The Heart–Brain Axis in the Artificial Intelligence Era: Integrating Old and New Insights Towards New Targeting and Innovative Neuro- and Cardio-Therapeutics
Abstract
1. Introduction
2. The Heart–Brain Axis Throughout History
3. Description of the Heart–Brain Axis
3.1. Autonomic Nervous System
3.2. Neuroimmune Cardiovascular Interface (NICI)
3.3. Intrinsic Cardiac Nervous System (ICNS)
3.4. Molecular Mechanisms
3.5. Neurochemical and Hormonal Interactions
3.6. Reflex and Feedback Mechanisms of the Heart–Brain Axis
4. From Heart–Brain Axis Mechanisms to Therapeutic Strategies
4.1. β-Blockade
4.2. Anti-Inflammatory Molecules
4.3. Vagus Nerve Stimulation (VNS) and Neuromodulation
4.4. Neurotrophin Modulation
4.5. Gut Barrier and the Heart–Brain Axis
4.6. RNA-Based Therapeutics
4.7. Nanoparticles
4.8. Targeting Brain Regions and Central Autonomic Circuits
5. Biomarkers of the Heart–Brain Axis and Their Utility in Clinical Practice
5.1. Heart Rate Variability (HRV)
5.2. Electrocardiographic (ECG) Changes
5.3. Cardiac Enzymes
5.4. Brain Natriuretic Peptide (BNP)
5.5. Other Biomarkers
Biomarker | What It Reflects | Clinical Utility | Associated Conditions | References |
---|---|---|---|---|
HRV | Autonomic balance | Detection of autonomic dysfunction. Prediction of cardiac mortality and clinical deterioration. | Stroke, MS, depression, MI, CNS injury, diabetic neuropathy | [5,7,9,11,12,13,124,125,126,127,128] |
ECG changes | Autonomic dysfunction, myocardial electrical instability | Differentiation between neurogenic and primary cardiac injury. Cardiovascular risk assessment. | NSM, TC, MS | [10,12,13,14] |
Troponin | Neurogenic cardiac injury | Identification of neurogenic origins of cardiac injury. | NSM, TC, stroke, MS | [8,10,14] |
Creatine Kinase | Neurogenic myocardial Injury | Limited diagnostic and prognostic utility. | Ischemic stroke | [8] |
BNP | Autonomic and hemodynamic compromise | Identification of paroxysmal AF in stroke patients. Differentiation between neurogenic and primary cardiac injury. Prognostication of stroke recurrence, mortality and functional recovery. | Stroke, NSM, TC | [8,10] |
BDNF | Susceptibility to neurocardiac stress | Limited clinical utility. | N/A | [9] |
Myoglobin | N/A | Limited clinical utility. | Ischemic stroke | [8] |
Inflammatory markers (CRP, IL-6, TNF) | N/A | Limited clinical utility. | Depression, neuroautoimmune and cardiovascular disorders | [9,21] |
6. Autonomic Dysfunction as the Key Mechanism in Heart–Brain Axis Disorder
6.1. Multiple Sclerosis and the Heart–Brain Axis
6.2. Hypertension
6.3. Atherosclerosis
6.4. Stroke-Induced Cardiac Dysfunction
6.5. Heart Failure
6.6. Takotsubo Cardiomyopathy
6.7. Depression
6.8. Other Disorders
7. Heart–Brain Axis in the Age of Wearables and AI
7.1. AI in Multiple Sclerosis
7.2. AI in Epilepsy
7.3. HRV
7.3.1. HRV—Wearables
7.3.2. HRV-AI
7.4. ECG—AI
7.5. Troponin—Wearables
7.6. Creatine Kinase—Wearables and AI
7.7. BNP-AI
8. Challenges and Limitations of AI and Wearable Technologies
9. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
ALT | Alanine transaminase |
AD | Alzheimer’s disease |
ALS | Amyotrophic lateral sclerosis |
ATI | Angiotensin I |
ATII | Angiotensin II |
AUC | Area under the curve |
AI | Artificial intelligence |
AST | Aspartate transaminase |
AF | Atrial fibrillation |
ANS | Autonomic nervous system |
BBB | Blood–brain barrier |
BDNF | Brain-derived neurotrophic factor |
BNP | Brain natriuretic peptide |
CVD | Cardiovascular |
CVLM | Caudal ventrolateral medulla |
CAN | Central autonomic network |
CNS | Central nervous system |
CTNF | Ciliary neurotrophic factor |
CK | Creatine kinase |
CRP | C-reactive protein |
DL | Deep learning |
ECG | Electrocardiogram |
GDNF | Glial cell line-derived neurotrophic factor |
HBA | Heart–brain axis |
HF | Heart failure |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
HRV | Heart rate variability |
HR | Heart rate |
HD | Huntington’s disease |
HPA | Hypothalamic–pituitary–adrenal |
HTN | Hypertension |
ICD | Implantable cardioverter–defibrillator |
IL-1 | Interleukin 1 |
IL-6 | Interleukin 6 |
ICNS | Intrinsic cardiac nervous system |
LVEF | Left ventricular ejection fraction |
LPS | Lipopolysaccharide |
ML | Machine learning |
MnPO | Median preoptic nucleus |
MS | Multiple sclerosis |
MALT | Mucosa-associated lymphoid tissues |
NPs | Nanoparticles |
NICI | Nerve–artery–immune interface |
NSM | Neurogenic stunned myocardium |
NE | Norepinephrine |
NAmb | Nucleus ambiguous |
NTS | Nucleus tractus solitarius |
OVLT | Organum vasculosum lamina terminalis |
PD | Parkinson’s disease |
PTSD | Post-traumatic stress disorder |
PPG | Photoplethysmography |
RAS | Renin–angiotensin system |
RBBB | Right bundle branch block |
RVLM | Rostral ventriculolateral medulla |
RVMM | Rostral ventriculomedial medulla |
CVOs | Sensory circumventricular organs |
SFO | Subfornical organ |
SCD | Sudden cardiac death |
SAM | Sympathetic–adrenal–medullary |
TC | Takotsubo cardiomyopathy |
tACS | Transcranial alternating current stimulation |
TNF | Tumor necrosis factor |
VEGF | Vascular endothelial growth factor |
VIP | Vasoactive intestinal peptide |
References
- Lypourlis, D. Ιατρικη στην αρχαία Ελλάδα: Aπό τον Όμηρο στον Ιπποκράτη; Εκδόσεις Επίκεντρο: Athens, Greece, 2008; ISBN 978-960-458-178-8. [Google Scholar]
- Hassanpour, M.S.; Yan, L.; Wang, D.J.J.; Lapidus, R.C.; Arevian, A.C.; Simmons, W.K.; Feusner, J.D.; Khalsa, S.S. How the heart speaks to the brain: Neural activity during cardiorespiratory interoceptive stimulation. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160017. [Google Scholar] [CrossRef]
- Khalil, M.; Lau, H.C.; Thackeray, J.T.; Mikail, N.; Gebhard, C.; Quyyumi, A.A.; Bengel, F.M.; Bremner, J.D.; Vaccarino, V.; Tawakol, A.; et al. Heart–brain axis: Pushing the boundaries of cardiovascular molecular imaging. J. Nucl. Cardiol. 2024, 36, 101870. [Google Scholar] [CrossRef]
- Goh, F.Q.; Tan, B.Y.Q.; Yeo, L.L.L.; Sia, C.-H. The Heart-Brain Axis: Key Concepts in Neurocardiology. Cardiol. Discov. 2025, 5, 162–177. [Google Scholar] [CrossRef]
- Silvani, A.; Calandra-Buonaura, G.; Dampney, R.A.L.; Cortelli, P. Brain–heart interactions: Physiology and clinical implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150181. [Google Scholar] [CrossRef]
