Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions
Abstract
1. Introduction
2. Results and Discussion
2.1. Guanidine-Containing Silanes
2.2. Immobilization of Guanidine–Silanes 1–3 on Zeolite
2.3. TGA-DSC Analysis
2.4. Adsorption Isotherms
2.5. FT-IR Spectroscopy
2.6. NMR Spectroscopy
2.7. SEM-EDX Analysis
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis of N-[3-(Triethoxysilyl)propyl]guanidine (1)
3.2.2. Synthesis of N-[3-(Triethoxysilyl)propyl]aminoguanidine (2)
3.2.3. Synthesis of N-[3-(Triethoxysilyl)propyl]acetyl Guanidine (3)
3.2.4. Immobilization of Silanes (1), (2), and (3) on Zeolite
3.2.5. Evaluation of the Textural Properties of Z and Z1–Z3
3.2.6. TGA-DSC Experiments
3.2.7. Determination of Adsorption
3.2.8. H, 13C NMR, and FT-IR Spectroscopy and SEM-EDX Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef]
- Fabre, S.; Gimenez, R.; Elger, A.; Rivière, T. Unsupervised monitoring vegetation after the closure of an ore processing site with multi-temporal optical remote sensing. Sensors 2020, 20, 4800. [Google Scholar] [CrossRef]
- Dubrovskaya, O.G.; Kulagin, V.A.; Matyushenko, A.I.; Bobrik, A.G. The prospects of utilizing the modified sorption material to intensify purification of waste water from electroplating production. J. Sib. Fed. Univ. Eng. Technol. 2019, 12, 182–191. [Google Scholar] [CrossRef]
- Al-Asadi, S.A.R.; Al-Qurnawi, W.S.; Al Hawash, A.B.; Ghalib, H.B.; Alkhlifa, N.-H.A. Water quality and impacting factors on heavy metals levels in Shatt Al-Arab River, Basra, Iraq. Appl. Water Sci. 2020, 10, 103. [Google Scholar] [CrossRef]
- Yitagesu, Y.H.; Bekele, E. Impacts of cement dust deposition on heavy metal pollution in soil and barley crop grown around abyssinia cement factory, Ethiopia. Chem. Mater. Res. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, O.M. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl. Water Sci. 2017, 7, 3267–3280. [Google Scholar] [CrossRef]
- Ma, J.; Wu, S.; Shekhar, N.V.R.; Biswas, S.; Sahu, A.K. Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects. Bioinorg. Chem. Appl. 2020, 1, 8886093. [Google Scholar] [CrossRef]
- Boateng, T.K.; Opoku, F.; Akoto, O. Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site, Kumasi. Appl. Water Sci. 2019, 9, 33. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, V.K.; Kumar, A.; Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 2017, 5, 70. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Azme, N.M.; Murshed, M.F.; Ishak, S.A.; Adnan, M.A. Utilization of sugarcane pressmud as a natural absorbent for heavy metal removal in leachate treatment. In Lecture Notes in Civil Engineering, Proceedings of the AICCE’19, Penang, Malaysia, 21–22 August 2019; Springer: Cham, Switzerland, 2019; pp. 1297–1307. [Google Scholar] [CrossRef]
- Gadore, V. Ahmaruzzaman Tailored fly ash materials: A recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J. Water Process. Eng. 2021, 41, 101910. [Google Scholar] [CrossRef]
- Shirmardi, M.; Mahvi, A.H.; Hashemzadeh, B.; Naeimabadi, A.; Hassani, G.; Niri, M.V. The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean J. Chem. Eng. 2013, 30, 1603–1608. [Google Scholar] [CrossRef]
- Demcak, S.; Balintova, M.; Demcakova, M.; Zinicovscaia, I.; Yushin, N.; Frontasyeva, M.V. Using of wooden sawdust for copper removal from waters. Nov. Biotechnol. Chim. 2019, 18, 66–71. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid. Interface Sci. 2020, 284, 102247. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Q.; Zhao, X.; Wei, G. Facile fabrication of a low-cost alginate-polyacrylamide composite aerogel for the highly efficient removal of lead ions. Appl. Sci. 2019, 9, 4754. [Google Scholar] [CrossRef]
