A Review of Pathophysiology, Molecular Mechanisms, and Omics Approaches of Spinal Cord Injury
Abstract
1. Introduction
2. Pathophysiology of Traumatic Spinal Cord Injury
2.1. Primary Injury Phase
2.2. Secondary Injury Phase
3. Molecular Mechanisms Underlying SCI
4. Role of Omics Approaches in SCI Research
4.1. Genomics
4.1.1. Epigenomics
4.1.2. Transcriptomics
4.2. Proteomics
4.3. Metabolomics
5. Emerging Therapeutic Strategies Targeting Molecular Pathways
5.1. Channel Blockers
5.2. Antioxidants
5.3. Mitochondrial Repair and Transplantation
6. Discussion and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Institute of Neurological Disorders and Stroke. Spinal Cord Injury; U.S. Department of Health and Human Services: Washington, DC, USA, 2025. Available online: https://www.ninds.nih.gov/health-information/disorders/spinal-cord-injury (accessed on 16 June 2025).
- Khorasanizadeh, M.; Yousefifard, M.; Eskian, M.; Lu, Y.; Chalangari, M.; Harrop, J.S.; Jazayeri, S.B.; Seyedpour, S.; Khodaei, B.; Hosseini, M.; et al. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. J. Neurosurg. Spine 2019, 30, 683–699. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Spinal Cord Injury; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury#:~:text=Scope%20of%20the%20problem,YLDs%20attributed%20to%20this%20demographic (accessed on 13 July 2025).
- GBD Spinal Cord Injuries Collaborators. Global, regional, and national burden of spinal cord injury, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2023, 22, 1026–1047. [Google Scholar] [CrossRef] [PubMed]
- pinal Cord Injury Facts and Figures at a Glance; National Spinal Cord Injury Statistical Center: Birmingham, AL, USA, 2017; Available online: http://msktc.org/sites/default/files/lib/docs/Data_Sheets_/SCIMS_Facts_and_Figures_2017_August_FINAL.pdf (accessed on 15 July 2025).
- Greitemeyer, T.; Kastenmüller, A.; Fischer, P. Romantic motives and risk-taking: An evolutionary approach. J. Risk Res. 2012, 16, 19–38. [Google Scholar] [CrossRef]
- Stein, D.G.; Hoffman, S.W. Estrogen and progesterone as neuroprotective agents in the treatment of acute brain injuries. Pediatr. Rehabil. 2003, 6, 13–22. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Dietrich, W.D. Neuropathological Protection after Traumatic Brain Injury in Intact Female Rats Versus Males or Ovariectomized Females. J. Neurotrauma 2004, 18, 891–900. Available online: https://www.liebertpub.com/doi/10.1089/089771501750451811 (accessed on 15 July 2025). [CrossRef] [PubMed]
- Lima, R.; Monteiro, A.; Salgado, A.J.; Monteiro, S.; Silva, N.A. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int. J. Mol. Sci. 2022, 23, 13833. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.; Harari, O.; Boddey, J.A.; Wang, Z.; Linna-Kuosmanen, S. The impact of multi-omics in medicine. Cell Rep. Med. 2024, 5, 101742. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, L.; Xie, Y.; Guo, S.; Cao, X.; Yang, M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: A narrative review. Front. Immunol. 2024, 15, 1432841. [Google Scholar] [CrossRef]
- Mackiewicz-Milewska, M.; Newland, P. Spinal Cord Injury (SCI) 2016 Facts and Figures at a Glance. J. Spinal Cord. Med. 2016, 39, 493–494. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Daud, M.F.; Idris, J.; Ng, A.M.H.; Naicker, A.S.; Ismail, O.H.R.; Kumar, R.K.A.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Couillard-Despres, S.; Bieler, L.; Vogl, M. Pathophysiology of Traumatic Spinal Cord Injury. In Neurological Aspects of Spinal Cord Injury; Weidner, N., Rupp, R., Tansey, K., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Park, E.; Velumian, A.A.; Fehlings, M.G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: A review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef]
- Hall, E.D.; Wang, J.A.; Bosken, J.M.; Singh, I.N. Lipid peroxidation in brain or spinal cord mitochondria after injury. J. Bioenerg. Biomembr. 2016, 48, 169–174. [Google Scholar] [CrossRef]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration. J. Neuroinflamm. 2021, 18, 284. [Google Scholar] [CrossRef]
