Reproductive Risk Assessment of Bisphenol A and Its Substitutes on Estrogen Receptors (ERs) in Bivalves
Abstract
1. Introduction
2. Results
2.1. Bioinformatics Analysis of CfER
2.1.1. Sequence Analysis of CfER
2.1.2. Homology Analysis of CfER
2.1.3. Secondary Structure Prediction of CfER
2.1.4. The Situation of Tissue-Specific Expression of CfER
2.2. Computer Homology Modeling of ERs with BPA and Its Substitutes
2.2.1. Preparation of Small Molecular Ligands
2.2.2. Homologous Modeling of ERs from D. rerio and the Three Bivalves
2.2.3. Evaluation and Analysis of ERs Model from D. rerio and the Three Bivalves
2.3. Protein–Ligand Docking Analysis
2.3.1. Docking Conformation Analysis of ERs and E2
2.3.2. Docking Conformation Analysis of ERs and BPA
2.3.3. Docking Conformation Analysis of ERs and BPS
2.3.4. Docking Conformation Analysis of ERs and BPF
2.3.5. Docking Conformation Analysis of ERs and BPAF
2.4. RT-qPCR Analysis of ERs Expression Under Exposure of E2 and Selected Typical Bisphenol EDCs
3. Discussion
3.1. The Evolutionary Analysis of ERs in Mollusks
3.2. The Application of Homologous Modeling and Molecular Docking in Toxicology
3.3. Effects of BPA and Its Substitutes on ER Expression in Mollusks
4. Materials and Methods
4.1. Pollutant Preparation
4.2. Laboratory Animal Culture
4.3. RACE Cloning and Tissue-Specific Expression of CfER Gene
4.3.1. RNA Extraction and First-Strand Synthesis of cDNA
4.3.2. 5′ RACE Experiment and 3′ RACE Experiment
4.3.3. CfER Sequence Splicing and ORF Prediction
4.3.4. Tissue-Specific Expression of CfER
4.4. Sequence Structure and Phylogenetic Analyses of CfER
4.5. Homology Modeling and Molecular Docking of D. rerio and the Three Bivalves
4.5.1. Ligand Preparation and Homology Modeling
4.5.2. Model Evaluation
4.5.3. Molecular Docking
4.6. The ERs Gene Expression Under Long-Term Exposure to BPA and Its Substitutes
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Chemicals | Molecular Formula | CAS Number | Purity | Chemical Structures |
---|---|---|---|---|
β-Estradiol | C18H24O2 | 50-28-2 | ≥97.0% | |
Bisphenol A | (CH3)2C(C6H4OH)2 | 80-05-7 | ≥99.0% | |
Bisphenol S | O2S(C6H4OH)2 | 80-09-1 | ≥98.0% | |
Bisphenol F | CH2(C6H4OH)2 | 620-92-8 | ≥98.0% | |
Bisphenol AF | (CF3)2C(C6H4OH)2 | 1478-61-1 | ≥99.0% | |
DMSO | (CH3)2SO | 67–68-5 | ≥99.7% |
Water Quality Parameter | D. rerio | C. fluminea | A. farreri | R. philippinarum |
---|---|---|---|---|
Temperature (°C) | 28 ± 1 | 20 ± 2 | 18 ± 1 | 18 ± 1 |
Salinity (%) | 1 | 1.0 | 32.0 | 32.0 |
pH | 7.0 | 7.0 | 8.2 | 8.2 |
Aquaculture water body (cm3) | 22 × 16 × 17 | 22 × 16 × 17 | 50 × 40 × 30 | 50 × 40 × 30 |
Genes and Primers Orientation | Primer Name | Sequences (5′-3′) |
---|---|---|
C. fluminea ER | B946-1 (GSP1) | TGCTATCTGCTCCATT |
B946-2 (GSP2) | CCCTGACTCGGATGATCT | |
B946-3 (GSP3) | TGTGAAGATGCACCTGATGA | |
C. fluminea ER | C580-1 (GSP1) | GCTATCATAATCATACGCTGCCTC |
C580-2 (GSP2) | TCCAACACGCACACATCTTCTCAC |
Genes and Primers Orientation | Sequences (5′-3′) | NCBI Login Number |
---|---|---|
DrER-F | ATGTACCCTAAGGAGGAGCA | NP_694491.1 |
DrER-R | TCAGGGGTCAGGGCTATG | |
CfER-F | GCCTCCAACACGCACAC | OR365079(unpublished) |
CfER-R | CCATCCAGCAGCACTCA | |
AfER-F | ATGTTGATGGGGTGTTTTCAAGTGG | ACM16808.1 |
AfER-R | TCAATCTCCTTCACTTCCTGTCCG | |
RpER-F | ATGCCTCCACCTAAGAAGCC | QFP12939.1 |
