Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2
Abstract
1. Introduction
2. Results
2.1. Effects of FeSO4 and FeCl3 on ΔH, ΔS, and ΔG of the Thermal Denaturation of the Mutant TPH2 In Vitro
2.2. Effect of Repeated Intramuscular Administration of Fe(III) Hydroxide Dextran Complex on the TPH2 Activity in the Midbrain and Hippocampus and the Tph2 Gene Expression in the Midbrain in Balb/c Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chemicals
4.3. Experiments
4.4. TPH2 Activity Assay
4.5. Assay of Fe(II), Fe(III) Ions and Fe(III) Hydroxide Dextran on TPH2 Thermal Stability In Vitro
4.6. Assay of Tph2 Gene mRNA Level
4.7. Statistics
4.7.1. Analysis of the Thermal Denaturation Curves [12]
4.7.2. Statistical Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef]
- Walther, D.J.; Bader, M. A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 2003, 66, 1673–1680. [Google Scholar] [CrossRef]
- Gutknecht, L.; Waider, J.; Kraft, S.; Kriegebaum, C.; Holtmann, B.; Reif, A.; Schmitt, A.; Lesch, K.P. Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J. Neural Transm. 2008, 115, 1127–1132. [Google Scholar] [CrossRef]
- Savelieva, K.V.; Zhao, S.; Pogorelov, V.M.; Rajan, I.; Yang, Q.; Cullinan, E.; Lanthorn, T.H. Genetic disruption of both tryp-tophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 2008, 3, e3301. [Google Scholar] [CrossRef] [PubMed]
- Alenina, N.; Kikic, D.; Todiras, M.; Mosienko, V.; Qadri, F.; Plehm, R.; Boyé, P.; Vilianovitch, L.; Sohr, R.; Tenner, K.; et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 2009, 106, 10332–10337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gainetdinov, R.R.; Beaulieu, J.M.; Sotnikova, T.D.; Burch, L.H.; Williams, R.B.; Schwartz, D.A.; Krishnan, K.R.; Caron, M.G. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005, 45, 11–16. [Google Scholar] [CrossRef]
- Popova, N.K.; Kulikov, A.V. Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin. Ther. Targets 2010, 14, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Ottenhof, K.W.; Sild, M.; Lévesque, M.L.; Ruhé, H.G.; Booij, L. TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2018, 92, 29–42. [Google Scholar] [CrossRef]
- Zhang, X.; Beaulieu, J.M.; Sotnikova, T.D.; Gainetdinov, R.R.; Caron, M.G. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 2004, 305, 217. [Google Scholar] [CrossRef]
- Kulikov, A.V.; Osipova, D.V.; Naumenko, V.S.; Popova, N.K. Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav. 2005, 4, 482–485. [Google Scholar] [CrossRef]
- Arefieva, A.B.; Komleva, P.D.; Naumenko, V.S.; Khotskin, N.V.; Kulikov, A.V. In Vitro and In Vivo Chaperone Effect of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one on the C1473G Mutant Tryptophan Hydroxylase 2. Biomolecules 2023, 13, 1458. [Google Scholar] [CrossRef]
- Khotskin, N.V.; Komleva, P.D.; Arefieva, A.B.; Moskaliuk, V.S.; Khotskina, A.; Alhalabi, G.; Izyurov, A.E.; Sinyakova, N.A.; Sherbakov, D.; Kulikova, E.A.; et al. The C1473G Mutation in the Mouse Tph2 Gene: From Molecular Mechanism to Biological Consequences. Biomolecules 2025, 15, 461. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, E.A.; Kulikov, A.V. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets 2019, 23, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, N.; Bross, P.; Vang, S.; Christensen, J.H. Protein misfolding and human disease. Annu. Rev. Genom. Hum. Genet. 2006, 7, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Papp, E.; Csermely, P. Chemical Chaperones: Mechanisms of Action and Potential Use. In Molecular Chaperones in Health and Disease; Starke, K., Gaestel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 405–416. [Google Scholar]
- Leandro, P.; Gomes, C.M. Protein misfolding in conformational disorders: Rescue of folding defects and chemical chaperoning. Mini Rev. Med. Chem. 2008, 8, 901–911. [Google Scholar] [CrossRef]
- Muntau, A.C.; Leandro, J.; Staudigl, M.; Mayer, F.; Gersting, S.W. Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. J. Inherit. Metab. Dis. 2014, 37, 505–523. [Google Scholar] [CrossRef]
- Voronin, M.V.; Abramova, E.V.; Verbovaya, E.R.; Vakhitova, Y.V.; Seredenin, S.B. Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int. J. Mol. Sci. 2023, 24, 823. [Google Scholar] [CrossRef]
- Fitzpatrick, P.F. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Arch. Biochem. Biophys. 2023, 735, 109518. [Google Scholar] [CrossRef]
- Pey, A.L.; Ying, M.; Cremades, N.; Velazquez-Campoy, A.; Scherer, T.; Thöny, B.; Sancho, J.; Martinez, A. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J. Clin. Investig. 2008, 118, 2858–2867. [Google Scholar] [CrossRef]
- Calvo, A.C.; Scherer, T.; Pey, A.L.; Ying, M.; Winge, I.; McKinney, J.; Haavik, J.; Thöny, B.; Martinez, A. Effect of pharmaco-logical chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. J. Neurochem. 2010, 114, 853–863. [Google Scholar] [CrossRef]
