Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile
Abstract
1. Introduction
2. Results
2.1. In Vitro Study of Anti-Inflammatory Activity
2.2. Carrageenan-Induced Oedema Model
2.3. Air Pouch Granuloma Model
2.4. Formalin-Induced Oedema
3. Discussion
4. Materials and Methods
4.1. Studied Substance
4.2. In Vivo Study of Anti-Inflammatory Activity
4.2.1. Experimental Animals
4.2.2. Carrageenan-Induced Oedema Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h prior to the carrageenan injection (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h before carrageenan administration (n = 8);
- Comparison group—animals received ibuprofen (a well-known anti-inflammatory agent) at a dose of 100 mg/kg intraperitoneally 1 h before carrageenan administration (n = 8).
4.2.3. Air Pouch Granuloma Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h prior to the turpentine injection (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h prior to the turpentine injection (n = 8);
- Comparison group—animals received ibuprofen at a dose of 100 mg/kg intraperitoneally 1 h prior to the turpentine injection (n = 8).
4.2.4. Formalin-Induced Oedema Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h before formalin administration (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h before formalin administration (n = 8);
- Comparison group—animals received ibuprofen at a dose of 100 mg/kg intraperitoneally 1 h before formalin administration (n = 8).
4.3. In Vitro Study of Anti-Inflammatory Activity
4.3.1. Cell Line and Culture Conditions
4.3.2. Differentiation of Monocytes into Macrophage-like Cells
4.3.3. Induction of Inflammation and Treatment with the Investigated Substance
4.3.4. Gene Expression Analysis by Real-Time Quantitative PCR
Primer Design
RNA Extraction and Reverse Transcription
Real-Time Quantitative PCR
Data Analysis and Quality Control
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HTLP | Helianthus tuberosus L. polysaccharide |
| CSF | Colony-stimulating factor |
| cDNA | Complementary DNA |
| IFN | Interferon |
| IL | Interleukin |
| TNF | Tumour necrosis factor |
| IQR | Interquartile range |
References
- Potere, N.; Bonaventura, A.; Abbate, A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2371–2395. [Google Scholar] [CrossRef]
- Chaffey, L.E.; Roberti, A.; Bowman, A.; O’BRien, C.J.; Som, L.; Purvis, G.S.; Greaves, D.R. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur. J. Pharmacol. 2024, 969, 176437. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Scarpignato, C.; Lanas, A.; Blandizzi, C.; Lems, W.F.; Hermann, M.; Hunt, R.H. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis—An expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 2015, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742/ (accessed on 16 May 2025).
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Sig. Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, B.; Wang, Z.; Li, M.; Zhao, W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev. Med. Chem. 2020, 20, 96–106. [Google Scholar] [CrossRef]
- Generalov, E.; Yakovenko, L. Receptor basis of biological activity of polysaccharides. Biophys. Rev. 2023, 15, 1209–1222. [Google Scholar] [CrossRef]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef]
- Generalov, E.; Grigoryan, I.; Minaichev, V.; Sinitsyna, O.; Yakovenko, L.; Sinitsyn, A.; Generalova, L. Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile. Int. J. Mol. Sci. 2025, 26, 5562. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.J.; Fehrenbach, G.W.; Abidin, I.Z.; Buckley, C.; Montgomery, T.; Pogue, R.; Murray, P.; Major, I.; Rezoagli, E. Polysaccharides—Naturally Occurring Immune Modulators. Polymers 2023, 15, 2373. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Wang, X.Q.; Xu, X.F.; Zhang, X.W. Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. Int. J. Biol. Macromol. 2019, 127, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.; Laryushkin, D.; Kritskaya, K.; Kulchenko, N.; Sinitsyn, A.; Yakovenko, L.; Generalova, L.; Belostotsky, N. Immune basis of therapeutic effects of Solanum tuberosum L. polysaccharide on chronic peptic ulcer healing. Pharmaceutics 2025, 18, 502. [Google Scholar] [CrossRef]
- Generalov, E.A. Water-soluble polysaccharide from Heliantnus tuberosus L.: Radioprotective, colony-stimulation and immunomodulation activities. Biofizika 2015, 60, 73–79. [Google Scholar]
- Yin, Z.; Zhang, J.; Qin, J.; Guo, L.; Guo, Q.; Kang, W.; Ma, C.; Chen, L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: A review. Front. Pharmacol. 2024, 15, 1447677. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, H.; Wu, Q.; Geng, Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024, 13, 3183. [Google Scholar] [CrossRef]
- Lu, L.; Xiong, Y.; Lin, Z.; Chu, X.; Panayi, A.C.; Hu, Y.; Zhou, J.; Mi, B.; Liu, G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front. Pharmacol. 2022, 13, 1009550. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Li, Y.; Xiao, H.; Yuan, F. Effect of polysaccharides from Vitis vinifera L. on NF-κB/IκB-α signal pathway and inflammatory factors in Alzheimer’s model rats. Biotechnol. Biotechnol. Equip. 2018, 32, 1012–1020. [Google Scholar] [CrossRef]