RpER-R | CATTAAGACCTGCGCGGTTG | |
Dr-β-actin-F | ACACCCCTGCCATGTATGTG | AF057040.1 |
Dr-β-actin-R | GGAAAGCTCTCCCCTGTTAGAC | |
Cf-β-actin-F | GGCTGTGCTTTCATTGT | EF446608.1 |
Cf-β-actin-R | TTTCTCTTTCGGCTGTT | |
Af-β-actin-F | CGTGCTCGAGTAGTTGGTGG | KJ081194.1 |
Af-β-actin-R | GTTCTCGAAGTCGAGGGCAA | |
Rp-β-actin-F | CCAGGCTGTCCTGTCACTTT | EF520696.1 |
Rp-β-actin-R | ACAGTGTGCGATACTCCGTC |
References
- Liu, B.; Yan, Y.; Xie, J.; Sun, J.; Lehmler, H.-J.; Trasande, L.; Wallace, R.B.; Bao, W. Bisphenol S, bisphenol F, bisphenol a exposure and body composition in US adults. Chemosphere 2024, 346, 140537. [Google Scholar] [CrossRef]
- Pang, Q.; Li, Y.; Meng, L.; Li, G.; Luo, Z.; Fan, R. Neurotoxicity of BPA, BPS, and BPB for the hippocampal cell line (HT-22): An implication for the replacement of BPA in plastics. Chemosphere 2019, 226, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Cano-Nicolau, J.; Vaillant, C.; Pellegrini, E.; Charlier, T.D.; Kah, O.; Coumailleau, P. Estrogenic effects of several BPA analogs in the developing zebrafish brain. Front. Neurosci. 2016, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, J.-L.; Yang, Y.-Y.; Jia, Y.-W.; Zhang, Q.-Q.; Chen, C.-E.; Liu, Y.-S.; Yang, B.; Xie, L.; Ying, G.-G. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. Environ. Pollut. 2020, 263, 114361. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, W.; Zheng, Y.; Xiong, J.; Gao, C.; Hu, S. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicol. Environ. Saf. 2019, 180, 43–52. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-H.; Zhang, X.-M.; Wang, F.; Gao, C.-J.; Chen, D.; Palumbo, J.R.; Guo, Y.; Zeng, E.Y. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Sci. Total Environ. 2018, 615, 87–98. [Google Scholar] [CrossRef]
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.; Moon, H.-B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [Google Scholar] [CrossRef]
- Wan, Y.; Xia, W.; Yang, S.; Pan, X.; He, Z.; Kannan, K. Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China: Implications for exposure through drinking water. Chemosphere 2018, 199, 565–602. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.-B.; Nakata, H.; Kannan, K. Bisphenol S in Urine from the United States and Seven Asian Countries: Occurrence and Human Exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef] [PubMed]
- Herrero, Ó.; Aquilino, M.; Sánchez-Argüello, P.; Planelló, R. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS ONE 2018, 13, e0193387. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, Z.; Zhu, L.; Huang, F.; Ye, A.; Hou, C. A preliminary study on the relationship between environmental endocrine disruptors and precocious puberty in girls. J. Pediatr. Endocrinol. Metab. 2022, 35, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-K.; Zhou, Z.; Miao, M.; He, Y.; Wang, J.; Ferber, J.; Herrinton, L.J.; Gao, E.; Yuan, W. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 2011, 95, 625–630.e4. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Ren, X.-M.; Li, Y.-Y.; Yao, X.-F.; Li, C.-H.; Qin, Z.-F.; Guo, L.-H. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environ. Pollut. 2018, 237, 1072–1079. [Google Scholar] [CrossRef]
- Héliès-Toussaint, C.; Peyre, L.; Costanzo, C.; Chagnon, M.-C.; Rahmani, R. Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study. Toxicol. Appl. Pharmacol. 2014, 280, 224–235. [Google Scholar] [CrossRef]