- Yang, L.; Shi, F.; Cao, F.; Wang, L.; She, J.; He, B.; Xu, X.; Kong, L.; Cai, B. Neutrophils in Tissue Injury and Repair: Molecular Mechanisms and Therapeutic Targets. MedComm 2025, 6, e70184. [Google Scholar] [CrossRef]
- Kulkarni, O.P.; Lichtnekert, J.; Anders, H.-J.; Mulay, S.R. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation? Mediat. Inflamm. 2016, 2016, 2856213. [Google Scholar] [CrossRef]
- Greenwood, S.; Connolly, C.N. Dendritic and Mitochondrial Changes During Glutamate Excitotoxicity. Neuropharmacology 2007, 53, 891–898. Available online: https://www.sciencedirect.com/science/article/abs/pii/S002839080700319X#:~:text=In%20cases%20of%20CNS%20trauma,et%20al.%2C%201995 (accessed on 11 July 2025). [CrossRef] [PubMed]
- Kritis, A.; Stamoula, E.G.; Paniskaki, K.A.; Vavilis, T.D. Researching Glutamate—Induced Cytotoxicity in Different Cell Lines: A Comparative/Collective Analysis/Study. Front. Cell. Neurosci. 2015, 9, 91. Available online: https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2015.00091/full (accessed on 17 July 2025). [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Ademowo, O.S.; Dias, H.K.I.; Burton, D.G.A.; Griffiths, H.R. Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology 2017, 18, 859–879. [Google Scholar] [CrossRef]
- Szczepanowska, J.; Malinska, D.; Wieckowski, M.R.; Duszynski, J. Effect of mtDNA Point Mutations on Cellular Bioenergetics. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1817, 1740–1746. Available online: https://www.sciencedirect.com/science/article/pii/S0005272812000643#:~:text=The%20driving%20force%20for%20mitochondrial,10%5D%2C%20%5B11%5D (accessed on 12 July 2025). [CrossRef]
- Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The Role of Mitochondria in Metabolism and Cell Death. Biochem. Biophys. Res. Commun. 2017, 482, 426–431. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0006291X16319519#:~:text=Highlights,metabolism%20and%20apoptotic%20cell%20death (accessed on 12 July 2025). [CrossRef] [PubMed]
- Cantó-Santos, J.; Grau-Junyent, J.M.; Garrabou, G. The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants 2020, 9, 964. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yuan, S.; Shi, L.; Li, J.; Ning, G.; Kong, X.; Feng, S. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif. 2021, 54, e12992. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, O. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003, 41, 369–378. [Google Scholar] [CrossRef]
- Shuman, S.L.; Bresnahan, J.C.; Beattie, M.S. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J. Neurosci. Res. 1997, 50, 798–808. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xu, X.M.; Hu, R.; Du, C.; Zhang, S.X.; McDonald, J.W.; Dong, H.X.; Wu, Y.J.; Fan, G.S.; Jacquin, M.F.; et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 5395–5406. [Google Scholar] [CrossRef]
- MMoura, M.M.; Monteiro, A.; Salgado, A.J.; Silva, N.A.; Monteiro, S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol. Dis. 2024, 195, 106500. [Google Scholar] [CrossRef]
- Elmalky, M.I.; Alvarez-Bolado, G.; Younsi, A.; Skutella, T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. Biology 2024, 13, 703. [Google Scholar] [CrossRef]
- Nakamura, M.; Okada, S.; Toyama, Y.; Okano, H. Role of IL-6 in spinal cord injury in a mouse model. Clin. Rev. Allerg. Immunol. 2005, 28, 197–203. [Google Scholar] [CrossRef]
- Patel, M.; Wahezi, S.; Mavrocordatos, P.; Abd-Elsayed, A. The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients 2025, 17, 633. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Patilas, C.; Varsamos, I.; Galanis, A.; Vavourakis, M.; Zachariou, D.; Marougklianis, V.; Kolovos, I.; Tsalimas, G.; Karampinas, P.; Kaspiris, A.; et al. The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics 2024, 14, 151. [Google Scholar] [CrossRef]
- Jewett, B.E.; Thapa, B. Physiology, NMDA Receptor. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519495/ (accessed on 12 July 2025).