- Simats, A.; Sager, H.B.; Liesz, A. Heart–brain axis in health and disease: Role of innate and adaptive immunity. Cardiovasc. Res. 2025, 120, 2325–2335. [Google Scholar] [CrossRef] [PubMed]
- Rapp, D.; Michels, S.; Schöpe, J.; Schwingshackl, L.; Tumani, H.; Senel, M. Associations between multiple sclerosis and incidence of heart diseases: Systematic review and meta-analysis of observational studies. Mult. Scler. Relat. Disord. 2021, 56, 103279. [Google Scholar] [CrossRef] [PubMed]
- Manea, M.M.; Comsa, M.; Minca, A.; Dragos, D.; Popa, C. Brain-heart axis—Review Article. J. Med. Life 2015, 8, 266–271. [Google Scholar] [PubMed]
- Liu, W.; Zhang, X.; Wu, Z.; Huang, K.; Yang, C.; Yang, L. Brain–heart communication in health and diseases. Brain Res. Bull. 2022, 183, 27–37. [Google Scholar] [CrossRef]
- Lionel, K.R. Head Rules Over the Heart: Cardiac Manifestations of Cerebral Disorders. Indian J. Crit. Care Med. 2019, 23, 329–335. [Google Scholar] [CrossRef]
- Saari, A.; Tolonen, U.; Pääkkö, E.; Suominen, K.; Pyhtinen, J.; Sotaniemi, K.; Myllylä, V. Cardiovascular autonomic dysfunction correlates with brain MRI lesion load in MS. Clin. Neurophysiol. 2004, 115, 1473–1478. [Google Scholar] [CrossRef]
- Zavarella, M.; Villatore, A.; Rocca, M.A.; Peretto, G.; Filippi, M. The Heart–Brain Interplay in Multiple Sclerosis from Pathophysiology to Clinical Practice: A Narrative Review. J. Cardiovasc. Dev. Dis. 2023, 10, 153. [Google Scholar] [CrossRef]
- Findling, O.; Hauer, L.; Pezawas, T.; Rommer, P.S.; Struhal, W.; Sellner, J. Cardiac Autonomic Dysfunction in Multiple Sclerosis: A Systematic Review of Current Knowledge and Impact of Immunotherapies. J. Clin. Med. 2020, 9, 335. [Google Scholar] [CrossRef]
- Dell’Aquila, A.; Sciatti, E.; Vizzardi, E.; Metra, M. The brain-heart connection: A multiple sclerosis relapse presenting as Takotsubo Syndrome. A case report and literature review. Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef]
- Thackeray, J.T. Imaging the Molecular Footprints of the Heart–Brain Axis in Cardiovascular Disease. J. Nucl. Med. 2019, 60, 728–729. [Google Scholar] [CrossRef] [PubMed]
- Battaglini, D.; Robba, C.; Lopes Da Silva, A.; Dos Santos Samary, C.; Leme Silva, P.; Dal Pizzol, F.; Pelosi, P.; Rocco, P.R.M. Brain–heart interaction after acute ischemic stroke. Crit. Care 2020, 24, 163. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, V.; Almuwaqqat, Z.; Kim, J.H.; Hammadah, M.; Shah, A.J.; Ko, Y.-A.; Elon, L.; Sullivan, S.; Shah, A.; Alkhoder, A.; et al. Association of Mental Stress–Induced Myocardial Ischemia with Cardiovascular Events in Patients with Coronary Heart Disease. JAMA 2021, 326, 1818. [Google Scholar] [CrossRef]
- Lauinger, A.R.; Sepe, J.J. Vascularization, Innervation, and Inflammation: Pathways Connecting the Heart–Brain Axis and Implications in a Clinical Setting. Biomedicines 2025, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Beis, D.; Zerr, I.; Martelli, F.; Doehner, W.; Devaux, Y. RNAs in Brain and Heart Diseases. Int. J. Mol. Sci. 2020, 21, 3717. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Singh, A.; Kishore, P.S.; Khan, S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024, 16, e70877. [Google Scholar] [CrossRef]
- Martinez-Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med. 2017, 282, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Syed, R.; Reddy, N.; Mehta, S.T.; Rasheed, A.; Paniyar, B.K. Neuroprotective Effects of Neurotrophic Factors in Neurodegenerative Diseases: A Systematic Review. J. Neurol. Sci. Res. 2024, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Limonova, A.S.; Germanova, K.N.; Gantman, M.V.; Nazarova, M.A.; Davtyan, K.V.; Novikov, P.A.; Sukmanova, A.A.; Tarasov, A.V.; Kharlap, M.S.; Ershova, A.I.; et al. Neurovisceral interactions within the brain-heart axis as the basis of neurocardiology. Cardiovasc. Ther. Prev. 2022, 21, 3435. [Google Scholar] [CrossRef]
- Nagai, M.; Hoshide, S.; Kario, K. The insular cortex and cardiovascular system: A new insight into the brain-heart axis. J. Am. Soc. Hypertens. 2010, 4, 174–182. [Google Scholar] [CrossRef]
- Mo, J.; Huang, L.; Peng, J.; Ocak, U.; Zhang, J.; Zhang, J.H. Autonomic Disturbances in Acute Cerebrovascular Disease. Neurosci. Bull. 2019, 35, 133–144. [Google Scholar] [CrossRef]
- Tahsili-Fahadan, P.; Geocadin, R.G. Heart–Brain Axis: Effects of Neurologic Injury on Cardiovascular Function. Circ. Res. 2017, 120, 559–572. [Google Scholar] [CrossRef]
- Brasil, T.F.S.; Lopes-Azevedo, S.; Belém-Filho, I.J.A.; Fortaleza, E.A.T.; Antunes-Rodrigues, J.; Corrêa, F.M.A. The Dorsomedial Hypothalamus Is Involved in the Mediation of Autonomic and Neuroendocrine Responses to Restraint Stress. Front. Pharmacol. 2020, 10, 1547. [Google Scholar] [CrossRef]
- Armour, J.A.; Murphy, D.A.; Yuan, B.-X.; MacDonald, S.; Hopkins, D.A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997, 247, 289–298. [Google Scholar] [CrossRef]
- Witt, C.M.; Bolona, L.; Kinney, M.O.; Moir, C.; Ackerman, M.J.; Kapa, S.; Asirvatham, S.J.; McLeod, C.J. Denervation of the extrinsic cardiac sympathetic nervous system as a treatment modality for arrhythmia. EP Eur. 2017, 19, 1075–1083. [Google Scholar] [CrossRef]
- Valenza, G.; Matić, Z.; Catrambone, V. The brain–heart axis: Integrative cooperation of neural, mechanical and biochemical pathways. Nat. Rev. Cardiol. 2025, 22, 537–550. [Google Scholar] [CrossRef]
- Ren, X.; Roessler, A.E.; Lynch, T.L.; Haar, L.; Mallick, F.; Lui, Y.; Tranter, M.; Ren, M.H.; Xie, W.R.; Fan, G.-C.; et al. Cardioprotection via the skin: Nociceptor-induced conditioning against cardiac MI in the NIC of time. Am. J. Physiol. -Heart Circ. Physiol. 2019, 316, H543–H553. [Google Scholar] [CrossRef]
- Crick, S.J.; Wharton, J.; Sheppard, M.N.; Royston, D.; Yacoub, M.H.; Anderson, R.H.; Polak, J.M. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 1994, 89, 1697–1708. [Google Scholar] [CrossRef]
- Bucchi, A.; Baruscotti, M.; Robinson, R.B.; DiFrancesco, D. Modulation of rate by autonomic agonists in SAN cells involves changes in diastolic depolarization and the pacemaker current. J. Mol. Cell. Cardiol. 2007, 43, 39–48. [Google Scholar] [CrossRef]
- Furnival, C.M.; Linden, R.J.; Snow, H.M. Inotropic changes in the left ventricle: The effect of changes in heart rate, aortic pressure and end-diastolic pressure. J. Physiol. 1970, 211, 359–387. [Google Scholar] [CrossRef] [PubMed]
