Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus: A Systematic Review of the Literature
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Literature Search and Selection of Articles
2.4. Data Extraction
2.5. Risk of Bias Assessment Across Studies
2.6. Synthesis of Results
3. Results
3.1. Study Characteristics
3.2. Folic Acid Supplementation and GDM
4. Discussion
4.1. Folic Acid and Potential Biological Mechanisms for GDM
4.2. Methodological Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FA | Folic acid |
GDM | Gestational diabetes mellitus |
B12 | Vitamin B12 |
UMFA | Unmetabolized folic acid |
DHFR | Dihydrofolate reductase |
THF | Tetrahydrofolate |
MTHFR | Methylenetetrahydrofolate reductase |
MTR | Methionine synthase |
MTRR | Methionine synthase reductase |
SAM | S-adenosylmethionine |
SAH | S-adenosylhomocysteine |
Hcy | Homocysteine |
CBS | Cystathionine β-synthase |
CSE | Cystathionine γ-lyase |
MAT | Methionine adenosyltransferase |
MT | Methyltransferase |
TYMS | Thymidylate synthase |
NADPH | Nicotinamide adenine dinucleotide phosphate |
OGTT | Oral glucose tolerance test |
aOR | Adjusted odds ratio |
ARR | Adjusted risk ratio |
OR | Odds ratio |
CI | Confidence interval |
BMI | Body mass index |
NOS | Newcastle–Ottawa Scale |
ROR | Relative odds ratio |
PBG | Plasma blood glucose |
MV | Multivitamin |
wk. | Week |
D | Day |
5-methyl-THF | 5-methyltetrahydrofolate |
IR | Insulin receptor |
C-Hcy | Cysteine-homocysteinylation |
ROS | Reactive oxygen species |
T2DM | Type 2 diabetes mellitus |
SNP | Single nucleotide polymorphism |
References
- Sweeting, A.; Hannah, W.; Backman, H.; Catalano, P.; Feghali, M.; Herman, W.H.; Hivert, M.F.; Immanuel, J.; Meek, C.; Oppermann, M.L.; et al. Epidemiology and Management of Gestational Diabetes. Lancet 2024, 404, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Powe, C.E.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef]
- Spradley, F.T. Metabolic Abnormalities and Obesity’s Impact on the Risk for Developing Preeclampsia Spradley FT. Metabolic Abnormalities and Obesity’s Impact on the Risk for Devel-Oping Preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, 5–12. [Google Scholar] [CrossRef]
- You, H.; Hu, J.; Liu, Y.; Luo, B.; Lei, A. Risk of Type 2 Diabetes Mellitus after Gestational Diabetes Mellitus: A Systematic Review & Meta-Analysis. Indian J. Med. Res. 2021, 154, 62–77. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015, 66, 14–20. [Google Scholar] [CrossRef]
- Desoye, G.; Nolan, C.J. The Fetal Glucose Steal: An Underappreciated Phenomenon in Diabetic Pregnancy. Diabetologia 2016, 59, 1089–1094. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Sun, Y.; Du, Y.; Santillan, M.K.; Santillan, D.A.; Snetselaar, L.G.; Bao, W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus with Congenital Anomalies of the Newborn. Diabetes Care 2020, 43, 2983–2990. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, D. Maternal Diabetes Mellitus and Risk of Neonatal Respiratory Distress Syndrome: A Meta-Analysis. Acta Diabetol. 2019, 56, 729–740. [Google Scholar] [CrossRef]
- Mistry, S.K.; Gupta, R.D.; Alam, S.; Kaur, K.; Shamim, A.A.; Puthussery, S. Gestational Diabetes Mellitus (GDM) and Adverse Pregnancy Outcome in South Asia: A Systematic Review. Endocrinol. Diabetes Metab. 2021, 4, e00285. [Google Scholar] [CrossRef]
