Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis
Abstract
1. Introduction
2. Results
2.1. Association Between Microbiome Profiles and OSCC
2.2. Salivary Gene Expression Analysis and Its Relation to the Microbiome
3. Discussion
4. Materials and Methods
4.1. Study Subjects and Sample Collection
4.2. DNA and RNA Extraction from Saliva
4.3. Oral Microbiome Analysis
4.4. Salivary mRNA Expression Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSCC | oral squamous cell carcinoma |
OPMDs | oral potentially malignant disorders |
Post | post-operative OSCC cases |
HC | healthy controls |
OLK | oral leukoplakia |
IBD | inflammatory bowel disease |
CRC | colorectal cancer |
NGS | next-generation sequencing |
LEfSe | Linear Discriminant Analysis Effect Size |
LDA | Linear Discriminant Analysis |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
qRT-PCR | quantitative reverse transcription polymerase chain reaction |
PPV | positive predictive value |
NPV | negative predictive value |
GENT2 | Gene Expression database of Normal and Tumor tissues 2 |
TCGA | The Cancer Genome Atlas |
GEO | Gene Expression Omnibus |
DEGs | differentially expressed genes |
NUS1 | nuclear undecaprenyl pyrophosphate synthase 1 homolog |
RCN1 | Reticulocalbin 1 |
CPLANE1 | Ciliogenesis and Planar Polarity Effector 1 |
CCL20 | C-C Motif Chemokine Ligand 20 |
References
- Began, J.; Sarrion, G.; Jimenez, Y. Oral cancer: Clinical features. Oral Oncol. 2010, 46, 414–417. [Google Scholar] [CrossRef]
- Yang, J.; Guo, K.; Zhang, A.; Zhu, Y.; Li, W.; Yu, J.; Wang, P. Survival analysis of age-related oral squamous cell carcinoma: A population study based on SEER. Eur. J. Med. Res. 2023, 28, 413. [Google Scholar] [CrossRef]
- Abrahão, R.; Anantharaman, D.; Gaborieau, V.; Abedi-Ardekani, B.; Lagiou, P.; Lagiou, A.; Ahrens, W.; Holcatova, I.; Betka, J.; Merletti, F.; et al. The influence of smoking, age and stage at diagnosis on the survival after larynx, hypopharynx and oral cavity cancers in Europe: The ARCAGE study. Int. J. Cancer 2018, 143, 32–44. [Google Scholar] [CrossRef]
- Wu, J.Y.; Yi, C.; Chung, H.R.; Wang, D.J.; Chang, W.C.; Lee, S.Y.; Lin, C.T.; Yang, Y.C.; Yang, W.C. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral. Oncol. 2010, 46, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, W.; Takeshita, T.; Shibata, Y.; Matsuo, K.; Eshima, N.; Yokoyama, T.; Yamashita, Y. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS ONE 2012, 7, e42806. [Google Scholar] [CrossRef]
- Rathnayake, N.; Akerman, S.; Klinge, B.; Lundegren, N.; Jansson, H.; Tryselius, Y.; Sorsa, T.; Gustafsson, A. Salivary biomarkers for detection of systemic diseases. PLoS ONE 2013, 8, e61356. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell. 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.F.; Hsu, P.N. Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol. Immunol. 2010, 7, 255–259. [Google Scholar] [CrossRef]
- Vogelmann, R.; Amieva, M.R. The role of bacterial pathogens in cancer. Curr. Opin. Microbiol. 2007, 10, 76–81. [Google Scholar] [CrossRef]
- Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef]
- Ahn, J.; Chen, C.Y.; Hayes, R.B. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 2012, 23, 399–404. [Google Scholar] [CrossRef]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Camañes-Gonzalvo, S.; Montiel-Company, J.M.; Lobo-de-Mena, M.; Safont-Aguilera, M.J.; Fernández-Diaz, A.; López-Roldán, A.; Paredes-Gallardo, V.; Bellot-Arcís, C. Relationship between oral microbiota and colorectal cancer: A systematic review. J. Periodontal Res. 2024, 59, 1071–1082. [Google Scholar] [CrossRef]