- Wallick, D.W.; Martin, P.J.; Masuda, Y.; Levy, M.N. Effects of autonomic activity and changes in heart rate on atrioventricular conduction. Am. J. Physiol.-Heart Circ. Physiol. 1982, 243, H523–H527. [Google Scholar] [CrossRef]
- Bers, D.M.; Despa, S. Na/K-ATPase—An Integral Player in the Adrenergic Fight-or-Flight Response. Trends Cardiovasc. Med. 2009, 19, 111–118. [Google Scholar] [CrossRef]
- Rashba, E.J.; Cooklin, M.; MacMurdy, K.; Kavesh, N.; Kirk, M.; Sarang, S.; Peters, R.W.; Shorofsky, S.R.; Gold, M.R. Effects of Selective Autonomic Blockade on T-Wave Alternans in Humans. Circulation 2002, 105, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, G.; Magrì, D.; Ogawa, M.; Song, J.; Chong, V.J.; Han, S.; Joung, B.; Choi, E.-K.; Hwang, S.; Chen, L.S.; et al. Autonomic Nervous System Activity Measured Directly and QT Interval Variability in Normal and Pacing-Induced Tachycardia Heart Failure Dogs. J. Am. Coll. Cardiol. 2009, 54, 840–850. [Google Scholar] [CrossRef]
- Plott, C.; Harb, T.; Arvanitis, M.; Gerstenblith, G.; Blumenthal, R.; Leucker, T. Neurocardiac Axis Physiology and Clinical Applications. IJC Heart Vasc. 2024, 54, 101488. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.A.; Bieger, D.; Vente, J.D.; Steinbusch, H.W.M. Chapter 5 Vagal efferent projections: Viscerotopy, neurochemistry and effects of vagotomy. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 1996; Volume 107, pp. 79–96. [Google Scholar] [CrossRef]
- Coote, J.H. Myths and realities of the cardiac vagus. J. Physiol. 2013, 591, 4073–4085. [Google Scholar] [CrossRef]
- DiFrancesco, D.; Ducouret, P.; Robinson, R.B. Muscarinic Modulation of Cardiac Rate at Low Acetylcholine Concentrations. Science 1989, 243, 669–671. [Google Scholar] [CrossRef]
- Opthof, T. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 2000, 45, 177–184. [Google Scholar] [CrossRef]
- Levy, M.N.; Blattberg, B. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ. Res. 1976, 38, 81–84. [Google Scholar] [CrossRef]
- Sunagawa, K.; Kawada, T.; Nakahara, T. Dynamic nonlinear vago-sympathetic interaction in regulating heart rate. Heart Vessel. 1998, 13, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, S.K.; Peng, L.; Li, Y.; Lu, S.; Sun, T.; Carnevale, L.; Perrotta, M.; Ma, Z.; Förstera, B.; Stanic, K.; et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 2022, 605, 152–159. [Google Scholar] [CrossRef]
- Li, W.; Kohara, H.; Uchida, Y.; James, J.M.; Soneji, K.; Cronshaw, D.G.; Zou, Y.-R.; Nagasawa, T.; Mukouyama, Y. Peripheral Nerve-Derived CXCL12 and VEGF-A Regulate the Patterning of Arterial Vessel Branching in Developing Limb Skin. Dev. Cell 2013, 24, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Giannino, G.; Braia, V.; Griffith Brookles, C.; Giacobbe, F.; D’Ascenzo, F.; Angelini, F.; Saglietto, A.; De Ferrari, G.M.; Dusi, V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. Biology 2024, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Colucci, W.S. The effects of norepinephrine on myocardial biology: Implications for the therapy of heart failure. Clin. Cardiol. 1998, 21, 20–24. [Google Scholar] [CrossRef]
- Morrison, S.F.; Cao, W.-H. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 279, R1763–R1775. [Google Scholar] [CrossRef]
- Lamotte, G.; Shouman, K.; Benarroch, E.E. Stress and central autonomic network. Auton. Neurosci. 2021, 235, 102870. [Google Scholar] [CrossRef] [PubMed]
- Guyenet, P.G.; Stornetta, R.L.; Holloway, B.B.; Souza, G.M.P.R.; Abbott, S.B.G. Rostral Ventrolateral Medulla and Hypertension. Hypertension 2018, 72, 559–566. [Google Scholar] [CrossRef]
- Herring, N.; Paterson, D.J. The Heart’s Little Brain: Shedding New Light and CLARITY on the “Black Box”. Circ. Res. 2021, 128, 1297–1299. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L. Inflammation in Heart Failure. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Xu, B.; Zhu, X.; Mou, J.; Xie, J.; Che, Z.; Zuo, L.; Li, J.; Jia, H.; et al. Recent advances in the roles of extracellular vesicles in cardiovascular diseases: Pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy. Mol. Med. 2025, 31, 169. [Google Scholar] [CrossRef]
- Sandek, A.; Bauditz, J.; Swidsinski, A.; Buhner, S.; Weber-Eibel, J.; Von Haehling, S.; Schroedl, W.; Karhausen, T.; Doehner, W.; Rauchhaus, M.; et al. Altered Intestinal Function in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 1561–1569. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Anagnostouli, M.; Markoglou, N.; Chrousos, G. Psycho-neuro-endocrino-immunologic issues in multiple sclerosis: A critical review of clinical and therapeutic implications. Hormones 2020, 19, 485–496. [Google Scholar] [CrossRef]
- Roy, A.; Fields, W.C.; Rocha-Resende, C.; Resende, R.R.; Guatimosim, S.; Prado, V.F.; Gros, R.; Prado, M.A.M. Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 2013, 27, 5072–5082. [Google Scholar] [CrossRef] [PubMed]
- Brack, K.E.; Winter, J.; Ng, G.A. Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation—Tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail. Rev. 2013, 18, 389–408. [Google Scholar] [CrossRef] [PubMed]
- Capilupi, M.J.; Kerath, S.M.; Becker, L.B. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb. Perspect. Med. 2020, 10, a034173. [Google Scholar] [CrossRef]
- Allison, S.J. PIEZOs in baroreceptor reflex. Nat. Rev. Nephrol. 2019, 15, 62. [Google Scholar] [CrossRef]
- Pilowsky, P.M.; Goodchild, A.K. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertens. 2002, 20, 1675–1688. [Google Scholar] [CrossRef]
- Chan, P.-Y.S.; Lee, L.-Y.; Davenport, P.W. Neural mechanisms of respiratory interoception. Auton. Neurosci. 2024, 253, 103181. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, J.W.; Ma, J.; Yadav, S.; Chhabria, K.; Shen, H.; Pang, Z.; Qi, T.; Sehgal, R.; Zhang, Y.; Bali, T.; et al. Vagal sensory neurons mediate the Bezold–Jarisch reflex and induce syncope. Nature 2023, 623, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Z.; Gao, L.; Wang, H.-J.; Zucker, I.H.; Wang, W. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am. J. Physiol.-Heart Circ. Physiol. 2008, 295, H1216–H1226. [Google Scholar] [CrossRef] [PubMed]
