A Novel Study of β1- and β2-Adrenergic Receptors Present on PBMCs, T Cells, Monocytes, and NK Cells by Radioligand Method: Quantitation and Correlations
Abstract
1. Introduction
2. Results
- ADRB2 is present in all peripheral blood cell subpopulations examined. A comparison of the amount of ADRB2 present on cells from different subpopulations is summarized in Table 1, where mean values and medians are shown. It can be seen that ADRB2 is most abundant in NK cells (1334, hereinafter medians are given in parentheses), followed by PBMC (693), monocytes (453), and T cells, for which the ADRB2content was the lowest (278). We determined the Pearson correlation coefficient for the amount of ADRB2 on the cell surface for all studied cell subpopulations from healthy donors (see Table 2). A significant correlation was found between the amount of ADRB2 in PBMCs, T cells, monocytes, and NK cells (p < 0.05 in all cases).
- ADRB1. The quantitation limit of our modified radioligand method is about 250 ADRB1 molecules per cell [8]. We were unable to reliably detect ADRB1 in either PBMCs or T cells, which is consistent with previously reported data for these blood cell subpopulations in healthy donors [8,10]. In the present study, we were able to reliably detect ADRB1 in the monocyte subpopulation in 43% of donors (10 of 23), and also in the NK cell subpopulation in 35% of donors (8 out of 23, with a range from 285 to 1081 molecules per cell). In some cases, the amount of ADRB1 was rather high, with more than 2000 receptor molecules per cell (see Figure 1, monocytes).
- It should be noted that the content of ADRB1 on the surface of monocytes does not correlate with the amount of these receptors on the surface of NK cells (n = 23, r = 0.27, p = 0.22).
3. Discussion
4. Materials and Methods
Limitations of the Study
- -
- The sample size is small (n = 23).
- -
- Our study used a homogeneous group of donors (see Section 4)—young healthy resident physicians who undergo regular medical examinations; thus, its generalization to disease states is limited.
- -
- The limitation of the method can be considered to be the large blood volume (81 mL) required to isolate cells of different subpopulations in sufficient quantity for radioligand analysis.
- -
- Receptor internalization: adrenergic receptors can undergo internalization upon ligand binding, which may lead to an underestimation of receptor numbers on the cell surface. This dynamic process can be influenced by the experimental conditions and the timing of the assay.
- -
- Pharmacological differences: radioligands may have different affinities for different subtypes of adrenergic receptors (e.g., α1, α2, β1, β2). If the ligand is not subtype-specific, the assay may not accurately reflect the density of a particular receptor subtype.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBMC | Peripheral blood mononuclear cells |
ADRB | β-adrenergic receptor |
ADRB1 | β1-adrenergic receptor |
ADRB2 | β2-adrenergic receptor |
CYP | Cyanopindolol |
ECG | Electrocardiagram |
BMI | Body mass index |
FEV1 | Forced expiratory volume in one second |
References
- Brodde, O.E.; Kretsch, R.; Ikezono, K.; Zerkowski, H.R.; Reidemeister, J.C. Human beta-adrenoceptors: Relation of myocardial and lymphocyte beta-adrenoceptor density. Science 1986, 231, 1584–1585. [Google Scholar] [CrossRef] [PubMed]
- Zoukos, Y.; Leonard, J.P.; Thomaides, T.; Thompson, A.J.; Cuzner, M.L. β-adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: A regulatory role for cortisol and interleukin-1. Ann. Neurol. 1992, 31, 657–662. [Google Scholar] [CrossRef]
- Zoukos, Y.; Thomaides, T.N.; Kidd, D.; Cuzner, M.L.; Thompson, A. Expression of β2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: A longitudinal six month study. J. Neurol. Neurosurg. Psychiatry 2003, 74, 197–202. [Google Scholar] [CrossRef]
- Michel, M.C.; Beckeringh, J.J.; Ikezono, K.; Kretsch, R.; Brodde, O.E. Lymphocyte beta 2-adrenoceptors mirror precisely beta 2-adrenoceptor, but poorly beta 1-adrenoceptor changes in the human heart. J. Hypertens. Suppl. 1986, 4, 215–218. [Google Scholar]
- Brodde, O.E.; Michel, M.C.; Gordon, E.P.; Sandoval, A.; Gilbert, E.M.; Bristow, M.R. Beta-adrenoceptor regulation in the human heart: Can it be monitored in circulating lymphocytes? Eur. Heart J. Jun. 1989, 10 (Suppl. B), 2–10. [Google Scholar] [CrossRef]