- Wang, Q.; Wang, X.; Shang, Z.; Zhao, L. Mechanism and prospects of mitochondrial transplantation for spinal cord injury treatment. Stem Cell Res. Ther. 2024, 15, 457. [Google Scholar] [CrossRef]
- Kim, K.; Mishina, M.; Kokubo, R.; Nakajima, T.; Morimoto, D.; Isu, T.; Kobayashi, S.; Teramoto, A. Ketamine for acute neuropathic pain in patients with spinal cord injury. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2013, 20, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yu, J.; Li, J.; Sun, J. Neuroprotective effect of ketamine on acute spinal cord injury in rats. Genet. Mol. Res. GMR 2015, 14, 3551–3556. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, Z.; Wang, D.; Aierxi, M.; Ma, Z.; Wang, Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J. Neurosci. Res. 2023, 101, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Bradbury, E.J.; Burnside, E.R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 2019, 10, 3879. [Google Scholar] [CrossRef]
- Li, S.; Ohtake, Y.; Smith, G. Reactive astrocyte scar and axon regeneration: Suppressor or facilitator? Neural Regen. Res. 2016, 11, 1050–1051. [Google Scholar] [CrossRef]
- Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine; Micheel, C.M.; Nass, S.J.; Omenn, G.S. (Eds.) 2. Omics-Based Clinical Discovery: Science, Technology, and Applications. In Evolution of Translational Omics: Lessons Learned and the Path Forward; National Academies Press: Washington, DC, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK202165/ (accessed on 12 July 2025).
- Gasperskaja, E.; Kučinskas, V. The most common technologies and tools for functional genome analysis. Acta Medica Litu. 2017, 24, 1–11. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. From DNA to RNA. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26887/ (accessed on 20 June 2025).
- Williamson, A.K.; Zhu, Z.; Yuan, Z.-M. Epigenetic mechanisms behind cellular sensitivity to DNA damage. Cell Stress 2018, 2, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T.; et al. The Human Transcription Factors. Cell 2018, 172, 650–665. Available online: https://www.sciencedirect.com/science/article/pii/S0092867418301065#:~:text=Because%20TFs%20can%20act%20by,The%20Human%20Transcription%20Factor%20Repertoire (accessed on 27 June 2025). [CrossRef] [PubMed]
- Chang, P.-Y.; Saijilafu; Zhang, B.-Y.; Zhu, Q.-S.; Zhu, Y.-H. Decoding epigenetic codes: New frontiers in exploring recovery from spinal cord injury. Neural Regen. Res. 2020, 15, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.; Han, K.; Hyun, J.K. The Time Sequence of Gene Expression Changes after Spinal Cord Injury. Cells 2022, 11, 2236. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, W.; Zhao, Q.; Liu, S.-J.; Liu, J.; He, M.; Xu, Y.; Wang, W.; Liu, W.; Xia, Q.-J.; et al. Endoplasmic reticulum protein 29 protects cortical neurons from apoptosis and promoting corticospinal tract regeneration to improve neural behavior via caspase and Erk signal in rats with spinal cord transection. Mol. Neurobiol. 2014, 50, 1035–1048. [Google Scholar] [CrossRef]
- Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11811828/ (accessed on 23 June 2025).
