Vitamin D as an Epigenetic Regulator: A Hypothetical Mechanism for Cancer Prevention via Inhibition of Oncogenic lncRNA HOTAIR
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating Intrinsic and Non-Intrinsic Cancer Risk Factors. Nat. Commun. 2018, 9, 3490. [Google Scholar] [CrossRef]
- Yıldırım-Kahrıman, S. Non-Intrinsic Cancer Risk Factors. Exp. Oncol. 2023, 43, 290–297. [Google Scholar] [CrossRef]
- Ames, B.N.; Wakimoto, P. Are Vitamin and Mineral Deficiencies a Major Cancer Risk? Nat. Rev. Cancer 2002, 2, 694–704. [Google Scholar] [CrossRef]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, S.; Leischner, C.; Helling, T.; Burkard, M.; Marongiu, L. Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021, 13, 3914. [Google Scholar] [CrossRef] [PubMed]
- Benedik, E. Sources of Vitamin D for Humans. Int. J. Vitam. Nutr. Res. 2022, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Muñoz, A.; Grant, W.B. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022, 14, 1448. [Google Scholar] [CrossRef]
- Sheeley, M.P.; Andolino, C.; Kiesel, V.A.; Teegarden, D. Vitamin D Regulation of Energy Metabolism in Cancer. Br. J. Pharmacol. 2022, 179, 2890–2905. [Google Scholar] [CrossRef]
- Graziano, S.; Johnston, R.; Deng, O.; Zhang, J.; Gonzalo, S. Vitamin D/Vitamin D Receptor Axis Regulates DNA Repair during Oncogene-Induced Senescence. Oncogene 2016, 35, 5362–5376. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D Regulation of and by Long Non Coding RNAs. Mol. Cell. Endocrinol. 2021, 532, 111317. [Google Scholar] [CrossRef]
- Gao, N.; Li, Y.; Li, J.; Gao, Z.; Yang, Z.; Li, Y.; Liu, H.; Fan, T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front. Oncol. 2020, 10, 598817. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bu, P. Non-Coding RNA in Cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Obuse, C.; Hirose, T. Functional Domains of Nuclear Long Noncoding RNAs: Insights into Gene Regulation and Intracellular Architecture. Curr. Opin. Cell Biol. 2023, 85, 102250. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Liu, S.; Zhu, H. The Sequence, Structure and Evolutionary Features of HOTAIR in Mammals. BMC Evol. Biol. 2011, 11, 102. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, H.; Wang, C.; Lu, X.; Zhao, X.; Li, X. Insight into HOTAIR Structural Features and Functions as Landing Pads for Transcription Regulation Proteins. Biochem. Biophys. Res. Commun. 2017, 485, 679–685. [Google Scholar] [CrossRef]
- Chen, L.; Qian, X.; Wang, Z.; Zhou, X. The HOTAIR LncRNA: A Remarkable Oncogenic Promoter in Human Cancer Metastasis. Oncol. Lett. 2021, 21, 302. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Y.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Long Noncoding RNA (LncRNA) HOTAIR Affects Tumorigenesis and Metastasis of Non-Small Cell Lung Cancer by Upregulating MiR-613. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 725–734. [Google Scholar] [CrossRef]
- Katayama, H.; Tamai, K.; Shibuya, R.; Nakamura, M.; Mochizuki, M.; Yamaguchi, K.; Kawamura, S.; Tochigi, T.; Sato, I.; Okanishi, T.; et al. Long Non-Coding RNA HOTAIR Promotes Cell Migration by Upregulating Insulin Growth Factor–Binding Protein 2 in Renal Cell Carcinoma. Sci. Rep. 2017, 7, 12016. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.; Zhou, H.; Ying, X.; Wang, Z.; Yang, Y.; Xu, W.; He, X.; Li, Y. Lentivirus-Mediated Silencing of HOTAIR LncRNA Restores Gefitinib Sensitivity by Activating Bax/Caspase-3 and Suppressing TGF-α/EGFR Signaling in Lung Adenocarcinoma. Oncol. Lett. 2018, 15, 2829–2838. [Google Scholar] [CrossRef]
