Beneficial Effect of Olive Leaf Extract as an Adjunct to Standard Antifungal Therapy in Treating Candida-Related Oral Diseases
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Clinical Examination
4.3. Sample Collection
4.4. Determination of Polyphenols by HPLC
4.5. Therapy Protocol
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef]
- Greendberg, M.; Glick, M. Burketova Oralna Medicina; Medicinska naklada: Zagreb, Croatia, 2006; pp. 94–101. [Google Scholar]
- Lu, S.-Y. Oral Candidosis: Pathophysiology and Best Practice for Diagnosis, Classification, and Successful Management. J. Fungi 2021, 7, 555. [Google Scholar] [CrossRef]
- Millsop, J.W.; Nasim, F. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, S.; Vinesh, E.; Selvi, D.T.; Kannan, R.K.; Jayakumar, A.; Dinakaran, J. Prevalence of Candida among Denture Wearers and Nondenture Wearers. J. Pharm. Bioallied Sci. 2022, 14 (Suppl. S1), S702–S705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 2011, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ai, R.; Wei, J.; Ma, D.; Jiang, L.; Dan, H.; Zhou, Y.; Ji, N.; Zeng, X.; Chen, Q. A meta-analysis of randomized trials assessing the effects of probiotic preparations on oral candidiasis in the elderly. Arch. Oral. Biol. 2017, 83, 187–192. [Google Scholar] [CrossRef]
- Wiederhold, N.P. The antifungal arsenal: Alternative drugs and future targets. Int. J. Antimicrob. Agents 2018, 51, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Wall, G.; Lopez-Ribot, J.L. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics 2020, 9, 445. [Google Scholar] [CrossRef]
- Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, I.R.; Svidzinski, T.I.; Kioshima, E.S. Early state research on antifungal natural products. Molecules 2014, 19, 2925–2956. [Google Scholar] [CrossRef]
- Showraki, N.; Mardani, M.; Emamghoreishi, M.; Andishe-Tadbir, A.; Aram, A.; Mehriar, P.; Omidi, M.; Sepehrimanesh, M.; Koohi-Hosseinabadi, O.; Tanideh, N. Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters. J. Dent. 2016, 17, 334–342. [Google Scholar]
- Zorić, N.; Kosalec, I. The antimicrobial activities of oleuropein and hydroxytyrosol. In Promising Antimicrobials from Natural Products; Springer: Cham, Germany, 2022; pp. 75–89. [Google Scholar] [CrossRef]
- Lee, O.H.; Lee, B.Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef]
- Marrone, G.; Urciuoli, S.; Candi, E.; Bernini, R.; Vanni, G.; Masci, C.; Guerriero, C.; Mancini, M.; De Lorenzo, A.; Vignolini, P.; et al. Biological Activities of Molecules Derived from Olea europaea L. Tested In Vitro. Life 2023, 14, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouaziz, O.; Maire, E.; Giton, M.; Lamarre, J.; Salingue, Y.; Dimichiele, M. A model for initiation and growth of damage in dualphase steels identified by X-ray micro-tomography. Metall. Res. Technol. 2008, 105, 102–107. [Google Scholar] [CrossRef]
- Jemai, H.; Bouaziz, M.; Fki, I.; El Feki, A.; Sayadi, S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact. 2008, 176, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef]