- Song, Q.; Wang, L.; Liu, H.; Liang, Z.; Chen, Y.; Sun, D.; Li, W.; Leng, J.; Yang, X.; Cardoso, M.A.; et al. Maternal GDM Status, Genetically Determined Blood Glucose, and Offspring Obesity Risk: An Observational Study. Obesity 2020, 29, 204. [Google Scholar] [CrossRef]
- Ramakrishnan, U.; Grant, F.; Goldenberg, T.; Zongrone, A.; Martorell, R. Effect of Women’s Nutrition before and during Early Pregnancy on Maternal and Infant Outcomes: A Systematic Review. Paediatr. Perinat. Epidemiol. 2012, 26, 285–301. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and Safety of Periconceptional Oral Folate Supplementation for Preventing Birth Defects. Cochrane Database Syst. Rev. 2015, 2015, CD007950. [Google Scholar] [CrossRef]
- Balogun, O.O.; da Silva Lopes, K.; Ota, E.; Takemoto, Y.; Rumbold, A.; Takegata, M.; Mori, R. Vitamin Supplementation for Preventing Miscarriage. Cochrane Database Syst. Rev. 2016, 2016, CD004073. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.T.; Stover, P.J. Chapter 1 Folate-Mediated One-Carbon Metabolism. Vitam. Horm. 2008, 79, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Liu, S.; Zhong, Z.; Guo, Y.; Xia, T.; Chen, Y.; Ding, L. The Influence of Maternal Folate Status on Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2766. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Han, X.; Zhou, W.; Long, W.; Wang, H.; Yu, B.; Zhang, B. Association of Folate and Vitamin B12 Imbalance with Adverse Pregnancy Outcomes among 11,549 Pregnant Women: An Observational Cohort Study. Front. Nutr. 2022, 9, 947118. [Google Scholar] [CrossRef]
- Saravanan, P.; Sukumar, N.; Adaikalakoteswari, A.; Goljan, I.; Venkataraman, H.; Gopinath, A.; Bagias, C.; Yajnik, C.S.; Stallard, N.; Ghebremichael-Weldeselassie, Y.; et al. Association of Maternal Vitamin B12 and Folate Levels in Early Pregnancy with Gestational Diabetes: A Prospective UK Cohort Study (PRiDE Study). Diabetologia 2021, 64, 2170–2182. [Google Scholar] [CrossRef]
- Pazzagli, L.; Chacon, S.S.; Karampelias, C.; Cohen, J.M.; Broms, G.; Kieler, H.; Odsbu, I.; Selmer, R.; Andersson, O.; Cesta, C.E. Association between Folic Acid Use during Pregnancy and Gestational Diabetes Mellitus: Two Population-Based Nordic Cohort Studies. PLoS ONE 2022, 17, e0272046. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, R.; Corsi, D.J.; White, R.R.; Smith, G.; Rodger, M.; Retnakaran, R.; Walker, M.; Wen, S.W. Folic Acid Supplementation in Early Pregnancy, Homocysteine Concentration, and Risk of Gestational Diabetes Mellitus. J. Obstet. Gynaecol. Can. 2022, 44, 196–199. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z.; Zhang, J. Association between Maternal Folate Status and Gestational Diabetes Mellitus. Food Sci. Nutr. 2021, 9, 2042–2052. [Google Scholar] [CrossRef]
- Lionaki, E.; Ploumi, C.; Tavernarakis, N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022, 11, 214. [Google Scholar] [CrossRef]