- Uchino, Y.; Goto, Y.; Konishi, Y.; Tanabe, K.; Toda, H.; Wada, M.; Kita, Y.; Beppu, M.; Mori, S.; Hijioka, H.; et al. Colorectal Cancer Patients Have Four Specific Bacterial Species in Oral and Gut Microbiota in Common-A Metagenomic Comparison with Healthy Subjects. Cancers 2021, 13, 3332. [Google Scholar] [CrossRef] [PubMed]
- van de Ven, S.; Bugter, O.; Hardillo, J.A.; Bruno, M.J.; Baatenburg de Jong, R.J.; Koch, A.D. Screening for head and neck second primary tumors in patients with esophageal squamous cell cancer: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2019, 7, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Jiromaru, R.; Yasumatsu, R.; Yamamoto, H.; Kuga, R.; Hongo, T.; Nakano, T.; Manako, T.; Hashimoto, K.; Wakasaki, T.; Matsuo, M.; et al. A clinical analysis of oropharyngeal squamous cell carcinoma: A single-institution’s experience. Eur. Arch. Otorhinolaryngol. 2022, 279, 3717–3725. [Google Scholar] [CrossRef]
- Liu, W.; Shi, L.J.; Wu, L.; Feng, J.Q.; Yang, X.; Li, J.; Zhou, Z.T.; Zhang, C.P. Oral cancer development in patients with leukoplakia--clinicopathological factors affecting outcome. PLoS ONE 2012, 7, e34773. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Udaltsova, N.; Engels, E.A.; Katzel, J.A.; Yanik, E.L.; Katki, H.A.; Lingen, M.W.; Silverberg, M.J. Oral Leukoplakia and Risk of Progression to Oral Cancer: A Population-Based Cohort Study. J. Natl. Cancer Inst. 2020, 112, 1047–1054. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Richter, S.; Arker, S.H.; Parsa, N. A Rare Case of Esophageal Leukoplakia: A Potential Precursor to Esophageal Malignancy. Cureus 2021, 13, e17205. [Google Scholar] [CrossRef]
- Pandey, D.; Szczesniak, M.; Maclean, J.; Yim, H.C.H.; Zhang, F.; Graham, P.; El-Omar, E.M.; Wu, P. Dysbiosis in Head and Neck Cancer: Determining Optimal Sampling Site for Oral Microbiome Collection. Pathogens 2022, 11, 1550. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J.; Zhao, Y.; Yan, F.; Fan, Y.; Xia, X.; Shan, G.; Zhang, P.; Chen, X. Oral-microbiome-derived signatures enable non-invasive diagnosis of laryngeal cancers. J. Transl. Med. 2023, 21, 438. [Google Scholar] [CrossRef]
- Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017, 77, 6777–6787. [Google Scholar] [CrossRef]
- Matsuda, S.; Yamaguchi, T.; Okada, K.; Gotouda, A.; Mikami, S. Day-to-day variations in salivary cortisol measurements. J. Prosthodont. Res. 2012, 56, 37–41. [Google Scholar] [CrossRef]
- Scholz, M.; Steuer, A.E.; Dobay, A.; Landolt, H.P.; Kraemer, T. Assessing the influence of sleep and sampling time on metabolites in oral fluid: Implications for metabolomics studies. Metabolomics 2024, 20, 97. [Google Scholar] [CrossRef]
- Hashimoto, K.; Shimizu, D.; Hirabayashi, S.; Ueda, S.; Miyabe, S.; Oh-Iwa, I.; Nagao, T.; Shimozato, K.; Nomoto, S. Changes in oral microbial profiles associated with oral squamous cell carcinoma vs. leukoplakia. J. Investig. Clin. Dent. 2019, 10, e12445. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Shimizu, D.; Ueda, S.; Miyabe, S.; Oh-Iwa, I.; Nagao, T.; Shimozato, K.; Nomoto, S. Feasibility of oral microbiome profiles associated with oral squamous cell carcinoma. J. Oral. Microbiol. 2022, 14, 2105574. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Hashimoto, K.; Miyabe, S.; Hasegawa, S.; Goto, M.; Shimizu, D.; Oh-Iwa, I.; Shimozato, K.; Nagao, T.; Nomoto, S. Salivary NUS1 and RCN1 Levels as Biomarkers for Oral Squamous Cell Carcinoma Diagnosis. In Vivo 2020, 34, 2353–2361. [Google Scholar] [CrossRef]
- Ueda, S.; Goto, M.; Hashimoto, K.; Imazawa, M.; Takahashi, M.; Oh-Iwa, I.; Shimozato, K.; Nagao, T.; Nomoto, S. Salivary CPLANE1 Levels as a Biomarker of Oral Squamous Cell Carcinoma. Anticancer. Res. 2021, 41, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Goto, M.; Hashimoto, K.; Hasegawa, S.; Imazawa, M.; Takahashi, M.; Oh-Iwa, I.; Shimozato, K.; Nagao, T.; Nomoto, S. Salivary CCL20 Level as a Biomarker for Oral Squamous Cell Carcinoma. Cancer Genom. Proteom. 2021, 18, 103–112. [Google Scholar] [CrossRef]