- Zorić, N.; Kopjar, N.; Kraljić, K.; Oršolić, N.; Tomić, S.; Kosalec, I. Olive leaf extract activity against Candida albicans and C. dubliniensis—the in vitro viability study. Acta Pharm. 2016, 66, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Pasković, I.; Žurga, P.; Majetić Germek, V.; Brkljača, M.; Marcelić, Š.; Ban, D.; Grozić, K.; Lukić, M.; Užila, Z.; et al. Determination of the Variability of Biophenols and Mineral Nutrients in Olive Leaves with Respect to Cultivar, Collection Period and Geographical Location for Their Targeted and Well-Timed Exploitation. Plants 2020, 9, 1667. [Google Scholar] [CrossRef]
- Rishmawi, S.; Haddad, F.; Dokmak, G.; Karaman, R. A comprehensive review on the anti-cancer effects of oleuropein. Life 2022, 12, 1140. [Google Scholar] [CrossRef]
- Conti, H.R.; Gaffen, S.L. IL-17–Mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 2015, 195, 780–788. [Google Scholar] [CrossRef]
- Altmeier, S.; Toska, A.; Sparber, F.; Teijeira, A.; Halin, C.; LeibundGut-Landmann, S. IL-1 coordinates the neutrophil response to, C. albicans in the oral mucosa. PLoS Pathog. 2016, 12, e1005882. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Adachi, M.; Oda, N.; Kokubu, F.; Huang, S.K. IL-17 cytokine family. J. Allergy Clin. Immunol. 2004, 114, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, S.; Wu, W.; Zhang, W.; Li, L.; Liu, Q.; Yan, Z. Candida albicans promotes oral cancer via IL-17A/IL-17RA-macrophage axis. MBio 2023, 14, e00447–e00523. [Google Scholar] [CrossRef]
- Trautwein-Weidner, K.; Gladiator, A.; Nur, S.; Diethelm, P.; LeibundGut-Landmann, S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015, 8, 221–231. [Google Scholar] [CrossRef]
- Yamanaka-Takaichi, M.; Ghanian, S.; Katzka, D.A.; Torgerson, R.R.; Alavi, A. Candida infection associated with anti-IL-17 medication: A systematic analysis and review of the literature. Am. J. Clin. Dermatol. 2022, 23, 469–480. [Google Scholar] [CrossRef]
- Cheng, S.C.; Joosten, L.A.; Kullberg, B.J.; Netea, M.G. Interplay between Candida albicans and the mammalian innate host defense. Infect. Immun. 2012, 80, 1304–1313. [Google Scholar] [CrossRef]
- R-Mothibe, J.V.; Patel, M. Pathogenic characteristics of Candida albicans isolated from oral cavities of denture wearers and cancer patients wearing oral prostheses. Microb. Pathog. 2017, 110, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Gleiznys, A.; Zdanavičienė, E.; Žilinskas, J. Candida albicans importance to denture wearers. A literature review. Stomatologija 2015, 17, 54–66. [Google Scholar]
- Hachem, R.; Hanna, H.; Kontoyiannis, D.; Jiang, Y.; Raad, I. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer 2008, 112, 2493–2499. [Google Scholar] [CrossRef]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal activity of oleuropein against Candida albicans—The in vitro study. Molecules 2016, 21, 1631. [Google Scholar] [CrossRef]
- Kinkela Devčić, M.; Pasković, I.; Kovač, Z.; Knežević, P.T.; Morelato, L.; Glažar, I.; Simonić-Kocijan, S. Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates. Microorganisms 2024, 12, 1726. [Google Scholar] [CrossRef]
- Tooyama, H.; Matsumoto, T.; Hayashi, K.; Kurashina, K.; Kurita, H.; Uchida, M.; Kasuga, E.; Honda, T. Candida concentrations determined following concentrated oral rinse culture reflect clinical oral signs. BMC Oral Health 2015, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Parzonko, A.; Czerwińska, M.E.; Kiss, A.K.; Naruszewicz, M. Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin II via activation of Nrf2/heme oxygenase-1 pathway. Phytomedicine 2013, 20, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Larussa, T.; Oliverio, M.; Suraci, E.; Greco, M.; Placida, R.; Gervasi, S.; Marasco, R.; Imeneo, M.; Paolino, D.; Tucci, L.; et al. Oleuropein decreases cyclooxygenase-2 and interleukin-17 expression and attenuates inflammatory damage in colonic samples from ulcerative colitis patients. Nutrients 2017, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Glazar, I.; Muhvic Urek, M.; Kuis, D.; Prpi’c, J.; Miskovi’c, I.; Kovacevic Pavicic, D.; Pezelj-Ribaric, S. Salivary flow rate, oral yeast colonization and dental status in institutionalized and non-institutionalized elderly. Acta Clin. Croat. 2016, 55, 390–395. [Google Scholar] [CrossRef]
- Polić Pasković, M.; Vidović, N.; Lukić, I.; Žurga, P.; Majetić Germek, V.; Goreta Ban, S.; Kos, T.; Čoga, L.; Tomljanović, T.; Simonić-Kocijan, S.; et al. Phenolic Potential of Olive Leaves from Different Istrian Cultivars in Croatia. Horticulturae 2023, 9, 594. [Google Scholar] [CrossRef]
- Ahmed, K.M. The effect of olive leaf extract in decreasing the expression of two pro-inflammatory cytokines in patients receiving chemotherapy for cancer. A randomized clinical trial. Saudi Dent. J. 2013, 25, 141–147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
KERRYPNX | Median (Interquartile Range) | p * | |||
---|---|---|---|---|---|
MIC | NYS | MIC + OLE | NYS + OLE | ||
Age(years) | 73 (67–82) | 71 (63–72) | 72 (61–81) | 68 (63–80) | 0.64 |
Gender | |||||
F | 12 | 11 | 10 | 10 | 0.85 |
M | 3 | 3 | 5 | 5 |
p * Value | ||||
---|---|---|---|---|
MIC vs. NYS | MIC vs. MIC + OLE | NYS vs. NYS + OLE | NYS + OLE vs. MIC + OLE | |
Day 0 | ||||
C. albicans | 0.27 | 0.68 | 0.07 | 0.51 |
C. krusei | 0.33 | 0.80 | 0.37 | 0.72 |
C. glabrata | 0.44 | 0.17 | 0.15 | 0.32 |
C. tropicalis | >0.99 | 0.32 | 0.96 | 0.32 |
C. other species | >0.99 | >0.99 | >0.99 | >0.99 |
Day 3 | ||||
C. albicans | 0.97 | 0.68 | 0.83 | 0.70 |
C. krusei | 0.74 | 0.50 | 0.94 | 0.89 |
C. glabrata | >0.99 | 0.32 | 0.32 | >0.99 |
C. tropicalis | >0.99 | >0.99 | >0.99 | >0.99 |
C. other species | >0.99 | 0.32 | >0.99 | 0.32 |
Day 7 | ||||
C. albicans | 0.57 | 0.54 | 0.28 | 0.27 |
C. krusei | >0.99 | >0.99 | 0.07 | 0.07 |
C. glabrata | >0.99 | >0.99 | >0.99 | >0.99 |
C. tropicalis | >0.99 | >0.99 | >0.99 | >0.99 |
C. other species | >0.99 | >0.99 | >0.99 | >0.99 |
MIC (n =15) | MIC + OLE (n =15) | p * | NYS (n =14) | NYS + OLE (n =15) | p * | |||||
---|---|---|---|---|---|---|---|---|---|---|
Symptom | Symptom | Symptom | Symptom | |||||||
− | + | − | + | − | + | − | + | |||
Day 0 | ||||||||||
Red lesions of the oral mucosa | 4 | 11 | 9 | 6 | 0.14 | 7 | 7 | 8 | 7 | >0.99 |
Red lesions of the tongue | 14 | 1 | 14 | 1 | >0.99 | 12 | 2 | 14 | 1 | 0.60 |
Burning tongue | 10 | 5 | 8 | 7 | 0.71 | 9 | 5 | 11 | 4 | 0.70 |
Dry mouth | 3 | 12 | 1 | 14 | 0.60 | 2 | 12 | 2 | 13 | >0.99 |
Taste disorder | 13 | 2 | 15 | 0 | 0.48 | 11 | 3 | 15 | 0 | 0.09 |
Burning of the oral mucosa | 11 | 4 | 11 | 4 | >0.99 | 13 | 1 | 13 | 2 | >0.99 |
Day 3 | ||||||||||
Red lesions of the oral mucosa | 5 | 10 | 9 | 6 | 0.27 | 7 | 7 | 8 | 7 | >0.99 |
Red lesions of the tongue | 14 | 1 | 14 | 1 | >0.99 | 12 | 2 | 14 | 1 | 0.60 |
Burning tongue | 10 | 5 | 9 | 6 | >0.99 | 9 | 5 | 11 | 4 | 0.70 |
Dry mouth | 5 | 10 | 2 | 13 | 0.39 | 4 | 10 | 5 | 10 | >0.99 |
Taste disorder | 13 | 2 | 15 | 0 | 0.48 | 11 | 3 | 15 | 0 | 0.09 |
Burning of the oral mucosa | 11 | 4 | 11 | 4 | >0.99 | 13 | 1 | 13 | 2 | >0.99 |