- Sisó, S.; Jeffrey, M.; González, L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010, 120, 689–705. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Hamada, M.; Hiasa, G.; Sasaki, O.; Suzuki, M.; Hara, Y.; Shigematsu, Y.; Hiwada, K. Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2001, 37, 412–417. [Google Scholar] [CrossRef]
- Liu, S.-F.; Lee, C.-K.; Huang, K.-C.; Lin, L.-Y.; Hsieh, M.-Y.; Lin, T.-T. Long-Term Effect of Non-Selective Beta-Blockers in Patients With Rheumatoid Arthritis After Myocardial Infarction—A Nationwide Cohort Study. Front. Pharmacol. 2021, 12, 726044. [Google Scholar] [CrossRef]
- Katona, P.G. Biomedical engineering in heart-brain medicine: A review. Clevel. Clin. J. Med. 2010, 77 (Suppl. 3), S46–S50. [Google Scholar] [CrossRef]
- Johnson, R.L.; Wilson, C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef]
- Connor, D.E.; Nixon, M.; Nanda, A.; Guthikonda, B. Vagal nerve stimulation for the treatment of medically refractory epilepsy: A review of the current literature. Neurosurg. Focus 2012, 32, E12. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: New pharmacological concepts for old and new drugs. Neural Regen. Res. 2018, 13, 983. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Lu, X.-Y.; Song, Z.-Q.; Lin, H.; Chen, Y.-H. The protective effect of vagus nerve stimulation against myocardial ischemia/reperfusion injury: Pooled review from preclinical studies. Front. Pharmacol. 2023, 14, 1270787. [Google Scholar] [CrossRef] [PubMed]
- Calvillo, L.; Vanoli, E.; Andreoli, E.; Besana, A.; Omodeo, E.; Gnecchi, M.; Zerbi, P.; Vago, G.; Busca, G.; Schwartz, P.J. Vagal Stimulation, Through its Nicotinic Action, Limits Infarct Size and the Inflammatory Response to Myocardial Ischemia and Reperfusion. J. Cardiovasc. Pharmacol. 2011, 58, 500–507. [Google Scholar] [CrossRef]
- Bansal, V.; Ryu, S.Y.; Lopez, N.; Allexan, S.; Krzyzaniak, M.; Eliceiri, B.; Baird, A.; Coimbra, R. Vagal Stimulation Modulates Inflammation through a Ghrelin Mediated Mechanism in Traumatic Brain Injury. Inflammation 2012, 35, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Duarte Azevedo, M.; Sander, S.; Tenenbaum, L. GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease. J. Clin. Med. 2020, 9, 456. [Google Scholar] [CrossRef]
- Cao, Q.; He, Q.; Wang, Y.; Cheng, X.; Howard, R.M.; Zhang, Y.; DeVries, W.H.; Shields, C.B.; Magnuson, D.S.K.; Xu, X.-M.; et al. Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury. J. Neurosci. 2010, 30, 2989–3001. [Google Scholar] [CrossRef]
- Massa, S.M.; Yang, T.; Xie, Y.; Shi, J.; Bilgen, M.; Joyce, J.N.; Nehama, D.; Rajadas, J.; Longo, F.M. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Investig. 2010, 120, 1774–1785. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Zhang, Z.; Liu, X.; Kang, S.S.; Zhang, Y.; Ye, K. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2018, 115, 578–583. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, C.; Zhou, H.; Wu, Y.; Zhou, X.; Chen, J.; Li, F. Exosome-mediated miRNA delivery: A molecular switch for reshaping neuropathic pain therapy. Front. Mol. Neurosci. 2025, 18, 1625943. [Google Scholar] [CrossRef] [PubMed]
- Gilje, P.; Gidlöf, O.; Rundgren, M.; Cronberg, T.; Al-Mashat, M.; Olde, B.; Friberg, H.; Erlinge, D. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit. Care 2014, 18, R40. [Google Scholar] [CrossRef] [PubMed]
- Özbilgin, Ş.; Gökmen, N. Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest? Turk. J. Anaesthesiol. Reanim. 2024, 52, 49–53. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Mamaghani, M.; Hassanikia, S.; Pilehvar, Y.; Ertas, Y.N. Exosome-powered neuropharmaceutics: Unlocking the blood-brain barrier for next-gen therapies. J. Nanobiotechnol. 2025, 23, 329. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, N.; Singh, S.; Dua, K. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J. Drug Deliv. Sci. Technol. 2023, 81, 104220. [Google Scholar] [CrossRef]
- Ghalamfarsa, G.; Hojjat-Farsangi, M.; Mohammadnia-Afrouzi, M.; Anvari, E.; Farhadi, S.; Yousefi, M.; Jadidi-Niaragh, F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J. Immunotoxicol. 2016, 13, 603–619. [Google Scholar] [CrossRef]
- Singh, A.V.; Khare, M.; Gade, W.N.; Zamboni, P. Theranostic Implications of Nanotechnology in Multiple Sclerosis: A Future Perspective. Autoimmune Dis. 2012, 2012, 160830. [Google Scholar] [CrossRef]
- Takei, E.K. The use of nanoparticles in the diagnosis and treatment of multiple sclerosis: A scoping review. STEM Fellowsh. J. 2024, 10, 59–73. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Muktabar, A.; Tang, J.; Dravid, V.P.; Thaxton, C.S.; Venkatraman, S.; Ng, K.W. Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: How close are we? Drug Discov. Today 2017, 22, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhang, Z.; Xu, J.; Liu, H.; Cai, L.; Huang, G.; Wang, C.; Chen, Y.; Xia, L.; Ding, X.; et al. Atherosclerosis treatment with nanoagent: Potential targets, stimulus signals and drug delivery mechanisms. Front. Bioeng. Biotechnol. 2023, 11, 1205751. [Google Scholar] [CrossRef]
- Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63. [Google Scholar] [CrossRef]
- Lobatto, M.E.; Fayad, Z.A.; Silvera, S.; Vucic, E.; Calcagno, C.; Mani, V.; Dickson, S.D.; Nicolay, K.; Banciu, M.; Schiffelers, R.M.; et al. Multimodal Clinical Imaging To Longitudinally Assess a Nanomedical Anti-Inflammatory Treatment in Experimental Atherosclerosis. Mol. Pharm. 2010, 7, 2020–2029. [Google Scholar] [CrossRef]
- Dampney, R.; Coleman, M.; Fontes, M.; Hirooka, Y.; Horiuchi, J.; Li, Y.; Polson, J.; Potts, P.; Tagawa, T. Central Mechanisms Underlying Short- And Long-Term Regulation Of The Cardiovascular System. Clin. Exp. Pharmacol. Physiol. 2002, 29, 261–268. [Google Scholar] [CrossRef]
- Nuzzo, D.; Picone, P. Multiple Sclerosis: Focus on Extracellular and Artificial Vesicles, Nanoparticles as Potential Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 8866. [Google Scholar] [CrossRef] [PubMed]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef]
- Si, S.; Li, H.; Han, X. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension. J. Drug Deliv. Sci. Technol. 2020, 55, 101422. [Google Scholar] [CrossRef]