- Lam, S.H.; Hlaing, M.M.; Zhang, X.; Yan, C.; Duan, Z.; Zhu, L.; Ung, C.Y.; Mathavan, S.; Ong, C.N.; Gong, Z.; et al. Toxicogenomic and phenotypic analyses of bisphenol-A early-life exposure toxicity in zebrafish. PLoS ONE 2011, 6, e28273. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, C.; Chen, S.; Zheng, Y.; Zhang, Y.; Gao, J.; Wang, Z. Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure. Aquat. Toxicol. 2014, 156, 10–16. [Google Scholar] [CrossRef]
- Akram, R.; Iqbal, R.; Hussain, R.; Jabeen, F.; Ali, M. Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. Environ. Pollut. 2021, 268, 115896. [Google Scholar] [CrossRef]
- Coumailleau, P.; Pellegrini, E.; Adrio, F.; Diotel, N.; Cano-Nicolau, J.; Nasri, A.; Vaillant, C.; Kah, O. Aromatase, estrogen receptors and brain development in fish and amphibians. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2015, 1849, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Wetherill, Y.B.; Petre, C.E.; Monk, K.R.; Puga, A.; Knudsen, K.E. The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther. 2002, 1, 515–524. [Google Scholar]
- Fahrenkopf, A.; Wagner, C.K. Bisphenol A (BPA) induces progesterone receptor expression in an estrogen receptor α-dependent manner in perinatal brain. Neurotoxicology Teratol. 2020, 78, 106864. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Hao, R.; Grimaldi, M.; Thrikawala, S.; Boulahtouf, A.; Aït-Aïssa, S.; Brion, F.; Gustafsson, J.; Balaguer, P.; Bondesson, M. Differential activity of BPA, BPAF and BPC on zebrafish estrogen receptors in vitro and in vivo. Toxicol. Appl. Pharmacol. 2019, 380, 114709. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Zeng, Z.; Ke, C. Sex steroid levels and expression patterns of estrogen receptor gene in the oyster Crassostrea angulata during reproductive cycle. Aquaculture 2013, 376–379, 105–116. [Google Scholar] [CrossRef]
- Nagasawa, K.; Treen, N.; Kondo, R.; Otoki, Y.; Itoh, N.; Rotchell, J.M.; Osada, M. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 2015, 564, 153–159. [Google Scholar] [CrossRef]
- Tran, T.K.A.; MacFarlane, G.R.; Kong, R.Y.C.; Connor, W.A.O.; Yu, R.M.K. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. Aquat. Toxicol. 2016, 179, 82–94. [Google Scholar] [CrossRef]
- Delfosse, V.; Grimaldi, M.; Pons, J.-L.; Boulahtouf, A.; le Maire, A.; Cavailles, V.; Labesse, G.; Bourguet, W.; Balaguer, P. Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc. Natl. Acad. Sci. USA 2012, 109, 14930–14935. [Google Scholar] [CrossRef]
- Dong, Z.; Guo, H.; Sun, J.; Li, H.; Yang, X.; Xie, W. Identification of novel paralytic shellfish toxin binding protein via homology modeling and molecular docking. Toxicon 2022, 211, 61–69. [Google Scholar] [CrossRef]
- Fodor, I.; Urbán, P.; Scott, A.P.; Pirger, Z. A critical evaluation of some of the recent so-called “evidence” for the involvement of vertebrate-type sex steroids in the reproduction of mollusks. Mol. Cell. Endocrinol. 2020, 516, 110949. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, S.; Miao, J. Effects of BαP and TBBPA on multixenobiotic resistance (MXR) related efflux transporter activity and gene expressions in gill cells of scallop Chlamys farreri. Environ. Sci. Pollut. Res. 2021, 28, 21110–21118. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Wang, Y.; Su, J.; Liu, Y.; Yang, J.; Zhou, Y.; Sun, L. Based on molecular docking and real-time PCR technology, the two-component system Bae SR was investigated on the mechanism of drug resistance in CRAB. BMC Microbiol. 2024, 24, 126. [Google Scholar] [CrossRef]