- Yang, H.; Qin, D.; Xu, S.; He, C.; Sun, J.; Hua, J.; Peng, S. Folic Acid Promotes Proliferation and Differentiation of Porcine Pancreatic Stem Cells into Insulin-Secreting Cells through Canonical Wnt and ERK Signaling Pathway. J. Steroid Biochem. Mol. Biol. 2021, 205, 105772. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.M.; Arthurs, A.L.; Smith, M.D.; Roberts, C.T.; Jankovic-Karasoulos, T. High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022, 14, 3930. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Zhu, B.; Ge, X.; Huang, K.; Mao, L.; Yan, S.; Xu, Y.; Huang, S.; Hao, J.; Zhu, P.; Niu, Y.; et al. Folic Acid Supplement Intake in Early Pregnancy Increases Risk of Gestational Diabetes Mellitus: Evidence from a Prospective Cohort Study. Diabetes Care 2016, 39, e36–e37. [Google Scholar] [CrossRef]
- Lai, J.S.; Pang, W.W.; Cai, S.; Lee, Y.S.; Chan, J.K.Y.; Shek, L.P.C.; Yap, F.K.P.; Tan, K.H.; Godfrey, K.M.; van Dam, R.M.; et al. High Folate and Low Vitamin B12 Status during Pregnancy Is Associated with Gestational Diabetes Mellitus. Clin. Nutr. 2018, 37, 940–947. [Google Scholar] [CrossRef]
- Huang, L.; Yu, X.; Li, L.; Chen, Y.; Yang, Y.; Yang, Y.; Hu, Y.; Zhao, Y.; Tang, H.; Xu, D.; et al. Duration of Periconceptional Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus. Asia Pac. J. Clin. Nutr. 2019, 28, 321–329. [Google Scholar] [CrossRef]
- Cheng, G.; Sha, T.; Gao, X.; He, Q.; Wu, X.; Tian, Q.; Yang, F.; Tang, C.; Wu, X.; Xie, Q.; et al. The Associations between the Duration of Folic Acid Supplementation, Gestational Diabetes Mellitus, and Adverse Birth Outcomes Based on a Birth Cohort. Int. J. Environ. Res. Public Health 2019, 16, 4511. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Huang, L.; Zhong, C.; Chen, R.; Zhou, X.; Chen, X.; Li, X.; Cui, W.; Xiong, T.; et al. High-Dose Folic Acid Supplement Use from Prepregnancy through Midpregnancy Is Associated with Increased Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2019, 42, E113–E115. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Y.; Li, Y.; Zhou, W.; Zhou, N.; Yang, H.; Chen, Q.; Li, Y.; Huang, Q.; Chen, Z. Association of Folic Acid Supplementation in Early Pregnancy with Risk of Gestational Diabetes Mellitus: A Longitudinal Study. Nutrients 2022, 14, 4061. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Du, Z.; Shen, Q.; Jiang, L.; Sui, L.; Zhang, N.; Wang, H.; Li, G. Joint Effect of Maternal Pre-Pregnancy Body Mass Index and Folic Acid Supplements on Gestational Diabetes Mellitus Risk: A Prospective Cohort Study. BMC Pregnancy Childbirth 2023, 23, 202. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, Y.; Zhang, P.; Chen, T.; Yan, X.; Li, L.; Shao, L.; Song, Z.; Han, W.; Wang, J.; et al. Gestational Diabetes Mellitus Is Associated with Distinct Folate-Related Metabolites in Early and Mid-Pregnancy: A Prospective Cohort Study. Diabetes Metab. Res. Rev. 2024, 40, e3814. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, J.; Xu, M.; Xu, M.; Yang, Y.; Lu, W.; Yu, X.; Ma, J.; Pan, J. Individualized Supplementation of Folic Acid According to Polymorphisms of Methylenetetrahydrofolate Reductase (MTHFR), Methionine Synthase Reductase (MTRR) Reduced Pregnant Complications. Gynecol. Obstet. Investig. 2015, 79, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhou, Y.; Fu, Y.; Sun, W.; Chen, J.; Yu, N.; Zhao, M. Association of Folic Acid Supplementation, Dietary Folate Intake and Serum Folate Levels with Risk of Gestational Diabetes Mellitus: A Matched Case-Control Study. J. Nutr. Sci. Vitaminol. 2023, 69, 28–37. [Google Scholar] [CrossRef]