Day 7 | ||||||||||
Red lesions of the oral mucosa | 7 | 8 | 10 | 5 | 0.46 | 8 | 6 | 9 | 6 | >0.99 |
Red lesions of the tongue | 14 | 1 | 14 | 1 | >0.99 | 12 | 2 | 14 | 1 | 0.60 |
Burning tongue | 12 | 3 | 9 | 6 | 0.43 | 9 | 5 | 11 | 4 | 0.70 |
Dry mouth | 7 | 8 | 3 | 12 | 0.25 | 4 | 10 | 6 | 9 | 0.70 |
Taste disorder | 13 | 2 | 15 | 0 | 0.48 | 11 | 3 | 15 | 0 | 0.09 |
Burning of the oral mucosa | 14 | 1 | 14 | 1 | >0.99 | 13 | 1 | 14 | 1 | >0.99 |
Median (Interquartile Range) | p * | |||
---|---|---|---|---|
Day 0 | Day 3 | Day 7 | ||
Miconazole | ||||
Burning tongue (VAS) | 0 (0–3) | 0 (0–2) | 0 (0–0) | 0.007 † |
Burning of the oral mucosa (VAS) | 0 (0–2) | 0 (0–2) | 0 (0–0) | 0.02 † |
Salivation rate | 0.5 (0.2–1) | 0.6 (0.2–1) | 0.6 (0.1–1) | 0.09 |
Nystatin | ||||
Burning tongue (VAS) | 0 (0–5) | 0 (0–5) | 0 (0–4) | 0.006 ‡ |
Burning of the oral mucosa (VAS) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.38 |
Salivation rate | 0.9 (0.4–1) | 0.8 (0.3–1) | 0.9 (0.3–1) | 0.59 |
Miconazole + OLE | ||||
Burning tongue (VAS) | 0 (0–5) | 0 (0–5) | 0 (0–4) | 0.04 † |
Burning of the oral mucosa (VAS) | 0 (0–8) | 0 (0–6) | 0 (0–5) | 0.09 |
Salivation rate | 0.4 (0.1–0.8) | 0.5 (0.1–0.8) | 0.5 (0.1–1.0) | 0.29 |
Nystatin + OLE | ||||
Burning tongue (VAS) | 0 (0–3) | 0 (0–3) | 0 (0–3) | 0.13 |
Burning of the oral mucosa (VAS) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.38 |
Salivation rate | 0.6 (0.1–1.2) | 0.8 (0.1–1.1) | 0.8 (0.1–1.4) | 0.01 § |
Median (Interquarile Range) | Difference (95% CI) | p * | ||
---|---|---|---|---|
Before Therapy | After Therapy | |||
MIC | 15.08 (1.58–19.25) | 2.90 (0.83–5.30) | −7.97 | 0.14 |
MIC + OLE | 5.07 (2.31–9.99) | 0.31 (0–6.10) | −3.20 (−15.1–1.76) | 0.14 |
NYS | 9.17 (0.91–9.94) | 4.09 (1.76–8.39) | −1.66 (−4.7–1.09) | 0.93 |
NYS + OLE | 3.38 (0.51–10.52) | 2.01 (0.11–13.76) | 0.99 (−18.52–6.80) | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinkela Devčić, M.; Glažar, I.; Pasković, I.; Kovačević-Pavičić, D.; Peradinović, J.; Munitić, I.; Simonić-Kocijan, S. Beneficial Effect of Olive Leaf Extract as an Adjunct to Standard Antifungal Therapy in Treating Candida-Related Oral Diseases. Int. J. Mol. Sci. 2025, 26, 8193. https://doi.org/10.3390/ijms26178193
Kinkela Devčić M, Glažar I, Pasković I, Kovačević-Pavičić D, Peradinović J, Munitić I, Simonić-Kocijan S. Beneficial Effect of Olive Leaf Extract as an Adjunct to Standard Antifungal Therapy in Treating Candida-Related Oral Diseases. International Journal of Molecular Sciences. 2025; 26(17):8193. https://doi.org/10.3390/ijms26178193
Chicago/Turabian StyleKinkela Devčić, Maja, Irena Glažar, Igor Pasković, Daniela Kovačević-Pavičić, Josip Peradinović, Ivana Munitić, and Sunčana Simonić-Kocijan. 2025. "Beneficial Effect of Olive Leaf Extract as an Adjunct to Standard Antifungal Therapy in Treating Candida-Related Oral Diseases" International Journal of Molecular Sciences 26, no. 17: 8193. https://doi.org/10.3390/ijms26178193
APA StyleKinkela Devčić, M., Glažar, I., Pasković, I., Kovačević-Pavičić, D., Peradinović, J., Munitić, I., & Simonić-Kocijan, S. (2025). Beneficial Effect of Olive Leaf Extract as an Adjunct to Standard Antifungal Therapy in Treating Candida-Related Oral Diseases. International Journal of Molecular Sciences, 26(17), 8193. https://doi.org/10.3390/ijms26178193