- Bhat, S.A.; Cui, G.; Li, W.; Wei, Y.; Li, F. Effect of heavy metals on the performance and bacterial profiles of activated sludge in a semi-continuous reactor. Chemosphere 2020, 241, 125035. [Google Scholar] [CrossRef]
- Li, C.; Yu, Y.; Fang, A.; Feng, D.; Du, M.; Tang, A.; Chen, S.; Li, A. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: A review. Lett. Appl. Microbiol. 2021, 75, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, S.; Rovina, K.; Azad, S.A. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J. Microb. Biochem. Technol. 2015, 7, 384–393. [Google Scholar] [CrossRef]
- Bouabidi, Z.B.; El-Naas, M.H.; Zhang, Z. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environ. Chem. Lett. 2019, 17, 241–257. [Google Scholar] [CrossRef]
- Tajer-Mohammad-Ghazvini, P.; Kasra-Kermanshahi, R.; Nozad-Golikand, A.; Sadeghizadeh, M.; Ghorbanzadeh-Mashkani, S.; Dabbagh, R. Cobalt separation by alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess. Biosyst. Eng. 2016, 39, 1899–1911. [Google Scholar] [CrossRef]
- Singh, S.; Wasewar, K.L.; Kansal, S.K. Low-cost adsorbents for removal of inorganic impurities from wastewater. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 173–203. [Google Scholar] [CrossRef]
- Dong, W.; Liang, K.; Qin, Y.; Ma, H.; Zhao, X.; Zhang, L.; Zhu, S.; Yu, Y.; Bian, D.; Yang, J. Hydrothermal conversion of red mud into magnetic adsorbent for effective adsorption of zn(ii) in water. Appl. Sci. 2019, 9, 1519. [Google Scholar] [CrossRef]
- Tao, Z.; Zhou, Y.; Duan, N.; Wang, Z. A colorimetric aptamer sensor based on the enhanced peroxidase activity of functionalized graphene/Fe3O4-AuNPs for detection of lead (ii) ions. Catalysts 2020, 10, 600. [Google Scholar] [CrossRef]
- ben Mosbah, M.; Mechi, L.; Khiari, R.; Moussaoui, Y. Current state of porous carbon for wastewater treatment. Processes 2020, 8, 1651. [Google Scholar] [CrossRef]
- Qin, L.; Feng, L.; Li, C.; Fan, Z.; Zhang, G.; Shen, C.; Meng, Q. Amination/oxidization dual-modification of waste ginkgo shells as bio-adsorbents for copper ion removal. J. Clean. Prod. 2019, 228, 112–123. [Google Scholar] [CrossRef]
- Makuchowska-Fryc, J. Use of the eggshells in removing heavy metals from waste water—The process kinetics and efficiency. Ecol. Chem. Eng. S 2019, 26, 165–174. [Google Scholar] [CrossRef]
- Yamada, N.; Katoh, M. Feature of lead complexed with dissolved organic matter on lead immobilization by hydroxyapatite in aqueous solutions and soils. Chemosphere 2020, 249, 126122. [Google Scholar] [CrossRef]
- Prabhu, P.P.; Prabhu, B.; Raghuvir, P.; Mathew, T. A review on removal of heavy metal ions from waste water using natural/ modified bentonite. MATEC Web Conf. 2018, 144, 02021. [Google Scholar] [CrossRef]
- Sandoval, O.G.M.; Trujillo, G.C.D.; Orozco, A.E.L. Amorphous silica waste from a geothermal central as an adsorption agent of heavy metal ions for the regeneration of industrial pre-treated wastewater. Water Resour. Ind. 2018, 20, 15–22. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: Air, soil, and water. Environ. Sci. Pollut. Res. 2016, 23, 13754–13788. [Google Scholar] [CrossRef] [PubMed]
- Zwain, H.M.; Vakili, M.; Dahlan, I. Waste material adsorbents for zinc removal from wastewater: A comprehensive review. Int. J. Chem. Eng. 2014, 2014, 347912. [Google Scholar] [CrossRef]
- Jorfi, S.; Ahmadi, M.J.; Pourfadakari, S.; Jaafarzadeh, N.; Soltani, R.D.C.; Akbari, H. Adsorption of Cr(VI) by natural clinoptilolite zeolite from aqueous solutions: Isotherms and kinetics. Pol. J. Chem. Technol. 2017, 19, 106–114. [Google Scholar] [CrossRef]