- Harrison, K.D.; Park, E.J.; Gao, N.; Kuo, A.; Rush, J.S.; Waechter, C.J.; Lehrman, M.A.; Sessa, W.C. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 2011, 30, 2490–2500. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Wu, Y.; Hu, Q.; Hu, G.; He, H.; Yin, Y.; Nan, X.; Lin, G.; Han, J.; et al. RCN1 deficiency inhibits oral squamous cell carcinoma progression and THP-1 macrophage M2 polarization. Sci. Rep. 2023, 13, 21488. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, C.; Shboul, M.; Tonekaboni, S.H.; Ng, A.Y.J.; Tohari, S.; Ghosh, K.; Lai, A.; Lim, J.Y.; Tan, E.C.; Devisme, L.; et al. Novel mutations in the ciliopathy-associated gene CPLANE1 (C5orf42) cause OFD syndrome type VI rather than Joubert syndrome. Eur. J. Med. Genet. 2018, 61, 585–595. [Google Scholar] [CrossRef]
- Chen, C.H.; Chuang, H.C.; Lin, Y.T.; Fang, F.M.; Huang, C.C.; Chen, C.M.; Lu, H.; Chien, C.Y. Circulating CD105 shows significant impact in patients of oral cancer and promotes malignancy of cancer cells via CCL20. Tumour Biol. 2016, 37, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A.I.; Pappalardo, V.Y.; Buijs, M.J.; Brandt, B.W.; Mäkitie, A.A.; Meurman, J.H.; Zaura, E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. Microbiome 2023, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Zhang, C.; Hua, H.; Hu, X. Compositional and functional changes in the salivary microbiota related to oral leukoplakia and oral squamous cell carcinoma: A case control study. BMC Oral Health 2023, 23, 1021. [Google Scholar] [CrossRef]
- Wolf, A.; Moissl-Eichinger, C.; Perras, A.; Koskinen, K.; Tomazic, P.V.; Thurnher, D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci. Rep. 2017, 7, 5867. [Google Scholar] [CrossRef]
- Han, Z.; Hu, Y.; Lin, X.; Cheng, H.; Dong, B.; Liu, X.; Wu, B.; Xu, Z.Z. Systematic analyses uncover robust salivary microbial signatures and host-microbiome perturbations in oral squamous cell carcinoma. mSystems 2025, 10, e0124724. [Google Scholar] [CrossRef]
- Hooper, S.J.; Wilson, M.J.; Crean, S.J. Exploring the link between microorganisms and oral cancer: A systematic review of the literature. Head Neck 2009, 31, 1228–1239. [Google Scholar] [CrossRef]
- Perera, M.; Al-Hebshi, N.N.; Speicher, D.J.; Perera, I.; Johnson, N.W. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria. J. Oral Microbiol. 2016, 8, 32762. [Google Scholar] [CrossRef]
- Sakamoto, H.; Sasaki, J.; Nord, C.E. Association between bacterial colonization on the tumor, bacterial translocation to the cervical lymph nodes and subsequent postoperative infection in patients with oral cancer. Clin. Microbiol. Infect. 1999, 5, 612–616. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, Z.; Dai, J.; Wu, T.; Jiao, Z.; Yu, Y.; Ning, K.; Chen, W.; Yang, A. Intratumor microbiome: Selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm 2023, 4, e376. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, Z.; Wei, J.; Zhao, L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front. Immunol. 2022, 13, 1030745. [Google Scholar] [CrossRef] [PubMed]
- Asseri, A.H.; Bakhsh, T.; Abuzahrah, S.S.; Ali, S.; Rather, I.A. The gut dysbiosis-cancer axis: Illuminating novel insights and implications for clinical practice. Front. Pharmacol. 2023, 14, 1208044. [Google Scholar] [CrossRef] [PubMed]