- Toden, S.; Zumwalt, T.J.; Goel, A. Non-Coding RNAs and Potential Therapeutic Targeting in Cancer. Biochim. Biophys. Acta Bba-Rev. Cancer 2020, 1875, 188491. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, R.P.; Salah-Uddin, S.; Modarresi, F.; Khoury, N.; Wahlestedt, C.; Faghihi, M.A. Screening for Small-Molecule Modulators of Long Noncoding RNA-Protein Interactions Using AlphaScreen. SLAS Discov. 2015, 20, 1132–1141. [Google Scholar] [CrossRef]
- Norouzi, A.; Motaghi, M.; Hassanshahi, G.; Nazari-Robati, M. Exploring the Expression Profile of Vitamin D Receptor and Its Related Long Non-Coding RNAs in Patients with Acute Lymphoblastic Leukemia. Rev. Assoc. Med. Bras. 2021, 67, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Naiini, M.R.; Saeidi, K.; Azarian, A.; Bahramzadeh, K.; Nazari-Robati, M. Expression Analysis of Vitamin D Receptor-Associated Long Noncoding RNAs in Patients with Relapsing-Remitting Multiple Sclerosis. Bratisl. Med. J. 2024, 125, 107–112. [Google Scholar] [CrossRef]
- Somarowthu, S.; Legiewicz, M.; Chillón, I.; Marcia, M.; Liu, F.; Pyle, A.M. HOTAIR Forms an Intricate and Modular Secondary Structure. Mol. Cell 2015, 58, 353–361. [Google Scholar] [CrossRef]
- Spokoini-Stern, R.; Stamov, D.; Jessel, H.; Aharoni, L.; Haschke, H.; Giron, J.; Unger, R.; Segal, E.; Abu-Horowitz, A.; Bachelet, I. Visualizing the Structure and Motion of the Long Noncoding RNA HOTAIR. RNA 2020, 26, 629–636. [Google Scholar] [CrossRef]
- Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Mol. Cell 2011, 44, 667–678. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Zhang, J.; Wang, Q.; Han, L.; Mei, M.; Kang, C. Targeted Design and Identification of AC1NOD4Q to Block Activity of HOTAIR by Abrogating the Scaffold Interaction with EZH2. Clin. Epigenetics 2019, 11, 29. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long Non-Coding RNA HOTAIR Reprograms Chromatin State to Promote Cancer Metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef]
- Jin, L.; Jin, M.; Nam, A.-R.; Park, J.-E.; Bang, J.-H.; Oh, D.-Y.; Bang, Y.-J. Anti-Tumor Effects of NVP-BKM120 Alone or in Combination with MEK162 in Biliary Tract Cancer. Cancer Lett. 2017, 411, 162–170. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, L.; Wu, L.-M.; Lai, M.-C.; Xie, H.-Y.; Zhang, F.; Zheng, S.-S. Overexpression of Long Non-Coding RNA HOTAIR Predicts Tumor Recurrence in Hepatocellular Carcinoma Patients Following Liver Transplantation. Ann. Surg. Oncol. 2011, 18, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Abdeahad, H.; Avan, A.; Pashirzad, M.; Khazaei, M.; Soleimanpour, S.; Ferns, G.A.; Fiuji, H.; Ryzhikov, M.; Bahrami, A.; Hassanian, S.M. The Prognostic Potential of Long Noncoding RNA HOTAIR Expression in Human Digestive System Carcinomas: A Meta-analysis. J. Cell. Physiol. 2019, 234, 10926–10933. [Google Scholar] [CrossRef]
- Guo, S.; King, P.; Liang, E.; Guo, A.A.; Liu, M. LncRNA HOTAIR Sponges MiR-301a-3p to Promote Glioblastoma Proliferation and Invasion through Upregulating FOSL1. Cell. Signal. 2022, 94, 110306. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, J.; Fu, Y.; Li, C.; Wu, B. LncRNA HOTAIR Promotes Breast Cancer Progression through Regulating the MiR-129-5p/FZD7 Axis. Cancer Biomark. 2021, 30, 203–212. [Google Scholar] [CrossRef]
- Weng, X.; Liu, H.; Ruan, J.; Du, M.; Wang, L.; Mao, J.; Cai, Y.; Lu, X.; Chen, W.; Huang, Y.; et al. HOTAIR/MiR-1277-5p/ZEB1 Axis Mediates Hypoxia-Induced Oxaliplatin Resistance via Regulating Epithelial-Mesenchymal Transition in Colorectal Cancer. Cell Death Discov. 2022, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Shi, H.; Li, H.; Li, L.; Fang, R.; Cai, X.; Liu, B.; Zhang, X.; Ye, L. HBXIP and LSD1 Scaffolded by LncRNA Hotair Mediate Transcriptional Activation by C-Myc. Cancer Res. 2016, 76, 293–304. [Google Scholar] [CrossRef]