- Baldermann, A.; Fleischhacker, Y.; Schmidthaler, S.; Wester, K.; Nachtnebel, M.; Eichinger, S. Removal of barium from solution by natural and iron(iii) oxide-modified allophane, beidellite and zeolite adsorbents. Materials 2020, 13, 2582. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous Mesoporous Mater. 2020, 294, 109871. [Google Scholar] [CrossRef]
- Aghel, B.; Mohadesi, M.; Gouran, A.; Razmegir, M.H. Use of modified Iranian clinoptilolite zeolite for cadmium and lead removal from oil refinery wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 1239–1250. [Google Scholar] [CrossRef]
- Tsymaj, D.V.; Vinokurov, A.J. Method of Purifing Water from Heavy Metal Ions. Patent RU 2015 2567650, 11 October 2015. (In Russian). [Google Scholar]
- Dignos, E.C.G.; Gabejan, K.E.A.; Olegario-Sanchez, E.M.; Mendoza, H.D. The comparison of the alkali-treated and acid-treated naturally mined Philippine zeolite for adsorption of heavy metals in highly polluted waters. IOP Conf. Ser. Mater. Sci. Eng. 2019, 478, 012030. [Google Scholar] [CrossRef]
- Maulana, I.; Takahashi, F. Cyanide removal study by raw and iron-modified synthetic zeolites in batch adsorption experiments. J. Water Process. Eng. 2018, 22, 80–86. [Google Scholar] [CrossRef]
- Paliulis, D. Removal of formaldehyde from synthetic wastewater using natural and modified zeolites. Pol. J. Environ. Stud. 2016, 25, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Irannajad, M.; Haghighi, H.K. Removal of heavy metals from polluted solutions by zeolitic adsorbents: A review. Environ. Process. 2021, 8, 7–35. [Google Scholar] [CrossRef]
- Kragović, M.; Pašalić, S.; Marković, M.; Petrović, M.; Nedeljković, B.; Momčilović, M.; Stojmenović, M. Natural and modified zeolite—Alginate composites. Application for removal of heavy metal cations from contaminated water solutions. Minerals 2018, 8, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, H.; Chen, P.; Fang, X.; Du, T. Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture. J. Mater. Res. Technol. 2020, 9, 4368–4378. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Tran, H.N.; Van Viet, P.; Chao, H.-P. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicol. Environ. Saf. 2018, 147, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Krajňák, A.; Viglašová, E.; Galamboš, M.; Krivosudský, L. Kinetics, thermodynamics and isotherm parameters of uranium(VI) adsorption on natural and HDTMA-intercalated bentonite and zeolite. Desalination Water Treat. 2018, 127, 272–281. [Google Scholar] [CrossRef]
- Wei, P.; Qu, X.; Dong, H.; Zhang, L.; Chen, H.; Gao, C. Silane-modified NaA zeolite/PAAS hybrid pervaporation membranes for the dehydration of ethanol. J. Appl. Polym. Sci. 2013, 128, 3390–3397. [Google Scholar] [CrossRef]
- Pomazkina, O.I.; Filatova, E.G.; Pozhidaev, Y.N. Adsorption of Ni(II), Cu(II), and Zn(II) ions by natural alumosilicate modified with N,N’-bis(3-triethoxysilylpropyl)-thiocarbamide. Prot. Met. Phys. Chem. Surfaces 2017, 53, 416–421. [Google Scholar] [CrossRef]
- Laksmono, J.A.; Sudibandriyo, M.; Saputra, A.H.; Haryono, A. Structured polyvinyl alcohol/zeolite/carbon composites prepared using supercritical fluid extraction techniques as adsorbent for bioethanol dehydration. Int. J. Chem. Eng. 2019, 2019, 6036479. [Google Scholar] [CrossRef]
- Marchenkova, T.G.; Kunilova, I.V. Issledovanie sorbcii medi, nikelya, cinka i serebra na modificirovannom sibajskom ceolite. Mining Information and Analytical Bulletin. Sci. Tech. J. 2024, 11, 298–301. (In Russian) [Google Scholar]
- Alver, E.; Metin, A.Ü. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 2012, 200–202, 59–67. [Google Scholar] [CrossRef]