- Parida, S.; Sharma, D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res. 2021, 81, 790–800. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kang, S.M.; Kang, S.H.; Lee, H.J.; Kwon, T.G.; Kim, J.W.; Lee, S.T.; Choi, S.Y.; Hong, S.H. Potential Salivary mRNA Biomarkers for Early Detection of Oral Cancer. J. Clin. Med. 2020, 9, 243. [Google Scholar] [CrossRef]
- Gleber-Netto, F.O.; Yakob, M.; Li, F.; Feng, Z.; Dai, J.; Kao, H.K.; Chang, Y.L.; Chang, K.P.; Wong, D.T. Salivary Biomarkers for Detection of Oral Squamous Cell Carcinoma in a Taiwanese Population. Clin. Cancer Res. 2016, 22, 3340–3347. [Google Scholar] [CrossRef] [PubMed]
- Sodnom-Ish, B.; Eo, M.Y.; Myoung, H.; Lee, J.H.; Kim, S.M. Next generation sequencing-based salivary biomarkers in oral squamous cell carcinoma. J. Korean Assoc. Oral Maxillofac. Surg. 2022, 48, 3–12. [Google Scholar] [CrossRef]
- de Paula Souza, D.P.S.; Dos Reis Pereira Queiroz, L.; de Souza, M.G.; de Jesus, S.F.; Gomes, E.S.B.; Vitorino, R.T.; Santos, S.H.S.; Farias, L.C.; de Paula, A.M.B.; D’Angelo, M.F.S.V.; et al. Identification of potential biomarkers and survival analysis for oral squamous cell carcinoma: A transcriptomic study. Oral Dis. 2023, 29, 2658–2666. [Google Scholar] [CrossRef]
- Du, H.; Wang, Z.; Qi, M.; Pang, Y.; Lin, Q.; He, D.; Wang, J. Identification of novel biomarkers involved in oral squamous cell carcinoma by whole transcriptome sequencing and bioinformatics analysis. Cancer Cell Int. 2025, 25, 277. [Google Scholar] [CrossRef]
- Kengkarn, S.; Petmitr, S.; Boonyuen, U.; Reamtong, O.; Poomsawat, S.; Sanguansin, S. Identification of Novel Candidate Biomarkers for Oral Squamous Cell Carcinoma Based on Whole Gene Expression Profiling. Pathol. Oncol. Res. 2020, 26, 2315–2325. [Google Scholar] [CrossRef]
- Fujiwara, N.; Kitamura, N.; Yoshida, K.; Yamamoto, T.; Ozaki, K.; Kudo, Y. Involvement of Fusobacterium Species in Oral Cancer Progression: A Literature Review Including Other Types of Cancer. Int. J. Mol. Sci. 2020, 21, 6207. [Google Scholar] [CrossRef]
- Gholizadeh, P.; Eslami, H.; Kafil, H.S. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed. Pharmacother. 2017, 89, 918–925. [Google Scholar] [CrossRef]
- Mitsuhashi, K.; Nosho, K.; Sukawa, Y.; Matsunaga, Y.; Ito, M.; Kurihara, H.; Kanno, S.; Igarashi, H.; Naito, T.; Adachi, Y.; et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 2015, 6, 7209–7220. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Gupta, S.; Jiang, B.; Weinberg, A. Fusobacterium nucleatum and human beta-defensins modulate the release of antimicrobial chemokine CCL20/macrophage inflammatory protein 3α. Infect. Immun. 2011, 79, 4578–4587. [Google Scholar] [CrossRef]
- Nakajima, S.; Saito, K.; Fukai, S.; Sakuma, M.; Matsuishi, A.; Kanoda, R.; Maruyama, Y.; Suzuki, H.; Okayama, H.; Saito, M.; et al. Activation of the tumor cell-intrinsic STING pathway induced by Fusobacterium nucleatum is associated with poor prognosis in esophageal cancer patients. Esophagus 2025, 22, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef]
- Baba, Y.; Iwatsuki, M.; Yoshida, N.; Watanabe, M. Review of the gut microbiome and esophageal cancer: Pathogenesis and potential clinical implications. Ann. Gastroenterol. Surg. 2017, 1, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Baraniya, D.; El-Hadedy, D.E.; Chen, T.; Slifker, M.; Alakwaa, F.; Cai, K.Q.; Chitrala, K.N.; Fundakowski, C.; Al-Hebshi, N.N. Integrative Metatranscriptomic Analysis Reveals Disease-specific Microbiome-host Interactions in Oral Squamous Cell Carcinoma. Cancer Res. Commun. 2023, 3, 807–820. [Google Scholar] [CrossRef]
- Liang, D.; Ma, X.; Zhong, X.; Zhou, Y.; Chen, W.; He, X. Integration of host gene regulation and oral microbiome reveals the influences of smoking during the development of oral squamous cell carcinoma. Front. Oncol. 2024, 14, 1409623. [Google Scholar] [CrossRef] [PubMed]