- Skinnider, M.A.; Rogalski, J.; Tigchelaar, S.; Manouchehri, N.; Prudova, A.; Jackson, A.M.; Nielsen, K.; Jeong, J.; Chaudhary, S.; Shortt, K.; et al. Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol. Cell. Proteom. MCP 2021, 20, 100096. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Xie, M.; Luo, J.; Zhang, J.; Zhang, G.; Wang, Y.; Lin, H.; Ji, Z. Parallel Metabolomic Profiling of Cerebrospinal Fluid, Plasma, and Spinal Cord to Identify Biomarkers for Spinal Cord Injury. J. Mol. Neurosci. 2022, 72, 126–135. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, M.; Jiang, Z.; Lan, Y.; Chen, L.; Chen, Y.; Li, H.; Hui, J.; Zhang, L.; Hu, X.; et al. Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats. Front. Neurosci. 2022, 16, 1066528. [Google Scholar] [CrossRef]
- Scott, G.S.; Cuzzocrea, S.; Genovese, T.; Koprowski, H.; Hooper, D.C. Uric acid protects against secondary damage after spinal cord injury. Proc. Natl. Acad. Sci. USA 2005, 102, 3483–3488. [Google Scholar] [CrossRef]
- Schwartz, G.; Fehlings, M.G. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole. J. Neurosurg. 2001, 94 (Suppl. S2), 245–256. [Google Scholar] [CrossRef]
- Chen, L.; Mao, J. Update on Neuropathic Pain Treatment: Ion Channel Blockers and Gabapentinoids. Curr. Pain. Headache Rep. 2013, 17, 359. [Google Scholar] [CrossRef]
- Dokken, K.; Chen, R.J.; Fairley, P. Sodium Channel Blocker Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534844/ (accessed on 24 July 2025).
- Evaniew, N.; Noonan, V.K.; Fallah, N.; Kwon, B.K.; Rivers, C.S.; Ahn, H.; Bailey, C.S.; Christie, S.D.; Fourney, D.R.; Hurlbert, R.J.; et al. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Propensity Score-Matched Cohort Study from a Canadian Multi-Center Spinal Cord Injury Registry. J. Neurotrauma 2015, 32, 1674–1683. [Google Scholar] [CrossRef]
- Canseco, J.; Karamian, B.A.; Bowles, D.R.; Markowitz, M.P.; DiMaria, S.L.; Semenza, N.C.; Leibensperger, M.R.; Smith, M.L.; Vaccaro, A.R. Updated Review: The Steroid Controversy for Management of Spinal Cord Injury. World Neurosurg. 2021, 150, 1–8. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1878875021003090 (accessed on 18 June 2025). [CrossRef] [PubMed]
- Miękisiak, G.; Łątka, D.; Jarmużek, P.; Załuski, R.; Urbański, W.; Janusz, W. Steroids in Acute Spinal Cord Injury: All But Gone Within 5 Years. World Neurosurg. 2019, 122, e467–e471. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1878875018323799 (accessed on 19 June 2025). [CrossRef] [PubMed]
- Narum, S.; Westergren, T.; Klemp, M. Corticosteroids and risk of gastrointestinal bleeding: A systematic review and meta-analysis. BMJ Open 2014, 4, e004587. [Google Scholar] [CrossRef] [PubMed]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef]
- Mustafa, A.G.; Singh, I.N.; Wang, J.; Carrico, K.M.; Hall, E.D. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J. Neurochem. 2010, 114, 271–280. [Google Scholar] [CrossRef]
- McIntosh, L.J.; Sapolsky, R.M. Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induced toxicity in neuronal culture. Exp. Neurol. 1996, 141, 201–206. [Google Scholar] [CrossRef]
- Iuchi, T.; Akaike, M.; Mitsui, T.; Ohshima, Y.; Shintani, Y.; Azuma, H.; Matsumoto, T. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ. Res. 2003, 92, 81–87. [Google Scholar] [CrossRef]