- Adamovich, S.N.; Filatova, E.G.; Pozhidaev, Y.N.; Ushakov, I.A.; Chugunov, A.D.; Oborina, E.N.; Rozentsveig, I.B.; Verpoort, F. Natural zeolite modified with 4-(3-triethoxysilylpropyl) thiosemicarbazide as an effective adsorbent for Cu(II), Co(II) and Ni(II). J. Taiwan Inst. Chem. Eng. 2021, 129, 396–409. [Google Scholar] [CrossRef]
- Kim, S.-H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: A review. Eur. J. Med. Chem. 2021, 216, 113293. [Google Scholar] [CrossRef]
- Gomes, A.R.; Varela, C.L.; Pires, A.S.; Tavares-Da-Silva, E.J.; Roleira, F.M. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg. Chem. 2023, 138, 106600. [Google Scholar] [CrossRef]
- Drozdov, F.V.; Kotov, V.M. Guanidine: A simple molecule with great potential: From catalysts to biocides and molecular glues. Ineos Open 2021, 3, 200–213. [Google Scholar] [CrossRef]
- Ishikawa, T. Guanidine Chemistry. Chem. Pharm. Bull. 2010, 58, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Heidari, L.; Shiri, L. CoFe2O4@SiO2-CPTES-Guanidine-Cu(II): A novel and reusable nanocatalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and polyhydroquinolines and oxidation of sulfides. Appl. Organomet. Chem. 2019, 33, e4636. [Google Scholar] [CrossRef]
- Heredero-Bermejo, I.; Sánchez-Nieves, J.; Soliveri, J.; Gómez, R.; de la Mata, F.; Copa-Patiño, J.; Pérez-Serrano, J. In vitro anti-Acanthamoeba synergistic effect of chlorhexidine and cationic carbosilane dendrimers against both trophozoite and cyst forms. Int. J. Pharm. 2016, 509, 1–7. [Google Scholar] [CrossRef]
- Tarasenkov, A.; Drozdov, F.; Parshina, M.; Strukova, E.; Cherkaev, G.; Muzafarov, A. Biocidal properties investigation of the new guanidine-containing alkoxysilanes and siloxanes and epoxy materials modified by them. J. Organomet. Chem. 2022, 959, 122211. [Google Scholar] [CrossRef]
- Filatova, E.G.; Pomazkina, O.I.; Pozhidaev, Y.N. Development of the zeolite-sorption process for electroplating wastewater treatment. J. Water Chem. Technol. 2014, 36, 303–308. [Google Scholar] [CrossRef]
- Filatova, E.G.; Pozhidaev, Y.N.; Pomazkina, O.I. Investigation of adsorption of heavy metal ions by natural aluminosilicate. Prot. Met. Phys. Chem. Surfaces 2016, 52, 438–442. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, M.; Chen, J.; Ding, Z.; Wang, X.; Mu, Y.; Meng, C. Modification of synthetic zeolite X by thiourea and its adsorption for Cd(II). Mater. Lett. 2019, 236, 233–235. [Google Scholar] [CrossRef]
- Malhis, A.A.; Arar, S.H.; Fayyad, M.K.; A Hodali, H. Amino- and thiol-modified microporous silicalite-1 and mesoporous MCM-48 materials as potential effective adsorbents for Pb(II) in polluted aquatic systems. Adsorpt. Sci. Technol. 2018, 3, 270–286. [Google Scholar] [CrossRef]
- Anari-Anaraki, M.; Nezamzadeh-Ejhieh, A. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J. Colloid. Interface Sci. 2015, 440, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Mata, Y.; Blázquez, M.; Ballester, A.; González, F.; Muñoz, J. Studies on sorption, desorption regeneration and reuse of sugar-beet pectin gels for heavy metal removal. J. Hazard. Mater. 2010, 178, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.J.; Pace, S. The coordination chemistry of guanidines and guanidinates. Coord. Chem. Rev. 2001, 214, 91–141. [Google Scholar] [CrossRef]
- Murtaza, G.; Rauf, M.K.; Badshah, A.; Ebihara, M.; Said, M.; Gielen, M.; de Vos, D.; Dilshad, E.; Mirza, B. Synthesis, structural characterization and in vitro biological screening of some homoleptic copper(II) complexes with substituted guanidines. Eur. J. Med. Chem. 2012, 48, 26–35. [Google Scholar] [CrossRef]
- Sengupta, D.; Gómez-Torres, A.; Fortier, S. Guanidinate, Amidinate, and Formamidinate Ligands. In Comprehensive Coordination Chemistry II; Elsevier: Amsterdam, The Netherlands, 2021; pp. 366–405. [Google Scholar] [CrossRef]