- Abdelbary, M.M.H.; Hatting, M.; Bott, A.; Dahlhausen, A.; Keller, D.; Trautwein, C.; Conrads, G. The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 1010853. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, S.; Kamada, N. The oral-gut axis: A missing piece in the IBD puzzle. Inflamm. Regen. 2023, 43, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhai, Z.; Ding, Y.; Wei, J.; Wei, Z.; Cao, H. The oral-gut microbiome axis in inflammatory bowel disease: From inside to insight. Front. Immunol. 2024, 15, 1430001. [Google Scholar] [CrossRef] [PubMed]
Rank | Early-Stage OSCC | Advanced-Stage OSCC |
---|---|---|
1 | g Streptococcus | g Fusobacterium |
2 | N.S. | g Alloprevotella |
3 | N.S. | g Catonella |
Candidate Bacteria | Sensitivity/Specificity | AUC | Cut-Off Value (%) |
---|---|---|---|
p Fusobacteria | 0.689/0.732 | 0.703 | ≥10.2 |
g Fusobacterium | 0.689/0.732 | 0.722 | ≥8.50 |
p Firmicutes | 0.756/0.659 | 0.745 | <25 |
g Streptococcus | 0.578/0.928 | 0.831 | <11.4 |
Combination of four candidate bacteria | 0.512/0.844 | 0.836 (good) | ― |
* p Bacteroidetes | 0.829/0.533 | 0.632 (poor) | ≥25.8 |
Biomarker | Cut-Off Value | AUC | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value |
---|---|---|---|---|---|---|
NUS1 | 0.005 | 0.715 (0.567–0.862) | 0.683 (0.519–0.819) | 0.700 (0.348–0.933) | 0.903 (0.742–0.980) | 0.350 (0.154–0.592) |
RCN1 | 0.041 | 0.759 (0.628–0.889) | 0.683 (0.519–0.819) | 0.900 (0.555–0.997) | 0.966 (0.822–0.999) | 0.409 (0.207–0.636) |
NUS1 + RCN1 | ― | ― | 0.927 (0.801–0.985) | 0.700 (0.348–0.933) | 0.927 (0.801–0.985) | 0.700 (0.348–0.933) |
CPLANE1 | 0.001 | 0.908 (0.832–0.968) | 0.814 (0.666–0.916) | 0.925 (0.844–0.972) | 0.854 (0.708–0.944) | 0.902 (0.817–0.957) |
CCL20 | 0.069 | 0.829 (0.839–0.946) | 0.635 (0.515–0.744) | 0.983 (0.909–1.000) | 0.979 (0.889–0.999) | 0.682 (0.572–0.779) |
Category | Item | Result | p-Value |
---|---|---|---|
Fusobacterium Abundance Comparison | OSCC vs. non-OSCC | Significantly higher in OSCC group | p = 0.001 |
Early-stage vs. Advanced-stage OSCC | No significant difference | p = 0.198 | |
Correlation Between Fusobacterium and Gene Expression in the OSCC Group | Fusobacterium vs. CPLANE1 (OSCC group) | No significant difference | p = 0.203 |
Fusobacterium vs. CCL20 (OSCC group) | Significant positive correlation | p = 0.019 |
OSCC (%) | OPMDs (%) (Including OLK) | Post (%) | HC (%) | ||
---|---|---|---|---|---|
Number | 48 | 37 | 20 | 50 | |
Mean age, years [range] | 68.9 [28–92] | 65.8 [29–91] | 68.2 [29–85] | 57.5 [26–91] | |
Gender | Male | 35 (73) | 20 (54) | 14 (70) | 27 (54) |
Female | 13 (27) | 17(46) | 6 (30) | 23 (46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hishida, M.; Nomoto, K.; Hashimoto, K.; Ueda, S.; Nomoto, S. Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis. Int. J. Mol. Sci. 2025, 26, 8104. https://doi.org/10.3390/ijms26168104
Hishida M, Nomoto K, Hashimoto K, Ueda S, Nomoto S. Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis. International Journal of Molecular Sciences. 2025; 26(16):8104. https://doi.org/10.3390/ijms26168104
Chicago/Turabian StyleHishida, Mitsuhiro, Kosuke Nomoto, Kengo Hashimoto, Sei Ueda, and Shuji Nomoto. 2025. "Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis" International Journal of Molecular Sciences 26, no. 16: 8104. https://doi.org/10.3390/ijms26168104
APA StyleHishida, M., Nomoto, K., Hashimoto, K., Ueda, S., & Nomoto, S. (2025). Identification of Non-Invasive Diagnostic Markers for Oral Squamous Cell Carcinoma Through Salivary Microbiome and Gene Expression Analysis. International Journal of Molecular Sciences, 26(16), 8104. https://doi.org/10.3390/ijms26168104