- Metzger, B.E. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- Wilson, R.D.; O’Connor, D.L. Guideline No. 427: Folic Acid and Multivitamin Supplementation for Prevention of Folic Acid–Sensitive Congenital Anomalies. J. Obstet. Gynaecol. Can. 2022, 44, 707–719.e1. [Google Scholar] [CrossRef]
- Xie, K.; Xu, P.; Fu, Z.; Gu, X.; Li, H.; Cui, X.; You, L.; Zhu, L.; Ji, C.; Guo, X. Association of Maternal Folate Status in the Second Trimester of Pregnancy with the Risk of Gestational Diabetes Mellitus. Food Sci. Nutr. 2019, 7, 3759–3765. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Meng, D.; Yang, L.; Meng, X.; Liu, F. Vitamin B12 and Folate Levels During Pregnancy and Risk of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 670289. [Google Scholar] [CrossRef]
- Selhub, J.; Morris, M.S.; Jacques, P.F. In Vitamin B12 Deficiency, Higher Serum Folate Is Associated with Increased Total Homocysteine and Methylmalonic Acid Concentrations. Proc. Natl. Acad. Sci. USA 2007, 104, 19995–20000. [Google Scholar] [CrossRef]
- Murphy, M.S.Q.; Muldoon, K.A.; Sheyholislami, H.; Behan, N.; Lamers, Y.; Rybak, N.; White, R.R.; Harvey, A.L.J.; Gaudet, L.M.; Smith, G.N.; et al. Impact of High-Dose Folic Acid Supplementation in Pregnancy on Biomarkers of Folate Status and 1-Carbon Metabolism: An Ancillary Study of the Folic Acid Clinical Trial (FACT). Am. J. Clin. Nutr. 2021, 113, 1361–1371. [Google Scholar] [CrossRef]
- Li, S.; Hou, Y.; Yan, X.; Wang, Y.; Shi, C.; Wu, X.; Liu, H.; Zhang, L.; Zhang, X.; Liu, J.; et al. Joint Effects of Folate and Vitamin B12 Imbalance with Maternal Characteristics on Gestational Diabetes Mellitus. J. Diabetes 2019, 11, 744–751. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Chen, H.; Jiang, Y.; Wang, Y.; Wang, D.; Li, M.; Dou, Y.; Sun, X.; Huang, G.; et al. Association of Maternal Folate and Vitamin B12 in Early Pregnancy with Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2021, 44, 217–223. [Google Scholar] [CrossRef]
- Jankovic-Karasoulos, T.; Furness, D.L.; Leemaqz, S.Y.; Dekker, G.A.; Grzeskowiak, L.E.; Grieger, J.A.; Andraweera, P.H.; McCullough, D.; McAninch, D.; McCowan, L.M.; et al. Maternal Folate, One-Carbon Metabolism and Pregnancy Outcomes. Matern. Child. Nutr. 2021, 17, e13064. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.; Halsey, J.; Sherliker, P.; Pan, H.; Chen, Z.; Bennett, D.A.; Clarke, R. Global Heterogeneity in Folic Acid Fortification Policies and Implications for Prevention of Neural Tube Defects and Stroke: A Systematic Review. EClinical Med. 2024, 67, 102366. [Google Scholar] [CrossRef] [PubMed]
- Plumptre, L.; Masih, S.P.; Ly, A.; Aufreiter, S.; Sohn, K.J.; Croxford, R.; Lausman, A.Y.; Berger, H.; O’Connor, D.L.; Kim, Y.I. High Concentrations of Folate and Unmetabolized Folic Acid in a Cohort of Pregnant Canadian Women and Umbilical Cord Blood. Am. J. Clin. Nutr. 2015, 102, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.; O’Connor, D.; Koren, G. Circulating Unmetabolized Folic Acid: Relationship to Folate Status and Effect of Supplementation. Obstet. Gynecol. Int. 2012, 2012, 485179. [Google Scholar] [CrossRef]