- Carrillo-Hermosilla, F.; Fernández-Galán, R.; Ramos, A.; Elorriaga, D. Guanidinates as Alternative Ligands for Organometallic Complexes. Molecules 2022, 27, 5962. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O. Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon 2024, 10, e25303. [Google Scholar] [CrossRef] [PubMed]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry, and Use; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
Mass of Silanes 1–3 in Solution, % | Mass of Z1; Z2; Z3, g | Mass Gain, g | Mass of 1–3 in Z1; Z2; Z3, % |
---|---|---|---|
0.5 | 10.33; 10.36; 10.39 | 0.33; 0.36; 0.39 | 3.2; 3.5; 3.7 |
1.0 | 10.54; 10.55; 10.59 | 0.54; 0.55; 0.59 | 5.1; 5.2; 5.5 |
2.0 | 10.95; 10.97; 10.99 | 0.95; 0.97; 0.99 | 8.7; 8.8; 9.1 |
3.5 | 11.84; 11.86; 11.87 | 1.84; 1.86; 1.87 | 15.5; 15.6; 15.8 |
4.5 | 11.98; 12.00; 12.00 | 1.98; 2.00; 2.02 | 16.6; 16.6; 16.8 |
5.5 | 12.10; 12.12; 12.13 | 2.10; 2.12; 2.14 | 17.3; 17.5; 17.7 |
Characteristics | Z | Z1 | Z2 | Z3 |
---|---|---|---|---|
Specific surface area, m2/g | 32.8 | 5.7 | 5.4 | 5.8 |
Specific pore volume, cm3/g | 0.015 | 0.003 | 0.005 | 0.006 |
Micropore volume, cm3/g | 0.004 | 0.002 | 0.001 | 0.002 |
Average pore volume, nm | 1.780 | 1.640 | 1.680 | 1.630 |
Apparent density, g/cm3 | 0.92 | 0.87 | 0.85 | 0.84 |
Dubinin–Radushkevich Model | |||||
HMI | Linear Form of the Dubinin–Radushkevich Equation | Am, mmol/g | k, mol2/kJ2 | E, kJ/mol | R2 |
Cu(II) | ln A = 0.416 − 0.0023·ε2 | 0.660 | 0.0023 | 14.9 | 0.998 |
Co(II) | ln A = 0.554 − 0.0029·ε2 | 0.577 | 0.0029 | 13.1 | 0.997 |
Ni(II) | ln A = 0.936 − 0.0033·ε2 | 0.392 | 0.0033 | 12.3 | 0.997 |
Langmuir Model | |||||
HMI | Linear Form of the Langmuir Equation | A∞, mmol/g | K | ΔG0, kJ/mol | R2 |
Cu(II) | 1/A = 1.385 + 0.205 1/Ceq | 0.722 | 6.774 | −21.82 | 0.995 |
Co(II) | 1/A = 1.448 + 0.336 1/Ceq | 0.691 | 4.312 | −20.70 | 0.994 |
Ni(II) | 1/A = 1.923 + 0.644 1/Ceq | 0.520 | 2.987 | −20.00 | 0.999 |
Freundlich Model | |||||
HMI | Linear Form of the Freundlich Equation | KF | n | R2 | |
Cu(II) | log A = −0.093 + 0.512 log Ceq | 0.807 | 1.954 | 0.982 | |
Co(II) | log A = −0.389 + 0.580 log Ceq | 0.408 | 1.724 | 0.975 | |
Ni(II) | log A = −0.797 + 0.675 log Ceq | 0.160 | 1.481 | 0.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamovich, S.N.; Nalibayeva, A.M.; Abdikalykov, Y.N.; Turmukhanova, M.Z.; Filatova, E.G.; Chugunov, A.D.; Ushakov, I.A.; Oborina, E.N.; Rozentsveig, I.B.; Verpoort, F. Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions. Int. J. Mol. Sci. 2025, 26, 7903. https://doi.org/10.3390/ijms26167903
Adamovich SN, Nalibayeva AM, Abdikalykov YN, Turmukhanova MZ, Filatova EG, Chugunov AD, Ushakov IA, Oborina EN, Rozentsveig IB, Verpoort F. Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions. International Journal of Molecular Sciences. 2025; 26(16):7903. https://doi.org/10.3390/ijms26167903
Chicago/Turabian StyleAdamovich, Sergey N., Arailym M. Nalibayeva, Yerlan N. Abdikalykov, Mirgul Zh. Turmukhanova, Elena G. Filatova, Alexandr D. Chugunov, Igor A. Ushakov, Elizaveta N. Oborina, Igor B. Rozentsveig, and Francis Verpoort. 2025. "Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions" International Journal of Molecular Sciences 26, no. 16: 7903. https://doi.org/10.3390/ijms26167903
APA StyleAdamovich, S. N., Nalibayeva, A. M., Abdikalykov, Y. N., Turmukhanova, M. Z., Filatova, E. G., Chugunov, A. D., Ushakov, I. A., Oborina, E. N., Rozentsveig, I. B., & Verpoort, F. (2025). Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions. International Journal of Molecular Sciences, 26(16), 7903. https://doi.org/10.3390/ijms26167903