- Waløen, K.; Kleppe, R.; Martinez, A.; Haavik, J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin. Ther. Targets 2017, 21, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Hole, M.; Jorge-Finnigan, A.; Underhaug, J.; Teigen, K.; Martinez, A. Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases Through Different Mechanisms. Curr. Drug Targets 2016, 17, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Santos-Sierra, S.; Kirchmair, J.; Perna, A.M.; Reiss, D.; Kemter, K.; Röschinger, W.; Glossmann, H.; Gersting, S.W.; Muntau, A.C.; Wolber, G.; et al. Novel pharmacological chaperones that correct phenylketonuria in mice. Hum. Mol. Genet. 2012, 21, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Conde-Giménez, M.; Galano-Frutos, J.J.; Galiana-Cameo, M.; Mahía, A.; Victor, B.L.; Salillas, S.; Velázquez-Campoy, A.; Brito, R.M.M.; Gálvez, J.A.; Díaz-de-Villegas, M.D.; et al. Alchemical Design of Pharmacological Chaperones with Higher Affinity for Phenylalanine Hydroxylase. Int. J. Mol. Sci. 2022, 23, 4502. [Google Scholar] [CrossRef]
- Arefieva, A.B.; Komleva, P.D.; Gubina, M.; Kulikov, A.V. Effect of (R)-2-Amino-6-(1R,2S)-1,2-Dihydroxypropyl)-5,6,7,8-Tetrahydropterin-4(3H)-One and Its Structural Analogues on the Temperature Stability of Tryptophan Hydroxylase 2 with the P447R Mutation. Bull. Exp. Biol. Med. 2024, 176, 756–760. [Google Scholar] [CrossRef]
- Komleva, P.D.; Deeb, R.; Terentieva, E.I.; Kulikov, A.V. Comparison of the Effects of Tetrahydrobiopterine, L-Tryptophan, and Iron Ions on the Thermal Stability of Wild Type and P447R Mutant Tryptophan Hydroxylase 2. Bull. Exp. Biol. Med. 2025, 178, 447–452. [Google Scholar] [CrossRef]
- Fitzpatrick, P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 1999, 68, 355–381. [Google Scholar] [CrossRef]
- Izyurov, A.E.; Sorokin, I.E.; Evsiukova, V.S.; Zolotova, D.A.; Kulikov, P.A.; Kulikov, A.V. Effects of Prolonged Exposure to Manganese Chloride on the Brain Serotonin Metabolism and Serotonin-Regulated Behavior in Zebrafish. Neurochem. J. 2024, 18, 674–681. [Google Scholar] [CrossRef]
- Dokmanić, I.; Sikić, M.; Tomić, S. Metals in proteins: Correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta. Crystallogr. D. Biol. Crystallogr. 2008, 64, 257–263. [Google Scholar] [CrossRef]
- Rouault, T.A.; Cooperman, S. Brain iron metabolism. Semin. Pediatr. Neurol. 2006, 13, 142–148. [Google Scholar] [CrossRef]
- Gao, G.; Chang, Y.Z. Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants 2023, 12, 1721. [Google Scholar] [CrossRef]
- Meek, J.L.; Neff, N.H. Tryptophan 5-hydroxylase: Approximation of half-life and rate of axonal transport. J. Neurochem. 1972, 19, 1519–1525. [Google Scholar] [CrossRef]
- Aboagye, B.; Weber, T.; Merdian, H.L.; Bartsch, D.; Lesch, K.P.; Waider, J. Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci. Rep. 2021, 11, 5368. [Google Scholar] [CrossRef]
- Kolesnichenko, L.S.; Batorova, T.M. Dynamics of indices of lipid peroxidation and antioxidant glutathione system in mice at the effect of ferrum preparation. Acta Biomed. Sci. 2011, 77, 227–230. [Google Scholar]
Parameter | Iron Ion Type | Concentration | Interaction |
---|---|---|---|
ΔΔH | F(1,27) = 61.7, p < 0.001 | F(2,27) = 13.1, p < 0.001 | F(2,27) = 1.31, p < 0.29 |
ΔΔS | F(1,27) = 61.3, p < 0.001 | F(2,27) = 13.0, p < 0.001 | F(2,27) = 1.28, p < 0.30 |
ΔΔG | F(1,27) = 62.3, p < 0.001 | F(2,27) = 12.8, p < 0.001 | F(2,27) = 1.50, p < 0.24 |
Gene | Sequence | Annealing Temperatures, °C | Amplicon Size, bp |
---|---|---|---|
Polr2a | 5′-TGACAACTCCATACAATGC-3′ 5′-CTCTCTTACTGAATTTGCGTACT-3′ | 60 | 194 |
Tph2 | 5′-CATTCCTCGCACAATTCCAGTCG-3′ 5′-AGTCTACATCCATCCCAACTGCTG-3′ | 62 | 239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komleva, P.D.; Terentieva, E.I.; Izyurov, A.E.; Kulikov, A.V. Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2. Int. J. Mol. Sci. 2025, 26, 8188. https://doi.org/10.3390/ijms26178188
Komleva PD, Terentieva EI, Izyurov AE, Kulikov AV. Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2. International Journal of Molecular Sciences. 2025; 26(17):8188. https://doi.org/10.3390/ijms26178188
Chicago/Turabian StyleKomleva, Polina D., Ekatherina I. Terentieva, Arseniy E. Izyurov, and Alexander V. Kulikov. 2025. "Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2" International Journal of Molecular Sciences 26, no. 17: 8188. https://doi.org/10.3390/ijms26178188
APA StyleKomleva, P. D., Terentieva, E. I., Izyurov, A. E., & Kulikov, A. V. (2025). Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2. International Journal of Molecular Sciences, 26(17), 8188. https://doi.org/10.3390/ijms26178188