- Maiorov, S.A.; Laryushkin, D.P.; Kritskaya, K.A.; Zinchenko, V.P.; Gaidin, S.G.; Kosenkov, A.M. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci. 2024, 14, 668. [Google Scholar] [CrossRef]
- Gaidin, S.; Maiorov, S.; Zinchenko, V.; Laryushkin, D.; Tuleukhanov, S.; Kairat, B.; Kosenkov, A. Pharmacological inhibition of PLC and PKC triggers epileptiform activity in hippocampal neurons. Epilepsy Res. 2025, 214, 107570. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhi, Z.; Wei, C.; Wang, W.; Ding, T.; Ye, X.; Hu, Y.; Linhardt, R.J.; Chen, S. Macromolecular Properties and Hypolipidemic Effects of Four Sulfated Polysaccharides from Sea Cucumbers. Carbohydr. Polym. 2017, 173, 330–337. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, G.; Li, F.; Fang, S.; Zhou, S.; Ishiwata, A.; Tonevitsky, A.G.; Shkurnikov, M.; Cai, H.; Ding, F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023, 15, 1615. [Google Scholar] [CrossRef] [PubMed]
- Mata-Martínez, P.; Bergón-Gutiérrez, M.; Del Fresno, C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front. Immunol. 2022, 13, 812148. [Google Scholar] [CrossRef] [PubMed]
- Pedro, A.R.V.; Lima, T.; Fróis-Martins, R.; Leal, B.; Ramos, I.C.; Martins, E.G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Vilanova, M.; et al. Dectin-1-Mediated Production of Pro-Inflammatory Cytokines Induced by Yeast β-Glucans in Bovine Monocytes. Front. Immunol. 2021, 12, 689879. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Yáñez, A.; Ramos, P.; Morales-Quintana, L. Human Health Benefits through Daily Consumption of Jerusalem Artichoke (Helianthus tuberosus L.) Tubers. Horticulturae 2022, 8, 620. [Google Scholar] [CrossRef]
- Sawicka, B.; Skiba, D.; Pszczółkowski, P.; Aslan, I.; Sharifi-Rad, J.; Krochmal-Marczak, B. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell Mol. Biol. 2020, 66, 160–177. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Nowicka, P.; Rubiński, P.; Cebulak, T. Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules 2021, 26, 2644. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, X.; Yang, M.; Duan, J.; Xiao, P. A comprehensive review on the antitumor mechanisms of polysaccharides and their structure-activity relationships—Current insights and future directions. Int. J. Biol. Macromol. 2025, 319, 145355. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules -A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef]
- Generalov, E.A. Structure and radioprotective properties of a non-toxic polysaccharide from Helianthus tuberosus L. Biophysics 2014, 59, 357–363. [Google Scholar] [CrossRef]
- Generalov, E.A. Antimetastatic and Tumor Growth Inhibition Activity of Polysaccharide from Helianthus Tuberosus L. ARC J. Cancer Sci. 2015, 1, 5–10. [Google Scholar] [CrossRef]
- Generalov, E.; Dyukina, A.; Shemyakov, A.; Mytsin, G.; Agapov, A.; Kritskaya, K.; Kosenkov, A.; Gaidin, S.; Maiorov, S.; Generalova, L.; et al. Polysaccharide from Helianthus tuberosus L. as a potential radioprotector. Biochem. Biophys. Res. Commun. 2024, 733, 150442. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.A.; Afremova, A.I. The Molecular mechanism of the action of Helianthus tuberosus L. polysaccharide. Biophysics 2016, 61, 558–564. [Google Scholar] [CrossRef]
- Generalov, E.A. Spectral characteristics and monosaccharide composition of an interferon-inducing antiviral polysaccharide from Helianthus tuberosus L. Biophysics 2015, 60, 53–59. [Google Scholar] [CrossRef]
- García-Domínguez, M. The Role of TNF-α in Neuropathic Pain: An Immunotherapeutic Perspective. Life 2025, 15, 785. [Google Scholar] [CrossRef]
- Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front. Immunol. 2019, 10, 1618. [Google Scholar] [CrossRef]
- Ullrich, K.A.; Schulze, L.L.; Paap, E.M.; Müller, T.M.; Neurath, M.F.; Zundler, S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J. 2020, 19, 1563–1589. [Google Scholar] [CrossRef]
- Krueger, J.G.; Eyerich, K.; Kuchroo, V.K.; Ritchlin, C.T.; Abreu, M.T.; Elloso, M.M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.P.; Yang, Y.-W.; et al. IL-23 past, present, and future: A roadmap to advancing IL-23 science and therapy. Front. Immunol. 2024, 15, 1331217. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef]
- Haile, S.T.; Horn, L.A.; Ostrand-Rosenberg, S. A soluble form of CD80 enhances antitumor immunity by neutralizing programmed death ligand-1 and simultaneously providing costimulation. Cancer Immunol. Res. 2014, 2, 610–615. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Park, P.S.U.; Park-Min, K.H. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med. 2020, 52, 1239–1254. [Google Scholar] [CrossRef]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes. FAOLEX. Available online: https://www.fao.org/faolex/results/details/ru/c/LEX-FAOC098296/ (accessed on 15 January 2025).