- Moena, D.; Nardocci, G.; Acevedo, E.; Lian, J.; Stein, G.; Stein, J.; Montecino, M. Ezh2-dependent H3K27me3 Modification Dynamically Regulates Vitamin D3-dependent Epigenetic Control of CYP24A1 Gene Expression in Osteoblastic Cells. J. Cell. Physiol. 2020, 235, 5404–5412. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, R.; Chen, M.; Wang, J.; Huang, F.; Shi, M.; Sheng, H.; Xu, L. Antagonizing EZH2 Combined with Vitamin D3 Exerts a Synergistic Role in Anti-fibrosis through Bidirectional Effects on Hepatocytes and Hepatic Stellate Cells. J. Gastroenterol. Hepatol. 2023, 38, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Laugesen, A.; Højfeldt, J.W.; Helin, K. Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harb. Perspect. Med. 2016, 6, a026575. [Google Scholar] [CrossRef] [PubMed]
- Seraphin, G.; Rieger, S.; Hewison, M.; Capobianco, E.; Lisse, T.S. The Impact of Vitamin D on Cancer: A Mini Review. J. Steroid Biochem. Mol. Biol. 2023, 231, 106308. [Google Scholar] [CrossRef]
- Li, Y.; Ren, Y.; Wang, Y.; Tan, Y.; Wang, Q.; Cai, J.; Zhou, J.; Yang, C.; Zhao, K.; Yi, K.; et al. A Compound AC1Q3QWB Selectively Disrupts HOTAIR-Mediated Recruitment of PRC2 and Enhances Cancer Therapy of DZNep. Theranostics 2019, 9, 4608–4623. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Li, H.; Zhou, Y.; Zhang, Q.; Chen, R.; Jin, T.; Hu, K.; Li, S.; Wang, Y.; et al. Vitamin D Promotes the Cisplatin Sensitivity of Oral Squamous Cell Carcinoma by Inhibiting LCN2-Modulated NF-ΚB Pathway Activation through RPS3. Cell Death Dis. 2019, 10, 936. [Google Scholar] [CrossRef]
- Kovachka, S.; Panosetti, M.; Grimaldi, B.; Azoulay, S.; Giorgio, A.D.; Duca, M. Small Molecule Approaches to Targeting RNA. Nat. Rev. Chem. 2024, 8, 120–135. [Google Scholar] [CrossRef]
- Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017, 77, e108–e110. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An Update to the Integrated Cancer Data Analysis Platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujano-Camacho, S.; Pulido-Capiz, Á.; García-González, V.; López-Urrutia, E.; Pérez-Plasencia, C. Vitamin D as an Epigenetic Regulator: A Hypothetical Mechanism for Cancer Prevention via Inhibition of Oncogenic lncRNA HOTAIR. Int. J. Mol. Sci. 2025, 26, 7997. https://doi.org/10.3390/ijms26167997
Trujano-Camacho S, Pulido-Capiz Á, García-González V, López-Urrutia E, Pérez-Plasencia C. Vitamin D as an Epigenetic Regulator: A Hypothetical Mechanism for Cancer Prevention via Inhibition of Oncogenic lncRNA HOTAIR. International Journal of Molecular Sciences. 2025; 26(16):7997. https://doi.org/10.3390/ijms26167997
Chicago/Turabian StyleTrujano-Camacho, Samuel, Ángel Pulido-Capiz, Victor García-González, Eduardo López-Urrutia, and Carlos Pérez-Plasencia. 2025. "Vitamin D as an Epigenetic Regulator: A Hypothetical Mechanism for Cancer Prevention via Inhibition of Oncogenic lncRNA HOTAIR" International Journal of Molecular Sciences 26, no. 16: 7997. https://doi.org/10.3390/ijms26167997
APA StyleTrujano-Camacho, S., Pulido-Capiz, Á., García-González, V., López-Urrutia, E., & Pérez-Plasencia, C. (2025). Vitamin D as an Epigenetic Regulator: A Hypothetical Mechanism for Cancer Prevention via Inhibition of Oncogenic lncRNA HOTAIR. International Journal of Molecular Sciences, 26(16), 7997. https://doi.org/10.3390/ijms26167997