- Robledo, D.A.R.; Kumagawa, T.; Ochiai, M.; Iwata, H. New Approach Methodologies (NAMs) to assess killer whale (Orcinus orca) estrogen receptor alpha (ERα) transactivation potencies by DDTs and their risks. Ecotoxicol. Environ. Saf. 2025, 291, 117761. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Zhang, N.; Miao, J.; Tong, R.; Li, Y.; Pan, L. Potential pathway and mechanisms underlining the immunotoxicity of benzo[a]pyrene to Chlamys farreri. Environ. Sci. Pollut. Res. 2023, 30, 97128–97146. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, T.; Pan, L.; Hu, F.; Jin, Q. Bioaccumulation and oxidative damage of polycyclic aromatic hydrocarbon mixtures in Manila clam Ruditapes philippinarum. Ecotoxicol. Environ. Saf. 2020, 197, 110558. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Liu, L.; Miao, J.; Zhao, A.; Pan, L. Understanding homology modeling and molecular docking of bivalve estrogen receptor. Period. Ocean Univ. China 2021, 51, 17–25. [Google Scholar] [CrossRef]
- Matsumoto, T.; Nakamura, A.M.; Mori, K.; Akiyama, I.; Hirose, H.; Takahashi, Y. Oyster estrogen receptor: cDNA cloning and immunolocalization. Gen. Comp. Endocrinol. 2007, 151, 195–201. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, L.; Zhang, L. Molecular cloning and characterization of estrogen receptor gene in the Scallop Chlamys farreri: Expression profiles in response to endocrine disrupting chemicals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 156, 51–57. [Google Scholar] [CrossRef]
- Eick, G.N.; Thornton, J.W. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol. Cell. Endocrinol. 2011, 334, 31–38. [Google Scholar] [CrossRef]
- Robinson-Rechavi, M.; Garcia, H.E.; Laudet, V. The nuclear receptor superfamily. J. Cell Sci. 2003, 116, 585–586. [Google Scholar] [CrossRef]
- Thornton, J.W.; Need, E.; Crews, D. Resurrecting the ancestral steroid receptor: Ancient origin of estrogen signaling. Science 2003, 301, 1714–1717. [Google Scholar] [CrossRef]
- Keay, J.; Thornton, J.W. Hormone-activated estrogen receptors in annelid invertebrates: Implications for evolution and endocrine disruption. Endocrinology 2009, 150, 1731–1738. [Google Scholar] [CrossRef]
- Liu, P.; Miao, J.; Liu, L.; Yao, L.; Pan, L. Cloning of estrogen-related receptor genes and screening of interacting proteins in Ruditapes philippinarum. Period. Ocean. Univ. China 2024, 13, 1–9. [Google Scholar] [CrossRef]
- Woods, M.; Kumar, A.; Barton, M. Nucleotide sequence, tissue expression patterns and phylogenetic analysis of estrogen receptor one mRNA in the Murray rainbowfish (Melanotaenia fluviatilis) (Atheriniformes, Actinopterygii). Gen. Comp. Endocrinol. 2010, 166, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.; Wihlén, B.; Tujague, M.; Wan, J.; Ström, A.; Gustafsson, J.-Å. Estrogen receptor (ER) β modulates ERα-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol. Endocrinol. 2006, 20, 534–543. [Google Scholar] [CrossRef]
- Matthews, J.; Gustafsson, J.-Å. Estrogen signaling: A subtle balance between ERα and ERβ. Mol. Interv. 2003, 3, 281–292. [Google Scholar] [CrossRef]