- Kumar, G.; Virmani, T.; Pathak, K.; Alhalmi, A. A Revolutionary Blueprint for Mitigation of Hypertension via Nanoemulsion. BioMed Res. Int. 2022, 2022, 4109874. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.C.; Card, J.W.; Zeldin, D.C. Nanoparticle-Mediated Drug Delivery and Pulmonary Hypertension. Hypertension 2009, 53, 751–753. [Google Scholar] [CrossRef]
- Mehrotra, K. Nanoparticles in Renal Hypertension Therapy: Advances, Mechanisms, and Future Perspectives. Int. J. Res. Appl. Sci. Eng. Technol. 2025, 13, 787–792. [Google Scholar] [CrossRef]
- Alam, T.; Khan, S.; Gaba, B.; Haider, F.; Baboota, S.; Ali, J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017, 24, 358–369. [Google Scholar] [CrossRef]
- Auwal, S.; Zarei, M.; Tan, C.; Basri, M.; Saari, N. Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats. Nanomaterials 2017, 7, 421. [Google Scholar] [CrossRef]
- Story, D.; Aminoroaya, A.; Skelton, Z.; Kumari, M.; Zhang, Y.; Smith, B.R. Nanoparticle-Based Therapies in Hypertension. Hypertension 2023, 80, 2506–2514. [Google Scholar] [CrossRef]
- Khadrawy, Y.A.; Hosny, E.N.; Magdy, M.; Mohammed, H.S. Antidepressant effects of curcumin-coated iron oxide nanoparticles in a rat model of depression. Eur. J. Pharmacol. 2021, 908, 174384. [Google Scholar] [CrossRef]
- Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res. 2014, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.M.; Khadrawy, Y.A.; Abd-El Daim, T.M.; Elfeky, A.S.; Abd Rabo, A.A.; Mustafa, A.B.; Mostafa, I.T. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol. Behav. 2020, 222, 112934. [Google Scholar] [CrossRef]
- Aslam, H.; Umar, A.; Nusrat, N.; Mansour, M.; Ullah, A.; Honey, S.; Sohail, M.J.; Abbas, M.; Aslam, M.W.; Khan, M.U. Nanomaterials in the treatment of degenerative intellectual and developmental disabilities. Explor. BioMat-X 2024, 1, 353–365. [Google Scholar] [CrossRef]
- Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int. J. Mol. Sci. 2021, 22, 11654. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.-F.; Qin, N.; Sun, L.-W. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm. J. 2017, 25, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Rani, A.; Tyagi, P.; Babu, M.R. The Application of Nanotechnology and Nanomaterials in Depression: An Updated Review. Precis. Nanomed. 2023, 6, 1023–1047. [Google Scholar] [CrossRef]
- Vitorino, C.; Silva, S.; Gouveia, F.; Bicker, J.; Falcão, A.; Fortuna, A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur. J. Pharm. Biopharm. 2020, 153, 106–120. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Aboalasaad, F.A.; Mohamed, A.S.; Elhusseiny, F.A.; Khadrawy, Y.A.; Elmekawy, A. Evaluation of the Therapeutic Effect of Curcumin-Conjugated Zinc Oxide Nanoparticles on Reserpine-Induced Depression in Wistar Rats. Biol. Trace Elem. Res. 2024, 202, 2630–2644. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wang, H.; Gu, H.; Ju, L.; Wu, X.; Pan, W.; Zhao, M.; Yang, J.; Liu, P. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J. Nanobiotechnol. 2023, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Passaro, F.; Tocchetti, C.G.; Spinetti, G.; Paudice, F.; Ambrosone, L.; Costagliola, C.; Cacciatore, F.; Abete, P.; Testa, G. Targeting fibrosis in the failing heart with nanoparticles. Adv. Drug Deliv. Rev. 2021, 174, 461–481. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef]
- Mendez-Fernandez, A.; Cabrera-Fuentes, H.A.; Velmurugan, B.; Irei, J.; Boisvert, W.A.; Lu, S.; Hausenloy, D.J. Nanoparticle delivery of cardioprotective therapies. Cond. Med. 2020, 3, 18–30. [Google Scholar]
- Mahdavi Gorabi, A.; Kiaie, N.; Reiner, Ž.; Carbone, F.; Montecucco, F.; Sahebkar, A. The Therapeutic Potential of Nanoparticles to Reduce Inflammation in Atherosclerosis. Biomolecules 2019, 9, 416. [Google Scholar] [CrossRef]
- Omidian, H.; Babanejad, N.; Cubeddu, L.X. Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives. Pharmaceutics 2023, 15, 1935. [Google Scholar] [CrossRef]
- Rahiman, N.; Mohammadi, M.; Alavizadeh, S.H.; Arabi, L.; Badiee, A.; Jaafari, M.R. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J. Control. Release 2022, 343, 620–644. [Google Scholar] [CrossRef]
- Haba, M.; Ștefan, C.; Șerban, D.N.; Șerban, L.; Tudorancea, I.M.; Haba, R.M.; Mitu, O.; Iliescu, R.; Tudorancea, I. Nanomaterial-Based Drug Targeted Therapy for Cardiovascular Diseases: Ischemic Heart Failure and Atherosclerosis. Crystals 2021, 11, 1172. [Google Scholar] [CrossRef]
- Ngô, T.-L. Revue des effets de la méditation de pleine conscience sur la santé mentale et physique et sur ses mécanismes d’action. Santé Ment. Au Québec 2014, 38, 19–34. [Google Scholar] [CrossRef]
- Simón, V.M. Mindfulness y neurobiología. Rev. De Psicoter. 2006, 17, 5–30. [Google Scholar] [CrossRef]
- Kasala, E.R.; Bodduluru, L.N.; Maneti, Y.; Thipparaboina, R. Effect of meditation on neurophysiological changes in stress mediated depression. Complement. Ther. Clin. Pract. 2014, 20, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Min, J.; Shinn, J.; Hong, O.-K.; Son, J.-W.; Lee, S.-S.; Kim, S.-R.; Yoo, S.J. Modeling of Changes in Creatine Kinase after HMG-CoA Reductase Inhibitor Prescription. Cardiovasc. Prev. Pharmacother. 2021, 3, 115–123. [Google Scholar] [CrossRef]
- Ansari, M.S.; Khan, M.S.A.; Revankar, S.; Varma, A.; Mokhade, A.S. Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation (Version 1). arXiv 2025. [Google Scholar] [CrossRef]
- Kubota, Y.; Chen, L.Y.; Whitsel, E.A.; Folsom, A.R. Heart rate variability and lifetime risk of cardiovascular disease: The Atherosclerosis Risk in Communities Study. Ann. Epidemiol. 2017, 27, 619–625.e2. [Google Scholar] [CrossRef]
- McIntosh, R.C.; Khambaty, T.; Llabre, M.M.; Perreira, K.M.; Gonzalez, H.M.; Kansal, M.M.; Tarraf, W.; Schneiderman, N. Paradoxical effect of cumulative stress exposure on information processing speed in Hispanics/Latinos with elevated heart rate variability. Int. J. Psychophysiol. 2021, 164, 1–8. [Google Scholar] [CrossRef]
- Rozenova, M.I.; Ognev, A.S.; Ekimova, V.I.; Kokurin, A.V. Modern Anti-Stress Technologies in Extreme and Helping Professions. J. Mod. Foreign Psychol. 2023, 12, 19–30. [Google Scholar] [CrossRef]
- Gialafos, E.; Andreadou, E.; Kokotis, P.; Evangelopoulos, M.E.; Haina, V.; Koutsis, G.; Kilindireas, C.; Filippatos, G.; Anagnostouli, M. Brugada sign in a multiple sclerosis patient: Relation to autonomic nervous system dysfunction and therapeutic dilemmas. Int. J. Cardiol. 2016, 202, 652–653. [Google Scholar] [CrossRef]