- Guillen, J. FELASA guidelines and recommendations. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 311–321. [Google Scholar]
- Whiteley, P.E.; Dalrymple, S.A. Models of inflammation: Carrageenan-induced paw edema in the rat. Curr. Protoc. Pharmacol. 1998, 541–543. [Google Scholar] [CrossRef]
- Ben Khedir, S.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In Vivo Evaluation of the Anti-Inflammatory Effect of Pistacia lentiscus Fruit Oil and Its Effects on Oxidative Stress. Evid. Based Complement. Alternat. Med. 2016, 2016, 6108203. [Google Scholar] [CrossRef]
- Colville-Nash, P.; Lawrence, T. Air-pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation. Methods Mol. Biol. 2003, 225, 181–189. [Google Scholar] [CrossRef]
- Wheeler-Aceto, H.; Cowan, A. Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacology 1991, 104, 35–44. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Kritskaya, K.A.; Fedotova, E.I.; Nadeev, A.D.; Berezhnov, A.V. Silver Bullet of Acidification: Studying Anti-PD Neuroprotective Mechanisms of Transient pH-Decrease. BIOCELL 2025, 49, 451–464. [Google Scholar] [CrossRef]





| Gene (Protein) | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
|---|---|---|
| IL1B (IL-1β) | ATGATGGCTTATTACAGTGGCAA | GTCGGAGATTCGTAGCTGGA |
| IL6 | ACTCACCTCTTCAGAACGAATTG | CCATCTTTGGAAGGTTCAGGTTG |
| IL10 | GACTTTAAGGGTTACCTGGGTTG | TCACATGCGCCTTGATGTCTG |
| IL12B | GCGGAGCTGCTACACTCTC | CCATGACCTCAATGGGCAGAC |
| IL23 | CTCAGGGACAACAGTCAGTTC | ACAGGGCTATCAGGGAGCA |
| TNFA (TNF-α) | CCTCTCTCTAATCAGCCCTCTG | GAGGACCTGGGAGTAGATGAG |
| CD40 | TTGGGGTCAAGCAGATTGCTA | GCAGATGACACATTGGAGAAGA |
| CD80 | GGCACATACGAGTGTGTTGT | TCAGCTTTGACTGATAACGTCAC |
| CD274 | GGACAAGCAGTGACCATCAAG | CCCAGAATTACCAAGTGAGTCCT |
| CSF1 | TGGCGAGCAGGAGTATCAC | AGGTCTCCATCTGACTGTCAAT |
| NAMPT | GGCACCACTAATCATCAGACCTG | AAGGTGGCAGCAACTTGTAGCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Generalov, E.; Yakovenko, L.; Sinitsyn, A.; Alekseev, A.; Sinitsyna, O.; Abduvosidov, K.; Minaichev, V.; Generalova, L. Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. Int. J. Mol. Sci. 2025, 26, 7885. https://doi.org/10.3390/ijms26167885
Generalov E, Yakovenko L, Sinitsyn A, Alekseev A, Sinitsyna O, Abduvosidov K, Minaichev V, Generalova L. Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences. 2025; 26(16):7885. https://doi.org/10.3390/ijms26167885
Chicago/Turabian StyleGeneralov, Evgenii, Leonid Yakovenko, Arkady Sinitsyn, Alexander Alekseev, Olga Sinitsyna, Khurshed Abduvosidov, Vladislav Minaichev, and Liubov Generalova. 2025. "Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile" International Journal of Molecular Sciences 26, no. 16: 7885. https://doi.org/10.3390/ijms26167885
APA StyleGeneralov, E., Yakovenko, L., Sinitsyn, A., Alekseev, A., Sinitsyna, O., Abduvosidov, K., Minaichev, V., & Generalova, L. (2025). Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences, 26(16), 7885. https://doi.org/10.3390/ijms26167885