- Sewell, F.; Alexander-White, C.; Brescia, S.; A Currie, R.; Roberts, R.; Roper, C.; Vickers, C.; Westmoreland, C.; Kimber, I. New approach methodologies (NAMs): Identifying and overcoming hurdles to accelerated adoption. Toxicol. Res. 2024, 13, tfae044. [Google Scholar] [CrossRef]
- Stucki, A.O.; Clippinger, A.J.; Henry, T.R.; Hirn, C.; Stedeford, T.J.; Terry, C. Editorial: Chemical testing using new approach methodologies (NAMs). Front. Toxicol. 2022, 4, 1048900. [Google Scholar] [CrossRef]
- Hawkins, M.B.; Thornton, J.W.; Crews, D.; Skipper, J.K.; Dotte, A.; Thomas, P. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc. Natl. Acad. Sci. USA 2000, 97, 10751–10756. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ji, C.; Li, F.; Zhan, J.; Sun, T.; Tang, J.; Wu, H. Tetrabromobisphenol A induced reproductive endocrine-disrupting effects in mussel Mytilus galloprovincialis. J. Hazard. Mater. 2021, 416, 126228. [Google Scholar] [CrossRef] [PubMed]
- Rogan, W.J.; Chen, A. Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 2005, 366, 763–773. [Google Scholar] [CrossRef]
- Celik, L.; Lund, J.D.D.; Schiøtt, B. Exploring interactions of endocrine-disrupting compounds with different conformations of the human estrogen receptor α ligand binding domain: A molecular docking study. Chem. Res. Toxicol. 2008, 21, 2195–2206. [Google Scholar] [CrossRef]
- Tohyama, S.; Miyagawa, S.; Lange, A.; Ogino, Y.; Mizutani, T.; Tatarazako, N.; Katsu, Y.; Ihara, M.; Tanaka, H.; Ishibashi, H.; et al. Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens. Environ. Sci. Technol. 2015, 49, 7439–7447. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, Q.; Zhou, B.; Wang, F. In silico prediction of estrogen receptor subtype binding affinity and selectivity using 3D-QSAR and molecular docking. Med. Chem. Res. 2019, 28, 1974–1994. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. CP Bioinform. 2008, 24, 8–14. [Google Scholar] [CrossRef]
- Klein-Hitpass, L.; Tsai, S.Y.; Greene, G.L.; Clark, J.H.; Tsai, M.J.; O’Malley, B.W. Specific binding of estrogen receptor to the estrogen response element. Mol. Cell. Biol. 1989, 9, 43–49. [Google Scholar] [CrossRef]
- Song, X.; Wen, Y.; Wang, Y.; Adeel, M.; Yang, Y. Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches. Chemosphere 2018, 198, 546–555. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2019, 16, 45–57. [Google Scholar] [CrossRef]
- Tan, H.; Wang, X.; Hong, H.; Benfenati, E.; Giesy, J.P.; Gini, G.C.; Kusko, R.; Zhang, X.; Yu, H.; Shi, W. Structures of endocrine-disrupting chemicals determine binding to and activation of the estrogen receptor α and androgen receptor. Environ. Sci. Technol. 2020, 54, 11424–11433. [Google Scholar] [CrossRef] [PubMed]
- Gonkowski, S.; Tzatzarakis, M.; Vakonaki, E.; Meschini, E.; Rytel, L. Exposure assessment to bisphenol A (BPA) and its analogues bisphenol S (BPS) and bisphenol F (BPF) in wild boars by hair analysis. Sci. Total Environ. 2023, 905, 167076. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, S.; Chen, H.; Luo, S.; Xiong, Y.; Wang, X.; Xu, B.; Zheng, C.; Wang, K.-J. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. J. Hazard. Mater. 2021, 406, 124303. [Google Scholar] [CrossRef]
