Mol. Biol. 2019, 1932, 15–39. [Google Scholar] [CrossRef]
- Jover-Gil, S.; Candela, H.; Robles, P.; Aguilera, V.; Barrero, J.M.; Micol, J.L.; Ponce, M.R. The microRNA pathway genes AGO1, HEN1 and HYL1 participate in leaf proximal–distal, venation and stomatal patterning in Arabidopsis. Plant Cell Physiol. 2012, 53, 1322–1333. [Google Scholar] [CrossRef]
- Gonzalo, L.; Giudicatti, A.J.; Manavella, P.A. HYL1’s multiverse: A journey through miRNA biogenesis and beyond canonical and non-canonical functions of HYL1. Curr. Opin. Plant Biol. 2024, 80, 102546. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Yu, B.; Liu, J.; Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 2005, 15, 1501–1507. [Google Scholar] [CrossRef]
- Baranauskė, S.; Mickutė, M.; Plotnikova, A.; Finke, A.; Venclovas, C.; Klimašauskas, S.; Vilkaitis, G. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res. 2015, 43, 2802–2812. [Google Scholar] [CrossRef]
- Baumberger, N.; Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 2005, 102, 11928–11933. [Google Scholar] [CrossRef]
- Ferrández-Ayela, A.; Micol-Ponce, R.; Sánchez-García, A.B.; Alonso-Peral, M.M.; Micol, J.L.; Ponce, M.R. Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PLoS ONE 2013, 8, e80697. [Google Scholar] [CrossRef] [PubMed]
- Moussian, B.; Schoof, H.; Haecker, A.; Jürgens, G.; Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 1998, 17, 1799–1809. [Google Scholar] [CrossRef]
- Pikaard, C.S.; Mittelsten Scheid, O. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 2014, 6, a019315. [Google Scholar] [CrossRef] [PubMed]
- Crisp, P.A.; Ganguly, D.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2016, 2, e1501340. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.K. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat. Rev. Mol. Cell Biol. 2025, 26, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wagner, D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr. Opin. Plant Biol. 2015, 23, 15–24. [Google Scholar] [CrossRef]
- Jiao, H.; Xie, Y.; Li, Z. Current understanding of plant Polycomb group proteins and the repressive histone H3 Lysine 27 trimethylation. Biochem. Soc. Trans. 2020, 48, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Bratzel, F.; Lopez-Torrejón, G.; Koch, M.; Del Pozo, J.C.; Calonje, M. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr. Biol. 2010, 20, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.; Puangsomlee, P.; Martin, M.; Long, D.; Meyerowitz, E.M.; Coupland, G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 1997, 386, 44–51. [Google Scholar] [CrossRef]
- Serrano-Cartagena, J.; Candela, H.; Robles, P.; Ponce, M.R.; Pérez-Pérez, J.M.; Piqueras, P.; Micol, J.L. Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis. Genetics 2000, 156, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Nelissen, H.; Fleury, D.; Bruno, L.; Robles, P.; De Veylder, L.; Traas, J.; Micol, J.L.; Van Montagu, M.; Inzé, D.; Van Lijsebettens, M. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc. Natl. Acad. Sci. USA 2005, 102, 7754–7759. [Google Scholar] [CrossRef]
- Woloszynska, M.; Le Gall, S.; Van Lijsebettens, M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. Biochim. Biophys. Acta 2016, 1859, 1025–1033. [Google Scholar] [CrossRef]
- Fleury, D.; Himanen, K.; Cnops, G.; Nelissen, H.; Boccardi, T.M.; Maere, S.; Beemster, G.T.; Neyt, P.; Anami, S.; Robles, P.; et al. The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell 2007, 19, 417–432. [Google Scholar] [CrossRef]
- Barrero, J.M.; González-Bayón, R.; del Pozo, J.C.; Ponce, M.R.; Micol, J.L. INCURVATA2 encodes the catalytic subunit of DNA Polymerase α and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 2007, 19, 2822–2838. [Google Scholar] [CrossRef]
- Hyun, Y.; Yun, H.; Park, K.; Ohr, H.; Lee, O.; Kim, D.H.; Sung, S.; Choi, Y. The catalytic subunit of Arabidopsis DNA polymerase α ensures stable maintenance of histone modification. Development 2013, 140, 156–166. [Google Scholar] [CrossRef]
- Mateo-Bonmatí, E.; Esteve-Bruna, D.; Juan-Vicente, L.; Nadi, R.; Candela, H.; Lozano, F.M.; Ponce, M.R.; Pérez-Pérez, J.M.; Micol, J.L. INCURVATA11 and CUPULIFORMIS2 are redundant genes that encode epigenetic machinery components in Arabidopsis. Plant Cell 2018, 30, 1596–1616. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.H.; Hutchison, C.E.; Bäurle, I.; Walker, J.; Fang, X.; Perera, P.; Velanis, C.N.; Gümüs, S.; Spanos, C.; Rappsilber, J.; et al. The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. Proc. Natl. Acad. Sci. USA 2020, 117, 16660–16666. [Google Scholar] [CrossRef]