- Sulistyoningrum, D.C.; Sullivan, T.R.; Skubisz, M.; Palmer, D.J.; Wood, S.; Ueland, P.M.; McCann, A.; Makrides, M.; Green, T.J.; Best, K.P. Maternal Serum Unmetabolized Folic Acid Concentration Following Multivitamin and Mineral Supplementation with or without Folic Acid after 12 Weeks Gestation: A Randomized Controlled Trial. Matern. Child. Nutr. 2024, 20, e13668. [Google Scholar] [CrossRef]
- Bailey, S.W.; Ayling, J.E. The Extremely Slow and Variable Activity of Dihydrofolate Reductase in Human Liver and Its Implications for High Folic Acid Intake. Proc. Natl. Acad. Sci. USA 2009, 106, 15424–15429. [Google Scholar] [CrossRef]
- Kelly, P.; McPartlin, J.; Goggins, M.; Weir, D.G.; Scott, J.M. Unmetabolized Folic Acid in Serum: Acute Studies in Subjects Consuming Fortified Food and Supplements. Am. J. Clin. Nutr. 1997, 65, 1790–1795. [Google Scholar] [CrossRef]
- Petrova, B.; Maynard, A.G.; Wang, P.; Kanarek, N. Regulatory Mechanisms of One-Carbon Metabolism Enzymes. J. Biol. Chem. 2023, 299, 105457–105458. [Google Scholar] [CrossRef]
- Deng, M.; Zhou, J.; Tang, Z.; Xiang, J.; Yi, J.; Peng, Y.; Di, L.; Zhai, X.; Yang, M.; Du, Y. The Correlation between Plasma Total Homocysteine Level and Gestational Diabetes Mellitus in a Chinese Han Population. Sci. Rep. 2020, 10, 18679. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Wang, J.; Yang, M.; Shao, Y.; Liu, J.; Wu, Q.; Xu, Q.; Wang, H.; He, X.; Chen, Y.; et al. Serum Homocysteine Level and Gestational Diabetes Mellitus: A Meta-analysis. J. Diabetes Investig. 2016, 7, 622. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Lu, L.-P.; Yi, M.-H.; Shen, C.-Y.; Lu, G.-Q.; Jia, J.; Wu, H. Study on the Correlation between Homocysteine-Related Dietary Patterns and Gestational Diabetes Mellitus:A Reduced-Rank Regression Analysis Study. BMC Pregnancy Childbirth 2022, 22, 306. [Google Scholar] [CrossRef] [PubMed]
- Jankovic-Karasoulos, T.; Smith, M.D.; Leemaqz, S.; Mittinty, M.; Williamson, J.; McCullough, D.; Arthurs, A.L.; Dekker, G.A.; Roberts, C.T.; Affiliations, A.; et al. Folate Overload and the Placental Hormone Axis: A Hidden Risk for Gestational Diabetes Mellitus. medRxiv 2025. [Google Scholar] [CrossRef]
- Thakur, P.; Bhalerao, A.; Thakur, P.; Bhalerao, A. High Homocysteine Levels During Pregnancy and Its Association with Placenta-Mediated Complications: A Scoping Review. Cureus 2023, 15, e35244. [Google Scholar] [CrossRef]
- Patterson, S.; Flatt, P.R.; Brennan, L.; Newsholme, P.; McClenaghan, N.H. Detrimental Actions of Metabolic Syndrome Risk Factor, Homocysteine, on Pancreatic β-Cell Glucose Metabolism and Insulin Secretion. J. Endocrinol. 2006, 189, 301–310. [Google Scholar] [CrossRef]
- Patterson, S.; Scullion, S.M.J.; McCluskey, J.T.; Flatt, P.R.; McClenaghan, N.H. Prolonged Exposure to Homocysteine Results in Diminished but Reversible Pancreatic β-Cell Responsiveness to Insulinotropic Agents. Diabetes Metab. Res. Rev. 2007, 23, 324–334. [Google Scholar] [CrossRef]
- Patterson, S.; Flatt, P.R.; McClenaghan, N.H. Homocysteine and Other Structurally-Diverse Amino Thiols Can Alter Pancreatic Beta Cell Function without Evoking Cellular Damage. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1109–1114. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, Y.Y.; Liu, L.; Qiao, Y.N.; Geng, H.R.; Lin, Y.; Xu, W.; Cao, J.; Zhao, J.Y. Homocysteine Inhibits Pro-Insulin Receptor Cleavage and Causes Insulin Resistance via Protein Cysteine-Homocysteinylation. Cell Rep. 2021, 37, 109821. [Google Scholar] [CrossRef]