- Park, C.-B.; Kim, G.-E.; On, J.; Pyo, H.; Park, J.-W.; Cho, S.-H. Sex-specific effects of bisphenol S with tissue-specific responsiveness in adult zebrafish: The antiandrogenic and antiestrogenic effects. Ecotoxicol. Environ. Saf. 2022, 229, 113102. [Google Scholar] [CrossRef]
- Zhao, W.; Li, P.; Yang, B. New insight into the spatiotemporal distribution and ecological risk assessment of endocrine-disrupting chemicals in the Minjiang and Tuojiang rivers: Perspective of watershed landscape patterns. Environ. Sci. Process. Impacts 2024, 26, 1360–1372. [Google Scholar] [CrossRef]
- Calafat, A.M.; Koch, H.M.; Andra, S.; Antignac, J.; Castaño, A.; Choi, K.; Covaci, A.; Dekant, W.; Doerge; Frederiksen, H.; et al. BPA and risk assessment. Lancet Diabetes Endocrinol. 2020, 8, 269–270. [Google Scholar] [CrossRef] [PubMed]
- De Lisa, E.; Paolucci, M.; Di Cosmo, A. Conservative nature of Oestradiol Signalling pathways in the brain lobes of Octopus vulgaris involved in reproduction, learning and motor coordination. J. Neuroendocrinol. 2012, 24, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y.; Pan, L.; Xu, R.; Li, D. Benzo[a]pyrene exposure induced reproductive endocrine-disrupting effects via the steroidogenic pathway and estrogen signaling pathway in female scallop Chlamys farreri. Sci. Total Environ. 2020, 726, 138585. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Kinch, C.D.; Ibhazehiebo, K.; Jeong, J.-H.; Habibi, H.R.; Kurrasch, D.M. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc. Natl. Acad. Sci. USA 2015, 112, 1475–1480. [Google Scholar] [CrossRef]
- Mu, X.; Huang, Y.; Li, X.; Lei, Y.; Teng, M.; Li, X.; Wang, C.; Li, Y. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model. Environ. Sci. Technol. 2018, 52, 3222–3231. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, S.; Ullah, A.; Shaheen, G.; Jahan, S. Exposure of BPA and its alternatives like BPB, BPF, and BPS impair subsequent reproductive potentials in adult female Sprague Dawley rats. Toxicol. Mech. Methods 2019, 30, 60–72. [Google Scholar] [CrossRef]
- Suma, N.; Aruldhas, D.; Joe, I.H.; Sasi, B.A.; Anuf, A.R.; Mol, G.S.; Balachandran, S.; George, J. Spectroscopic and molecular structure investigation of Propachlor herbicide: A combined experimental and theoretical study. J. Mol. Struct. 2020, 1221, 128866. [Google Scholar] [CrossRef]
- Huang, Y.; Cartlidge, R.; Walpitagama, M.; Kaslin, J.; Campana, O.; Wlodkowic, D. Unsuitable use of DMSO for assessing behavioral endpoints in aquatic model species. Sci. Total Environ. 2018, 615, 107–114. [Google Scholar] [CrossRef] [PubMed]
D. rerio | C. fluminea | A. farreri | R. philippinarum | |
---|---|---|---|---|
Sequence homology | 63.87% | 34.25% | 36.07% | 35.91% |
QMEAN score | 0.77 | 0.72 | 0.70 | 0.78 |
DOPE score | −67,057 | −60,164 | −60,571 | −29,680 |
D. rerio | C. fluminea | A. farreri | R. philippinarum | ||
---|---|---|---|---|---|
ERRAT | 95% Warning residues (%) | 5.4% | 0.0% | 2.8% | 5.2% |
95% Error residue (%) | 0.0% | 0.0% | 0.0% | 0.0% | |
Quality factor | 94.6% | 100.0% | 97.2% | 94.8% | |
PROCHECK | Core area | 92.4% | 95.1% | 94.1% | 93.7% |
General reasonable area | 7.6% | 4.9% | 5.9% | 6.3% | |
Acceptable region | 0.0% | 0.0% | 0.0% | 0.0% | |
Unreasonable area | 0.0% | 0.0% | 0.0% | 0.0% |