- Iliakis, I.; Anagnostouli, M.; Chrousos, G. Assessing the Impact of the Mindfulness-Based Body Scan Technique on Sleep Quality in Multiple Sclerosis Using Objective and Subjective Assessment Tools: Single-Case Study. JMIR Form. Res. 2024, 8, e55408. [Google Scholar] [CrossRef] [PubMed]
- Anagnostouli, M.; Babili, I.; Chrousos, G.; Artemiadis, A.; Darviri, C. A novel cognitive-behavioral stress management method for multiple sclerosis. A brief report of an observational study. Neurol. Res. 2019, 41, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.S.; Lay, J.; Stocker, S.D. Dietary Salt Intake Exaggerates Sympathetic Reflexes and Increases Blood Pressure Variability in Normotensive Rats. Hypertension 2014, 64, 583–589. [Google Scholar] [CrossRef]
- Dai, N.; Tang, X.; Weng, X.; Cai, H.; Zhuang, J.; Yang, G.; Zhou, F.; Wu, P.; Liu, B.; Duan, S.; et al. Stress-Related Neural Activity Associates With Coronary Plaque Vulnerability and Subsequent Cardiovascular Events. JACC Cardiovasc. Imaging 2023, 16, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- van Gils, J.M.; Derby, M.C.; Fernandes, L.R.; Ramkhelawon, B.; Ray, T.D.; Rayner, K.J.; Parathath, S.; Distel, E.; Feig, J.L.; Alvarez-Leite, J.I.; et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 2012, 13, 136–143. [Google Scholar] [CrossRef]
- Brunet, I.; Gordon, E.; Han, J.; Cristofaro, B.; Broqueres-You, D.; Liu, C.; Bouvrée, K.; Zhang, J.; del Toro, R.; Mathivet, T.; et al. Netrin-1 controls sympathetic arterial innervation. J. Clin. Investig. 2014, 124, 3230–3240. [Google Scholar] [CrossRef]
- Bai, Y.; Yun, M.; Nie, B.; Shan, L.; Liu, W.; Hacker, M.; Nie, S.; Zhou, Y.; Li, S.; Shan, B.; et al. Neurometabolism and Ventricular Dyssynchrony in Patients with Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2022, 80, 1884–1896. [Google Scholar] [CrossRef]
- Suzuki, H.; Yasuda, S.; Shimokawa, H. Brain–heart connection in Takotsubo syndrome before onset. Eur. Heart J. 2021, 42, 1909–1911. [Google Scholar] [CrossRef] [PubMed]
- Gehrman, P.R.; Bartky, E.J.; Travers, C.; Lapidus, K. A Fully Remote Randomized Trial of Transcranial Alternating Current Stimulation for the Acute Treatment of Major Depressive Disorder. J. Clin. Psychiatry 2024, 85, 54263. [Google Scholar] [CrossRef]
- Friedman, O.; Logan, A.G. The Price of Obstructive Sleep Apnea-Hypopnea: Hypertension and Other Ill Effects. Am. J. Hypertens. 2009, 22, 474–483. [Google Scholar] [CrossRef]
- Cortelli, P.; Lombardi, C.; Montagna, P.; Parati, G. Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Auton. Neurosci. Basic Clin. 2012, 169, 7–11. [Google Scholar] [CrossRef]
- Ropper, A.H.; Wijdicks, E.F.M. Blood Pressure Fluctuations in the Dysautonomia of Guillain-Barre Syndrome. Arch. Neurol. 1990, 47, 706–708. [Google Scholar] [CrossRef] [PubMed]
- Cortelli, P.; Parchi, P.; Contin, M.; Pierangeli, G.; Avoni, P.; Tinuper, P.; Montagna, P.; Baruzzi, A.; Gambetti, P.L.; Lugaresi, E. Cardiovascular dysautonomia in fatal familial insomnia. Clin. Auton. Res. 1991, 1, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Montagna, P.; Cortelli, P.; Gambetti, P.; Lugaresi, E. Fatal familial insomnia: Sleep, neuroendocrine and vegetative alterations. Adv. Neuroimmunol. 1995, 5, 13–21. [Google Scholar] [CrossRef]
- Rudiger, A.; Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 2007, 35, 1599–1608. [Google Scholar] [CrossRef]
- Booth, L.C.; Ramchandra, R.; Calzavacca, P.; May, C.N. Role of prostaglandins in determining the increased cardiac sympathetic nerve activity in ovine sepsis. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2014, 307, R75–R81. [Google Scholar] [CrossRef]
- Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2011, 301, R1207–R1228. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Fenton, N.; Dobson, R. Current review and next steps for artificial intelligence in multiple sclerosis risk research. Comput. Biol. Med. 2021, 132, 104337. [Google Scholar] [CrossRef]
- Vázquez-Marrufo, M.; Sarrias-Arrabal, E.; García-Torres, M.; Martín-Clemente, R.; Izquierdo, G. Revisión sistemática de la aplicación de algoritmos de «machine learning» en la esclerosis múltiple. Neurología 2023, 38, 577–590. [Google Scholar] [CrossRef]
- Bonacchi, R.; Filippi, M.; Rocca, M.A. Role of artificial intelligence in MS clinical practice. NeuroImage Clin. 2022, 35, 103065. [Google Scholar] [CrossRef]
- Shoeibi, A.; Khodatars, M.; Jafari, M.; Moridian, P.; Rezaei, M.; Alizadehsani, R.; Khozeimeh, F.; Gorriz, J.M.; Heras, J.; Panahiazar, M.; et al. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Comput. Biol. Med. 2021, 136, 104697. [Google Scholar] [CrossRef]
- Svoboda, E.; Bořil, T.; Rusz, J.; Tykalová, T.; Horáková, D.; Guttmann, C.R.G.; Blagoev, K.B.; Hatabu, H.; Valtchinov, V.I. Assessing clinical utility of machine learning and artificial intelligence approaches to analyze speech recordings in multiple sclerosis: A pilot study. Comput. Biol. Med. 2022, 148, 105853. [Google Scholar] [CrossRef]
- Alshamrani, F. Role of artificial intelligence in multiple sclerosis management. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 3542–3547. [Google Scholar] [CrossRef]
- Naji, Y.; Mahdaoui, M.; Klevor, R.; Kissani, N. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus 2023, 15, e45412. [Google Scholar] [CrossRef]
- Abdul-Salam, S.-E.; Florescu, R.-M.; Sfredel, V.; Alexandru, D.-O.; Șerbănescu, M.-S.; Rotaru-Zăvăleanu, A.-D. Deep Learning and The Retina: A New Frontier in Multiple Sclerosis Diagnosis. Curr. Health Sci. J. 2025, 51, 26–36. [Google Scholar] [CrossRef]
- Collorone, S.; Coll, L.; Lorenzi, M.; Lladó, X.; Sastre-Garriga, J.; Tintoré, M.; Montalban, X.; Rovira, À.; Pareto, D.; Tur, C. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult. Scler. J. 2024, 30, 767–784. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Martínez-Heras, E.; Ontaneda, D.; Prados Carrasco, F. Artificial Intelligence and Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2024, 24, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.S.; Lin, L.Y.; Ford, R.K.; James, E.J.; Morton, S.; Marsh-Wakefield, F.; Hawke, S.; Grau, G.E. Harnessing Artificial Intelligence for the Diagnosis, Treatment and Research of Multiple Sclerosis. Sclerosis 2025, 3, 15. [Google Scholar] [CrossRef]