- Pessler, D.; Rudich, A.; Bashan, N. Oxidative Stress Impairs Nuclear Proteins Binding to the Insulin Responsive Element in the GLUT4 Promoter. Diabetologia 2001, 44, 2156–2164. [Google Scholar] [CrossRef]
- Yuan, D.; Chu, J.; Lin, H.; Zhu, G.; Qian, J.; Yu, Y.; Yao, T.; Ping, F.; Chen, F.; Liu, X. Mechanism of Homocysteine-Mediated Endothelial Injury and Its Consequences for Atherosclerosis. Front. Cardiovasc. Med. 2023, 9, 1109445. [Google Scholar] [CrossRef]
- Linares-Pineda, T.; Peña-Montero, N.; Fragoso-Bargas, N.; Gutiérrez-Repiso, C.; Lima-Rubio, F.; Suarez-Arana, M.; Sánchez-Pozo, A.; Tinahones, F.J.; Molina-Vega, M.; Picón-César, M.J.; et al. Epigenetic Marks Associated with Gestational Diabetes Mellitus across Two Time Points during Pregnancy. Clin. Epigenetics 2023, 15, 110. [Google Scholar] [CrossRef]
- Kong, D.; Kowalik, O.; Garratt, E.; Godfrey, K.M.; Chan, S.Y.; Teo, A.K.K. Genetics and Epigenetics in Gestational Diabetes Contributing to Type 2 Diabetes. Trends Endocrinol. Metabol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Jeha, G.M.; Pham, A.D.; Fuller, M.C.; Lerner, Z.I.; Sibley, G.T.; Cornett, E.M.; Urits, I.; Viswanath, O.; Kevil, C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020, 37, 4149. [Google Scholar] [CrossRef] [PubMed]
- Almassinokiani, F.; Kashanian, M.; Akbari, P.; Mossayebi, E.; Sadeghian, E. Folic Acid Supplementation Reduces Plasma Homocysteine in Postmenopausal Women. J. Obstet. Gynaecol. 2016, 36, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Palmer, A.M.; Kamynina, E.; Field, M.S.; Stover, P.J. Folate Rescues Vitamin B12 Depletion-Induced Inhibition of Nuclear Thymidylate Biosynthesis and Genome Instability. Proc. Natl. Acad. Sci. USA 2017, 114, E4095–E4102. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, B.; Zhang, Y.; Zhou, Y. MTHFR Gene Polymorphisms in Diabetes Mellitus. Clin. Chim. Acta 2024, 561, 119825. [Google Scholar] [CrossRef]
Study (Year) | Design/GDM Diagnosis | Population/ Ethnicity | Folic Acid Exposure | GDM Outcome | Risk of Bias (NOS) |
---|---|---|---|---|---|
Li et al. (2015) [35] | Case-control with non-randomized controlled trial Not specified | 2928 individualized c FA supp. 4884 controls no FA intervention. Chinese | Case: FA dosed 0.4–0.8 mg in different pregnancy periods according to MTHFR/MTRR risk level Control: No FA supplementation | GDM incidence was reduced in FA-supplemented group (0.27%) vs. control (3.24%, p < 0.05). | Low |
Zhu et al. (2016) [27] | Prospective Cohort 75-g OGTT at 28 weeks | 249 GDM cases 1689 normal pregnancies Chinese | Early pregnancy FA supplement use vs. none (timing not fully detailed) | GDM incidence: 12. 85% GDM risk: Increased with FA use in early pregnancy (first trimester, OR 2.25, 95% CI: 1.35–3.76) | Moderate |
Lai et al. (2018) [28] | Prospective multi-ethnic cohort (GUSTO) 75-g OGTT at 26 weeks | 913 pregnant women Chinese, Malay, Indian | Folate and B12 levels at 26 weeks used as proxy for high folate; supplementation nearly universal at standard dose. | GDM incidence: 18% GDM risk: Increased with high folate + low B12 status. OR 1.97 (95% CI 1.05–3.68). | Low |