- Nadi, R.; Juan-Vicente, L.; Mateo-Bonmatí, E.; Micol, J.L. The unequal functional redundancy of Arabidopsis INCURVATA11 and CUPULIFORMIS2 is not dependent on genetic background. Front. Plant Sci. 2023, 14, 1239093. [Google Scholar] [CrossRef]
- Nadi, R.; Juan-Vicente, L.; Lup, S.D.; Fernández, Y.; Rubio, V.; Micol, J.L. Overlapping roles of Arabidopsis INCURVATA11 and CUPULIFORMIS2 as Polycomb Repressive Complex 2. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kougioumoutzi, E.; Cartolano, M.; Canales, C.; Dupré, M.; Bramsiepe, J.; Vlad, D.; Rast, M.; Dello Ioio, R.; Tattersall, A.; Schnittger, A.; et al. SIMPLE LEAF3 encodes a ribosome-associated protein required for leaflet development in Cardamine hirsuta. Plant J. 2013, 73, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Leister, D.; Kleine, T. VENOSA4, a human dNTPase SAMHD1 homolog, contributes to chloroplast development and abiotic stress tolerance. Plant Physiol. 2020, 182, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Z.; Chalvin, C.; Hoelscher, M.; Meyer, E.H.; Wu, X.N.; Bock, R. Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol. 2018, 176, 2472–2495. [Google Scholar] [CrossRef]
- Swartz, L.G.; Liu, S.; Dahlquist, D.; Kramer, S.T.; Walter, E.S.; McInturf, S.A.; Bucksch, A.; Mendoza-Cózatl, D.G. OPEN leaf: An open-source cloud-based phenotyping system for tracking dynamic changes at leaf-specific resolution in Arabidopsis. Plant J. 2023, 116, 1600–1616. [Google Scholar] [CrossRef]
- Wan, Z.; Kong, W.; Tang, Y.; Ma, F.; Ji, Y.; Peng, Y.; Zhu, Z. A computer vision-based approach for high-throughput automated analysis of Arabidopsis seedling phenotypes. Plant Physiol. 2025, 198, kiaf275. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Liu, F.; Deng, L.; Wu, G.; Han, Z.; Zhao, L. From organelle morphology to whole-plant phenotyping: A phenotypic detection method based on deep learning. Plants 2024, 13, 1177. [Google Scholar] [CrossRef]
- Wilson-Sánchez, D.; Lup, S.D.; Sarmiento-Mañús, R.; Ponce, M.R.; Micol, J.L. Next-generation forward genetic screens: Using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res. 2019, 47, e140. [Google Scholar] [CrossRef]
- Reinholz, E. X-Ray mutations in Arabidopsis thaliana (L.) Heynh. and their significance for plant breeding and the theory of evolution. FIAT Report 1947, 1006, 1–70. [Google Scholar]
- Azpiroz, R.; Wu, Y.; LoCascio, J.C.; Feldmann, K.A. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 1998, 10, 219–230. [Google Scholar] [CrossRef]
- Ochando, I.; Jover-Gil, S.; Ripoll, J.J.; Candela, H.; Vera, A.; Ponce, M.R.; Martínez-Laborda, A.; Micol, J.L. Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in arabidopsis. Plant Physiol. 2006, 141, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Hricová, A.; Quesada, V.; Micol, J.L. The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol. 2006, 141, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.M.; Ponce, M.R.; Micol, J.L. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev. Biol. 2002, 242, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.M.; Ponce, M.R.; Micol, J.L. The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol. 2004, 134, 101–117. [Google Scholar] [CrossRef]
- González-Bayón, R.; Kinsman, E.A.; Quesada, V.; Vera, A.; Robles, P.; Ponce, M.R.; Pyke, K.A.; Micol, J.L. Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. J. Exp. Bot. 2006, 57, 3019–3031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan-Vicente, L.; Ruiz-Bayón, A.; Micol, J.L. Light and Shadows: Insights from Large-Scale Visual Screens for Arabidopsis Leaf Morphology Mutants. Int. J. Mol. Sci. 2025, 26, 8332. https://doi.org/10.3390/ijms26178332
Juan-Vicente L, Ruiz-Bayón A, Micol JL. Light and Shadows: Insights from Large-Scale Visual Screens for Arabidopsis Leaf Morphology Mutants. International Journal of Molecular Sciences. 2025; 26(17):8332. https://doi.org/10.3390/ijms26178332
Chicago/Turabian StyleJuan-Vicente, Lucía, Alejandro Ruiz-Bayón, and José Luis Micol. 2025. "Light and Shadows: Insights from Large-Scale Visual Screens for Arabidopsis Leaf Morphology Mutants" International Journal of Molecular Sciences 26, no. 17: 8332. https://doi.org/10.3390/ijms26178332
APA StyleJuan-Vicente, L., Ruiz-Bayón, A., & Micol, J. L. (2025). Light and Shadows: Insights from Large-Scale Visual Screens for Arabidopsis Leaf Morphology Mutants. International Journal of Molecular Sciences, 26(17), 8332. https://doi.org/10.3390/ijms26178332