- Aslam, N.; Khan, I.U.; Bashamakh, A.; Alghool, F.A.; Aboulnour, M.; Alsuwayan, N.M.; Alturaif, R.K.; Brahimi, S.; Aljameel, S.S.; Al Ghamdi, K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. Sensors 2022, 22, 7856. [Google Scholar] [CrossRef]
- Alvarado-Rojas, C.; Huberfeld, G. Artificial intelligence applied to electroencephalography in epilepsy. Rev. Neurol. 2025, 181, 403–410. [Google Scholar] [CrossRef]
- Sollee, J.; Tang, L.; Igiraneza, A.B.; Xiao, B.; Bai, H.X.; Yang, L. Artificial intelligence for medical image analysis in epilepsy. Epilepsy Res. 2022, 182, 106861. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Munsell, B.C.; Alhusaini, S.; Alvim, M.K.M.; Bargalló, N.; Bender, B.; Bernasconi, A.; Bernasconi, N.; Bernhardt, B.; Blackmon, K.; et al. Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. NeuroImage Clin. 2021, 31, 102765. [Google Scholar] [CrossRef]
- Ripart, M.; DeKraker, J.; Eriksson, M.H.; Piper, R.J.; Gopinath, S.; Parasuram, H.; Mo, J.; Likeman, M.; Ciobotaru, G.; Sequeiros-Peggs, P.; et al. MELD HS study group. Automated and Interpretable Detection of Hippocampal Sclerosis in Temporal Lobe Epilepsy: AID–HS. Ann. Neurol. 2025, 97, 62–75. [Google Scholar] [CrossRef]
- Nair, P.P.; Aghoram, R.; Khilari, M.L. Applications of Artificial Intelligence in Epilepsy. Int. J. Adv. Med. Health Res. 2021, 8, 41–48. [Google Scholar] [CrossRef]
- Kaur, T.; Diwakar, A.; Kirandeep; Mirpuri, P.; Tripathi, M.; Chandra, P.S.; Gandhi, T.K. Artificial Intelligence in Epilepsy. Neurol. India 2021, 69, 560–566. [Google Scholar] [CrossRef]
- Cendes, F.; McDonald, C.R. Artificial Intelligence Applications in the Imaging of Epilepsy and Its Comorbidities: Present and Future. Epilepsy Curr. 2022, 22, 91–96. [Google Scholar] [CrossRef]
- Bernasconi, A.; Gill, R.S.; Bernasconi, N. The use of automated and AI -driven algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia. Epilepsia 2024, 1–8. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Munsell, B.; Keller, S.S.; Drane, D.L.; Jensen, J.H.; Spampinato, M.V.; Pedersen, N.P.; Weber, B.; Kuzniecky, R.; McDonald, C.; et al. Radiological identification of temporal lobe epilepsy using artificial intelligence: A feasibility study. Brain Commun. 2022, 4, fcab284. [Google Scholar] [CrossRef] [PubMed]
- Al-Breiki, A.; Al-Sinani, S.; Elsharaawy, A.; Usama, M.; Al-Saadi, T. Artificial Intelligence in Epilepsy: A Systemic Review. J. Epilepsy Res. 2025, 15, 2–22. [Google Scholar] [CrossRef]
- Han, K.; Liu, C.; Friedman, D. Artificial intelligence/machine learning for epilepsy and seizure diagnosis. Epilepsy Behav. 2024, 155, 109736. [Google Scholar] [CrossRef] [PubMed]
- AbuAlrob, M.A.; Itbaisha, A.; Mesraoua, B. Unlocking new frontiers in epilepsy through AI: From seizure prediction to personalized medicine. Epilepsy Behav. 2025, 166, 110327. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hwang, H. Application of artificial intelligence (AI) and machine learning (ML) in pediatric epilepsy: A narrative review. Pediatr. Med. 2022, 5, 24. [Google Scholar] [CrossRef]
- Rudie, J.D.; Colby, J.B.; Salamon, N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res. 2015, 117, 63–69. [Google Scholar] [CrossRef]
- Dalmeida, K.M.; Masala, G.L. HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef]
- Patel, M.; Lal, S.K.L.; Kavanagh, D.; Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 2011, 38, 7235–7242. [Google Scholar] [CrossRef]
- Umair, M.; Chalabianloo, N.; Sas, C.; Ersoy, C. HRV and Stress: A Mixed-Methods Approach for Comparison of Wearable Heart Rate Sensors for Biofeedback. IEEE Access 2021, 9, 14005–14024. [Google Scholar] [CrossRef]
- Li, K.; Cardoso, C.; Moctezuma-Ramirez, A.; Elgalad, A.; Perin, E. Heart Rate Variability Measurement through a Smart Wearable Device: Another Breakthrough for Personal Health Monitoring? Int. J. Environ. Res. Public Health 2023, 20, 7146. [Google Scholar] [CrossRef]
- Jerath, R.; Syam, M.; Ahmed, S. The Future of Stress Management: Integration of Smartwatches and HRV Technology. Sensors 2023, 23, 7314. [Google Scholar] [CrossRef]
- Morelli, D.; Bartoloni, L.; Colombo, M.; Plans, D.; Clifton, D.A. Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device. Healthc. Technol. Lett. 2018, 5, 59–64. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P.; Kumar, S. Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens. Bioelectron. 2024, 254, 116232. [Google Scholar] [CrossRef] [PubMed]
- Dur, O.; Rhoades, C.; Ng, M.S.; Elsayed, R.; Van Mourik, R.; Majmudar, M.D. Design Rationale and Performance Evaluation of the Wavelet Health Wristband: Benchtop Validation of a Wrist-Worn Physiological Signal Recorder. JMIR Mhealth Uhealth 2018, 6, e11040. [Google Scholar] [CrossRef]
- Kuang, R.; Wang, Z.; Ma, L.; Wang, H.; Chen, Q.; Junior, A.L.; Kumar, S.; Li, X.; Marques, C.; Min, R. Smart photonic wristband for pulse wave monitoring. Opto-Electron. Sci. 2024, 3, 240009. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Chun, S.Y.; Kang, J.-H.; Oakley, I.; Lee, Y.; Ryu, J.O.; Kim, M.J.; Park, I.K.; Hong, H.K.; et al. A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors. Sensors 2018, 18, 2738. [Google Scholar] [CrossRef]
- Abdul Razak, S.F.; Sayed Ismail, S.N.M.; Yogarayan, S.; Azli Abdullah, M.F.; Kamis, N.H.; Abdul Aziz, A. Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition. Civ. Eng. J. 2023, 9, 2272–2285. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.-G.; Chai, Z.; Fang, J.-C.; Chen, M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2023, 37, e23142. [Google Scholar] [CrossRef]
- Raimondi, G.; Martynenko, A.; Ostropolets, S.; Marchitto, N.; Latina, I.A. Artificial intelligence for heart rate variability analyzing with arrhythmias. Klin. Inform. Telemed. 2019, 14, 46–52. [Google Scholar] [CrossRef]
- Haque, Y.; Zawad, R.S.; Rony, C.S.A.; Al Banna, H.; Ghosh, T.; Kaiser, M.S.; Mahmud, M. State-of-the-Art of Stress Prediction from Heart Rate Variability Using Artificial Intelligence. Cogn. Comput. 2024, 16, 455–481. [Google Scholar] [CrossRef]
- Faust, O.; Hong, W.; Loh, H.W.; Xu, S.; Tan, R.-S.; Chakraborty, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Heart rate variability for medical decision support systems: A review. Comput. Biol. Med. 2022, 145, 105407. [Google Scholar] [CrossRef]