Huang et al. (2019) [29] | Prospective cohort study 75-g OGTT at 28 weeks | 326 pregnant Chinese | FA supplementation ranged from 400 to 1200 μg/dose: 93.5% took 400 μg/d; 85% used FA alone, 15% used multivitamins. Duration: 7.7% for 6 mo, 2.1% >6 mo, 9.8% none. | GDM incidence: 10.1%. GDM risk: U-shaped association with FA duration. No FA or >90 d linked to higher GDM risk (OR = 3.45, 95% CI: 1.01–11.8); 1–60 d around conception had lowest risk. | Low |
Cheng et al. (2019) [30] | Prospective cohort study 75-g OGTT at 24–28 weeks | 950 mother- offspring pairs. Chinese | FA supp. 98.6%; pre-pregancy. 65.3% (≥3 mo: 30.8%), during pregnancy. 97.9% (≥3 mo: 73.9%) | GDM incidence: 10.2% GDM risk: increased with FA supp. ≥3 mo before pregnancy assoc. ARR 1.72 (95% CI: 1.17–2.53); ≥3 mo. supp. During pregnancy not assoc. after adj.: ARR 0.92 (95% CI: 0.52–1.65). | Low |
Study (year) | Design/GDM diagnosis | Population/ ethnicity | Folic acid exposure | GDM outcome | Risk of Bias |
Li et al. (2019) [31] | Prospective cohort study 75-g OGTT at 24–28 weeks | 4353 pregnant women Chinese | Nonusers: no FA or <400 µg/d or <4 wk. FA400-S: 400–800 µg/d, <4 wk. preconceptionally and/or <16 wk. pregnancy. FA400-L: 400–800 µg/d, ≥4 wk. preconceptionally + ≥16 wk. during pregnancy. FA800-S: 800 µg/d, <4 wk. preconceptionally and/or <16 wk. pregnancy. FA800-L: 800 µg/d, ≥4 wk. preconceptionally+ ≥16 wk. pregnancy | GDM Incidence: 8.6% GDM risk: increased with High-dose FA (≥800 µg/d, ≥3 mo) assoc. (adj. OR =1.7, 95% CI: 1.30–3.36) vs. ≤400 µg/d or shorter use. | Moderate |
Guo et al. (2022) [20] | Prospective cohort study Patient medical records | 7552 pregnant women Chinese | MV+FA (mean dose 1.17 mg/d) FA alone (mean dose 1.10 mg/d) vs. no FA. | GDM incidence: 1.11% GDM risk: No significant association found. Not in early FA supp. nor elevated homocysteine had a significant link with GDM MTHFR 677 TT genotype did not influence GDM risk | Moderate |
Chen et al. (2022) [32] | Prospective cohort study 75-g OGTT at 24–28 weeks | 24,429 enrolled (2018–2021); only 1305 completed FA intake data and met inclusion criteria. Chinese | 1305 women classified by FA dose (<400, 400–800, >800 µg/d) and duration (<3, >3 mo). | GMD incidence: 26.18% GDM risk: FA supp. linked to decreased risk: total OR 0.82 (95% CI: 0.70–0.95); 1-h PBG OR 0.80 (CI: 0.67–0.95); 2-h PBG OR 0.71 (CI: 0.60–0.85). | Moderate |
Pazzagli et al. (2022) [19] | Retrospective cohort study Patient medical records | Two cohorts: Norway (2005–2018, n = 791,709) and Sweden (2006–2016, n = 1,112,817). Nordic cohorts | Self-reported FA: 68.0% (Norway), 22.9% (Sweden); prescribed FA (1–5 mg): 1.0% (Norway), 1.8% (Sweden); assumed self-reported FA ≈ 0.4 mg/d. | GDM incidence: NOR 3.2%. SWE 1.2% GMD risk: mixed. Self-reported FA: minimal effect (NOR OR 1.10, 95% CI: 1.06–1.14. SWE OR 0.89, 95% CI: 0.85–0.93); prescribed high-dose FA (5 mg) Increased GDM risk (NOR OR 1.33, 95% CI: 1.15–1.53. SWE OR 1.56, 95% CI: 1.41–1.74). | Low |