Ligand | Ligand Efficiency | Binding Energy | Binding Free Energy | Docked Energy | Final Intermolecular Energy | Inhib Constant | Intermol Energy | Torsional Energy | Unbound System’s Energy | Electrostatic Energy | Involved Amino Acid Residues | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D. rerio | E2 | −0.24 | −4.83 | −10.27 | −10.80 | −5.37 | 286.09 | −5.43 | 0.60 | 0.07 | −0.06 | ALA-149 |
BPA | −0.19 | −3.27 | −5.76 | −7.46 | −3.00 | 4.03 | −4.46 | 1.19 | −0.51 | −0.03 | PHE-150 | |
BPS | −0.23 | −3.83 | −6.90 | −8.65 | −3.62 | 1.55 | −5.03 | 1.19 | −0.56 | −4.98 | ALA-149, ALA-121, PHE-152 | |
BPF | −0.25 | −3.81 | −6.77 | −8.19 | −3.19 | 1.62 | −5.00 | 1.19 | −0.23 | 0.00 | PHE-152, SER-128 | |
BPAF | −0.11 | −0.24 | −5.31 | −7.58 | −3.35 | 16.32 | −4.23 | 1.79 | −0.48 | −0.05 | ASN-163 | |
C. fluminea | E2 | −0.28 | −5.54 | −11.68 | −12.22 | −6.08 | 87.02 | −6.14 | 0.60 | 0.06 | −0.05 | LEU-147, GLN-123 |
BPA | −0.09 | −1.46 | −6.83 | −8.47 | −5.81 | 84.76 | −2.66 | 1.19 | −0.45 | −0.05 | GLU-55 | |
BPS | −0.13 | −2.20 | −7.00 | −8.76 | −5.37 | 24.52 | −3.39 | 1.19 | −0.57 | −3.32 | THR-54 | |
BPF | −0.10 | −1.56 | −6.84 | −8.21 | −5.46 | 71.95 | −2.75 | 1.19 | −0.18 | −0.08 | LEU-58 | |
BPAF | −0.07 | −1.63 | −5.49 | −7.9 | −4.48 | −64.19 | −3.42 | 1.79 | −0.62 | −0.07 | GLN-61, THR-54 | |
A. farreri | E2 | −0.24 | −4.82 | −9.89 | −10.55 | −5.13 | 293.07 | −5.42 | 0.60 | −0.06 | −0.29 | CYS-67 |
BPA | −0.14 | −2.43 | −5.60 | −7.26 | −3.63 | 16.41 | −3.63 | 1.19 | −0.47 | −3.59 | CYS-67 | |
BPS | −0.25 | −4.23 | −7.31 | −9.08 | −3.66 | 793.52 | −5.42 | 1.19 | −0.58 | −0.03 | LEU-89, SER-36 | |
BPF | −0.10 | −1.49 | −4.79 | −6.18 | −3.50 | 81.05 | −2.68 | 1.19 | −0.20 | −0.02 | ASN-205 | |
BPAF | −0.09 | −2.10 | −5.97 | −7.62 | −3.73 | 28.79 | −3.89 | 1.79 | 0.14 | −0.18 | ARG-190, GLU-194, TRP-69, MET-218 | |
R. philippinarum | E2 | −0.18 | −3.52 | −7.47 | −8.13 | −4.02 | 2.65 | −4.11 | 0.60 | −0.06 | −0.09 | ARG-145 |
BPA | −0.10 | −1.68 | −4.31 | −6.02 | −2.87 | 58.68 | −3.15 | 1.19 | −0.52 | −0.09 | ARG-177 | |
BPS | −0.17 | −2.84 | −7.00 | −8.79 | −4.04 | 8.26 | −4.75 | 1.19 | −0.60 | −0.07 | ASN-141 | |
BPF | −0.09 | −1.41 | −4.62 | −6.1 | −2.6 | 92.59 | −3.5 | 1.19 | −0.29 | −0.02 | ARG-177 | |
BPAF | −0.06 | −1.37 | −3.93 | −6.27 | −3.11 | 99.68 | −3.16 | 1.79 | −0.55 | −0.05 | LEU-176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhang, P.; Song, J.; Zhang, C.; Xu, R. Reproductive Risk Assessment of Bisphenol A and Its Substitutes on Estrogen Receptors (ERs) in Bivalves. Int. J. Mol. Sci. 2025, 26, 7969. https://doi.org/10.3390/ijms26167969
Guo W, Zhang P, Song J, Zhang C, Xu R. Reproductive Risk Assessment of Bisphenol A and Its Substitutes on Estrogen Receptors (ERs) in Bivalves. International Journal of Molecular Sciences. 2025; 26(16):7969. https://doi.org/10.3390/ijms26167969
Chicago/Turabian StyleGuo, Weili, Pengyu Zhang, Jianyong Song, Chunnuan Zhang, and Ruiyi Xu. 2025. "Reproductive Risk Assessment of Bisphenol A and Its Substitutes on Estrogen Receptors (ERs) in Bivalves" International Journal of Molecular Sciences 26, no. 16: 7969. https://doi.org/10.3390/ijms26167969
APA StyleGuo, W., Zhang, P., Song, J., Zhang, C., & Xu, R. (2025). Reproductive Risk Assessment of Bisphenol A and Its Substitutes on Estrogen Receptors (ERs) in Bivalves. International Journal of Molecular Sciences, 26(16), 7969. https://doi.org/10.3390/ijms26167969