- Sato, H.; Takahashi, T.; Sumitani, K.; Takatsu, H.; Urano, S. Glucocorticoid Generates ROS to Induce Oxidative Injury in the Hippocampus, Leading to Impairment of Cognitive Function of Rats. J. Clin. Biochem. Nutr. 2010, 47, 224–232. [Google Scholar] [CrossRef]
- Vaishnav, R.A.; Singh, I.N.; Miller, D.M.; Hall, E.D. Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function. J. Neurotrauma 2010, 27, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Das, A.; Thakore, N.P.; Matzelle, D.D.; Reiter, R.J.; Ray, S.K.; Banik, N.L. Therapeutic potential of melatonin in traumatic central nervous system injury. J. Pineal Res. 2009, 47, 134–142. [Google Scholar] [CrossRef]
- McCully, J.D.; Cowan, D.B.; Pacak, C.A.; Toumpoulis, I.K.; Dayalan, H.; Levitsky, S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H94–H105. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.; Yu, S.-H.; Choi, Y.; Kim, Y.; Kang, Y.C.; Lee, H.; Kim, J.H.; Han, K.; Lee, H.K.; Chang, M.-Y.; et al. Mitochondrial transplantation exhibits neuroprotective effects and improves behavioral deficits in an animal model of Parkinson’s disease. Neurother. J. Am. Soc. Exp. Neurother. 2024, 21, e00355. [Google Scholar] [CrossRef]
- Gollihue, J.L.; Rabchevsky, A.G. Prospects for therapeutic mitochondrial transplantation. Mitochondrion 2017, 35, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Gollihue, J.L.; Patel, S.P.; Eldahan, K.C.; Cox, D.H.; Donahue, R.R.; Taylor, B.K.; Sullivan, P.G.; Rabchevsky, A.G. Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. J. Neurotrauma 2018, 35, 1800–1818. [Google Scholar] [CrossRef]
- Donnally, C.J., III; Hanna, A.; Odom, C.K. Cervical Myelopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482312/ (accessed on 13 June 2025).
- Al-Ryalat, N.T.; AlRyalat, S.A.S.; Mahafza, W.S.; Samara, O.A.; Ryalat, A.T.; Al-Hadidy, A.M. Myelopathy associated with age-related cervical disc herniation: A retrospective review of magnetic resonance images. Ann. Saudi Med. 2017, 37, 130–137. [Google Scholar] [CrossRef]
- Milligan, J.; Ryan, K.; Fehlings, M.; Bauman, C. Degenerative cervical myelopathy: Diagnosis and management in primary care. Can. Fam. Physician 2019, 65, 619–624. [Google Scholar]
- Patel, S.; Naidoo, K.; Thomas, P. Spinal cord infarction: A rare cause of paraplegia. BMJ Case Rep. 2014, 2014, bcr2013202793. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.B.; Choi, S.G.; Lim, Y.J. Paraplegia due to Spinal Cord Infarction After Lifting Heavy Objects. J. Korean Neurosurg. Soc. 2008, 434, 114–116. [Google Scholar] [CrossRef][Green Version]
- Hashimoto, M.; Mochizuki, M.; Aiba, A.; Okawa, A.; Hayashi, K.; Sakuma, T.; Takahashi, H.; Koda, M.; Takahashi, K. C5 palsy following anterior decompression and spinal fusion for cervical degenerative diseases. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2010, 19, 1702–1710. [Google Scholar] [CrossRef]
- Fang, M.; Zhou, J.; Zeng, Y.; Huang, S.; Song, Y. Conversion Paralysis After Cervical Surgery: A Case Report and Literature Review. Front. Surg. 2022, 9, 814498. Available online: https://www.frontiersin.org/journals/surgery/articles/10.3389/fsurg.2022.814498/full (accessed on 10 June 2025). [CrossRef] [PubMed]