Zhu et al. (2023) [36] | Matched case control 75-g OGTT at 24–28 weeks | Case–control (n = 162): 81 GDM vs. 81 non-GDM, age-matched (≤3 yr), parity-matched; serum folate measured at 24–28 gw. Chinese | FA intake (self-reported, n = 151): <400 µg (n = 96), 400–800 µg (n = 42), >800 µg (n = 13); duration: <24 wk (n = 112), >24 wk (n = 39); non-users (n = 11). | GDM risk increased in no FA users (aOR 7.25, 95% CI: 1.34–39.36) and those who used > 800 μg/day (aOR 4.20, 95% CI: 1.03–17.22) vs. <400 µg/d; 400–800 µg/d not assoc. (aOR =1.26, 95% CI: 0.56–2.84); only no FA increased risk vs. ≤24 wk (aOR 6.70, 95% CI: 1.22–36.77); no assoc. for dietary or serum folate. | Low |
Li et al. (2023) [33] | Prospective cohort study 75-g OGTT at 24–28 weeks | Pregnant women at 4–14 weeks gestation (n = 2095); 372 with GDM, 1723 non GDM. Chinese | FA supplementation: <400 µg/d (GDM = 35, non-GDM = 186); ≥400 µg/d (GDM = 337, non-GDM = 1909). Pre-pregnancy BMI in FA-deficient supplements: <25 (n = 147), 25–<30 (n = 34), ≥30 (n = 5); in adequate FA-supplemented: <25 (n = 1573), 25–<30 (n = 279), ≥30 (n = 57). | GDM incidence: 17.76% GDM risk increased with BMI; highest in obese with FA < 400 µg/d (aOR 10.82, 95% CI: 1.69–69.45); FA ≥ 400 µg/d decreased risk but not BMI effect (aOR 3.57. 95% CI: 2.02–6.34); FA-deficient vs. FA-sufficient NS within BMI groups (ROR NS). | Moderate |
Zheng et al. (2024) [34] | Prospective cohort study 75-g OGTT at 24–28 weeks | 2032 pregnant women of whom 392 developed GDM. Chinese | FA intake pre-conception: <400 µg (n = 877), 400–799 µg (n = 671), ≥800 µg (n = 484); post-conception: <400 µg (n = 104), 400–799 µg (n = 1010), ≥800 µg (n = 918). | GDM incidence: 19.3% GDM risk: no association with FA intake or folate-related genotypes. Higher early pregnancy UMFA ≥P75 (aOR 1.36, 95% CI: 1.01–1.84) and ≥P90 (aOR 1.82, 95%, CI: 1.23–2.69), and homocysteine (Hcy) ≥P75 (aOR 1.40, 95% CI: 1.04–1.88) linked to GDM. | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cabrera, A.S.; González-Santiago, A.E.; Castañeda-Arellano, R.; Corona-Meraz, F.I.; Baptista-Rosas, R.C.; Sánchez-Parada, M.G. Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus: A Systematic Review of the Literature. Int. J. Mol. Sci. 2025, 26, 7977. https://doi.org/10.3390/ijms26167977
Gómez-Cabrera AS, González-Santiago AE, Castañeda-Arellano R, Corona-Meraz FI, Baptista-Rosas RC, Sánchez-Parada MG. Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus: A Systematic Review of the Literature. International Journal of Molecular Sciences. 2025; 26(16):7977. https://doi.org/10.3390/ijms26167977
Chicago/Turabian StyleGómez-Cabrera, Alejandro Salvador, Ana Elizabeth González-Santiago, Rolando Castañeda-Arellano, Fernanda Isadora Corona-Meraz, Raúl Cuauhtemoc Baptista-Rosas, and María Guadalupe Sánchez-Parada. 2025. "Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus: A Systematic Review of the Literature" International Journal of Molecular Sciences 26, no. 16: 7977. https://doi.org/10.3390/ijms26167977
APA StyleGómez-Cabrera, A. S., González-Santiago, A. E., Castañeda-Arellano, R., Corona-Meraz, F. I., Baptista-Rosas, R. C., & Sánchez-Parada, M. G. (2025). Folic Acid Supplementation and Risk of Gestational Diabetes Mellitus: A Systematic Review of the Literature. International Journal of Molecular Sciences, 26(16), 7977. https://doi.org/10.3390/ijms26167977