- Drury, R.L. HRV in an Integrated Hardware/Software System Using Artificial Intelligence to Provide Assessment, Intervention and Performance Optimization. In Autonomic Nervous System Monitoring—Heart Rate Variability; Aslanidis, T., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Muzammil, M.A.; Javid, S.; Afridi, A.K.; Siddineni, R.; Shahabi, M.; Haseeb, M.; Fariha, F.N.U.; Kumar, S.; Zaveri, S.; Nashwan, A.J. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. J. Electrocardiol. 2024, 83, 30–40. [Google Scholar] [CrossRef]
- Kashou, A.H.; Ko, W.-Y.; Attia, Z.I.; Cohen, M.S.; Friedman, P.A.; Noseworthy, P.A. A comprehensive artificial intelligence–enabled electrocardiogram interpretation program. Cardiovasc. Digit. Health J. 2020, 1, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Harmon, D.M.; Behr, E.R.; Friedman, P.A. Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 2021, 42, 4717–4730. [Google Scholar] [CrossRef]
- Martínez-Sellés, M.; Marina-Breysse, M. Current and Future Use of Artificial Intelligence in Electrocardiography. J. Cardiovasc. Dev. Dis. 2023, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.M.; Attia, Z.I.; Friedman, P.A. Current and future implications of the artificial intelligence electrocardiogram: The transformation of healthcare and attendant research opportunities. Cardiovasc. Res. 2022, 118, e23–e25. [Google Scholar] [CrossRef]
- Aro, A.L.; Jaakkola, I. Artificial intelligence in ECG screening: Ready for prime time? Int. J. Cardiol. 2021, 344, 111–112. [Google Scholar] [CrossRef]
- Akbilgic, O.; Butler, L.; Karabayir, I.; Chang, P.P.; Kitzman, D.W.; Alonso, A.; Chen, L.Y.; Soliman, E.Z. ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure. Eur. Heart J. Digit. Health 2021, 2, 626–634. [Google Scholar] [CrossRef]
- Peacock, W.F.; Soto-Ruiz, K.M.; Jaffe, A.S.; Tiffany, B.R.; Mahler, S.A.; Patterson, B.W.; Wu, A.H.; Christenson, R. A rapid non-invasive wearable device for assessing cardiac troponin. Clin. Exp. Emerg. Med. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Biswal, S.; Titus, J.; Burman, A.; Reddy, K.; Fulwani, M.C.; Khan, A.; Deshpande, N.; Shrivastava, S.; Yanamala, N.; et al. A novel breakthrough in wrist-worn transdermal troponin-I-sensor assessment for acute myocardial infarction. Eur. Heart J. Digit. Health 2023, 4, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.C.; Dutra, R.A.F.; Noronha, J.P.; Sales, M.G.F. Novel sensory surface for creatine kinase electrochemical detection. Biosens. Bioelectron. 2014, 56, 217–222. [Google Scholar] [CrossRef]
- Li, H.; Nie, W. Electrochemical sensors for creatine kinase detection in blood serum based on glucose oxidase modified multiwalled carbon nanotubes. Int. J. Electrochem. Sci. 2024, 19, 100447. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Satellite-Based Sensor for Environmental Heat-Stress Sweat Creatinine Monitoring: The Remote Artificial Intelligence-Assisted Epidermal Wearable Sensing for Health Evaluation. ACS Biomater. Sci. Eng. 2021, 7, 322–334. [Google Scholar] [CrossRef]
- De Lima, L.F.; Lopes Ferreira, A.; Martinez De Freitas, A.D.S.; De Souza Rodrigues, J.; Lemes, A.P.; Ferreira, M.; De Araujo, W.R. Biodegradable and Flexible Thermoplastic Composite Graphite Electrodes: A Promising Platform for Inexpensive and Sensitive Electrochemical Detection of Creatine Kinase at the Point-of-Care. ACS Appl. Mater. Interfaces 2023, 15, 18694–18706. [Google Scholar] [CrossRef]
- Canbolat, Z.N.; Silahtaroğlu, G.; Doğuç, Ö.; Yılmaztürk, N. A Machine Learning Approach to Predict Creatine Kinase Test Results. Emerg. Sci. J. 2020, 4, 283–296. [Google Scholar] [CrossRef]
- Kishi, T. New Era of Machine Learning Prediction of the Development of Cardiac Events in Heart Failure and Preserved Ejection Fraction. Circ. J. 2021, 86, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, E.; Kato, M.; Oda, N.; Kunita, E.; Nagai, M.; Yamane, A.; Matsui, S.; Yoshitomi, Y.; Shimajiri, H.; Hirokawa, T.; et al. Predicting elevated natriuretic peptide in chest radiography: Emerging utilization gap for artificial intelligence. Cardiovasc. Med. 2023, 2, qyae064. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-Y.; Lin, C.; Lin, C.-S.; Fang, W.-H.; Lee, C.-C.; Wang, C.-H.; Tsai, D.-J. Artificial Intelligence-Enabled Electrocardiography Detects B-Type Natriuretic Peptide and N-Terminal Pro-Brain Natriuretic Peptide. Diagnostics 2023, 13, 2723. [Google Scholar] [CrossRef]
Category | Devices/Apps |
---|---|
ECG-based Wearables | Welch Allyn Cardio Perfect Pro, Firstbeat Bodyguard 2, Bittium Faros 360, Actiheart, HexoskinProShirt, Aidlab, Equivital EQ-02, BITalino (r)evolution Kit, AIO Smart Sleeve, Polar H10, Polar H7, Zephyr Bioharness |
PPG-based Wearables | Empatica E4, Samsung Gear S2, Microsoft Band 2, Apple Watch, Fitbit, Oura Ring, Whoop Band, Garmin Watches, Samsung Galaxy Watch, Polar Watches, Biovotion Everion, Polar OH1 |
Hybrid Apps | Elite HRV, Welltory, HRV4Training |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palantzas, A.; Anagnostouli, M. The Heart–Brain Axis in the Artificial Intelligence Era: Integrating Old and New Insights Towards New Targeting and Innovative Neuro- and Cardio-Therapeutics. Int. J. Mol. Sci. 2025, 26, 8217. https://doi.org/10.3390/ijms26178217
Palantzas A, Anagnostouli M. The Heart–Brain Axis in the Artificial Intelligence Era: Integrating Old and New Insights Towards New Targeting and Innovative Neuro- and Cardio-Therapeutics. International Journal of Molecular Sciences. 2025; 26(17):8217. https://doi.org/10.3390/ijms26178217
Chicago/Turabian StylePalantzas, Andreas, and Maria Anagnostouli. 2025. "The Heart–Brain Axis in the Artificial Intelligence Era: Integrating Old and New Insights Towards New Targeting and Innovative Neuro- and Cardio-Therapeutics" International Journal of Molecular Sciences 26, no. 17: 8217. https://doi.org/10.3390/ijms26178217
APA StylePalantzas, A., & Anagnostouli, M. (2025). The Heart–Brain Axis in the Artificial Intelligence Era: Integrating Old and New Insights Towards New Targeting and Innovative Neuro- and Cardio-Therapeutics. International Journal of Molecular Sciences, 26(17), 8217. https://doi.org/10.3390/ijms26178217