- Stewart, A.N.; Gensel, J.C.; Jones, L.; Fouad, K. Challenges in Translating Regenerative Therapies for Spinal Cord Injury. Top. Spinal Cord. Inj. Rehabil. 2023, 29, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Huang, K.; Xing, Y. Artificial Intelligence in Omics. Genom. Proteom. Bioinform. 2022, 20, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhang, S.; Yang, M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023, 14, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.Z.; Pippin, J.J.; Sandusky, C.B. Animal models in spinal cord injury: A review. Rev. Neurosci. 2008, 19, 47–60. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Badhiwala, J.H.; Fehlings, M.G. “Time is spine”: The importance of early intervention for traumatic spinal cord injury. Spinal Cord. 2020, 58, 1037–1039. [Google Scholar] [CrossRef]
- Li, M.-Q.; Wang, Q.H.; Dong, C.M.; Qi, L.J. Spinal Cord Injury Models: Advantages and Disadvantages in the View of Pathophysiology and Clinical Significance. Biochem. Biophys. Rep. 2025, 42, 102063. Available online: https://www.sciencedirect.com/science/article/pii/S2405580825001505 (accessed on 10 June 2025). [CrossRef]
- Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: Disease models and outcome measures. J. Pain. 2013, 14, 1255–1269. [Google Scholar] [CrossRef] [PubMed]
Omics Approach | Key Information | References |
---|---|---|
Genomics |
| |
Proteomics |
| |
Metabolomics |
|
Mechanism | Therapeutic Strategy | Examples | Key Effects |
---|---|---|---|
Ion Imbalance | Na+ Channel Blockers | Tetrodotoxin, riluzole, mexiletine, phenytoin | Inhibit neuronal depolarization, which prevent glutamate release and excitotoxicity |
Oxidative Stress | Antioxidants | U-83836E, tempol, melatonin | Inhibit ROS production and lipid peroxidation; scavenge free radicals |
Glucocorticoids | Dexamethasone, methylprednisolone | Inhibit ROS; limited use due to side effects | |
Ca2+ Channel Blockers | Nimodipine, mibefradil, trimethadione | Reduce calcium influx and prevent ROS-triggering pathways | |
Mitochondrial Repair and Transplantation | Mitochondrial Transplantation | Exogenous mitochondrial injection | Enhances calcium buffering, reduces ROS, restores cellular function |
Endogenous Repair | Mitochondrial fusion, fission, mitophagy | Promotes removal or repair of damaged mitochondria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.; Deng, A.J.; Hasoon, J.; Wahezi, S.; Abd-Elsayed, A. A Review of Pathophysiology, Molecular Mechanisms, and Omics Approaches of Spinal Cord Injury. Int. J. Mol. Sci. 2025, 26, 7895. https://doi.org/10.3390/ijms26167895
Patel M, Deng AJ, Hasoon J, Wahezi S, Abd-Elsayed A. A Review of Pathophysiology, Molecular Mechanisms, and Omics Approaches of Spinal Cord Injury. International Journal of Molecular Sciences. 2025; 26(16):7895. https://doi.org/10.3390/ijms26167895
Chicago/Turabian StylePatel, Milan, Alison J. Deng, Jamal Hasoon, Sayed Wahezi, and Alaa Abd-Elsayed. 2025. "A Review of Pathophysiology, Molecular Mechanisms, and Omics Approaches of Spinal Cord Injury" International Journal of Molecular Sciences 26, no. 16: 7895. https://doi.org/10.3390/ijms26167895
APA StylePatel, M., Deng, A. J., Hasoon, J., Wahezi, S., & Abd-Elsayed, A. (2025). A Review of Pathophysiology, Molecular Mechanisms, and Omics Approaches of Spinal Cord Injury. International Journal of Molecular Sciences, 26(16), 7895. https://doi.org/10.3390/ijms26167895