- Stiles, G.L.; Caron, M.G.; Lefkowitz, R.J. β-adrenergic receptors: Biochemical mechanisms of physiological regulation. Physiol. Rev. 1984, 64, 661–743. [Google Scholar] [CrossRef] [PubMed]
- Brodde, O.E. Beta-adrenoceptors in cardiac disease. Pharmacol. Ther. 1993, 60, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Shevelev, A.Y.; Kashirina, N.M.; Lipatova, L.N.; Yanushevskaya, E.V.; Peklo, M.M.; Ribalkin, I.N.; Rutkevich, P.N.; Chusovitina, O.K.; Skoblova, N.A.; Skoblov, Y.u.S.; et al. Radioligand binding assay for the simultaneous determination of β1- and β2-adrenergic receptors in human blood cells. Bioorganicheskaya Khimiya/Russ. J. Bioorganic Chem. 2022, 48, 551–560. (In Russian) [Google Scholar] [CrossRef]
- Sun, X.; Zhou, M.; Wen, G.; Huang, Y.; Wu, J.; Peng, L.; Jiang, W.; Yuan, H.; Lu, Y.; Cai, J. Paroxetin attenuates cardiac hypertrophy via blocking GRK2 and ADRB1 interaction in hypertension. J. Am. Heart Assoc. 2021, 10, e016364. [Google Scholar] [CrossRef] [PubMed]
- Smolyakova, E.V.; Skoblov, Y.S.; Skoblova, N.A.; Agapova, O.Y.; Ambat’ello, L.G.; Klimova, A.A.; Kuznetsova, T.V.; Masenko, V.P.; Nistor, S.Y.u.; Rvacheva, A.V.; et al. Specificity and selectivity of the modified radioligand method for assessment of β1-adrenoreceptor’s binding activity on human T-lymphocytes. Bioorganicheskaya Khimiya/Russ. J. Bioorganic Chem. 2019, 45, 295–301. (In Russian) [Google Scholar]
- Agapova, O.Y.; Skoblovb, Y.S.; Zykov, K.A.; Rvachevaa, A.V.; Beilinaa, V.B.; Masenko, V.P.; Chazova, I.E. Radioligand method of assessment of human T-Lymphocytes’ β-adrenoceptors activity. Russ. J. Bioorganic Chem. 2015, 41, 529–535. [Google Scholar] [CrossRef]
- Krasnikova, T.L.; Korichneva, I.L.; Radiukhin, V.A. Dependence of kinetic constants of intact human lymphocyte beta2-adrenoreceptors on the nature of the radioligands used. Biokhimiia 1989, 54, 235–243. [Google Scholar]
- Agapova, O.Y.; Skoblovb, Y.S.; Tkachev, G.A.; Mironova, N.A.; Golitsyn, S.P.; Masenko, V.P.; Chazova, I.E.; Zykov, K.A. Changes in the receptor activity of β2-adrenoreceptors of human T-lymphocytes under the effect of β2-agonists. Mol. Biol. 2016, 50, 880–886. [Google Scholar] [CrossRef]
- Shevelev, A.Y.; Kashirina, N.M.; Lipatova, L.N.; Yanushevskaya, E.V.; Peklo, M.M.; Kostukevich, M.V.; Mironova, N.A.; Golitsin, S.P.; Hvorostova, Y.V.; Ivanov, M.K.; et al. The content of β2-adrenergic receptors in T-cells of peripheral blood correlates with the level of their RNA. Kardiol. Vestn. 2021, 16, 48–49. (In Russian) [Google Scholar]
- Du, Y.; Li, X.; Yu, H.; Yan, L.; Lau, W.B.; Zhang, S.; Qin, Y.; Wang, W.; Ma, X.; Liu, H.; et al. Activation of T lymphocytes as a novel mechanism in beta1-adrenergic receptor autoantibody-induced cardiac remodeling. Cardiovasc. Drugs. Ther. 2019, 33, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yan, L.; Wang, J.; Zhan, W.; Song, K.; Han, X.; Li, X.; Cao, J.; Liu, H. β1- adrenergic receptor autoantibodies from heart failure patients enhance the proliferation and secretion of T lymphocytes through the β1-AR/cAMP/PKA and p38 MAPK pathways. PLoS ONE 2012, 7, e52911. [Google Scholar] [CrossRef] [PubMed]
- Talmadge, J.; Scott, R.; Gastelli, P.; Newman-Tarr, T.; Lee, J. Molecular pharmacology of the β1- adrenergic receptor on THP-1 cells. Int. J. Immunopharmacol. 1993, 15, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Grisanti, L.A.; Evanson, J.; Marchus, E.; Jorissen, H.; Woster, A.P.; DeKrey, W.; Sauter, E.R.; Combs, C.K.; Porter, J.E. Pro-inflammatory responses in human monocytes are beta1-adrenergic receptor subtype dependent. Mol. Immunol. 2010, 47, 1244–1254. [Google Scholar] [CrossRef]
- Jetschmann, J.U.; Benschop, R.J.; Jacobs, R.; Kemper, A.; Oberbeck, R.; Schmidt, R.E.; Schedlowski, M. Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (CD16+) cells. J. Neuroimmunol. 1997, 74, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, F.C.; Hunter, W.M.; Glover, J.S. The Preparation of 131I-Labelled Human Growth Hormone of High Specific Radioactivity. Biochem. J. 1963, 89, 114–123. [Google Scholar] [CrossRef]
- Böyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Invest. Suppl. 1968, 97, 77–89. [Google Scholar] [PubMed]
PBMC | Monocytes | T Cells | NK Cells | |
---|---|---|---|---|
MEAN | 744 | 467 | 312 | 1366 |
MEDIAN | 693 | 453 | 278 | 1334 |
Monocytes | T Cells | NK Cells | |
---|---|---|---|
PBMC | 0.62 | 0.73 | 0.85 |
p = 0.0017 | p = 0.00009 | p = 0.0000002 | |
(0.160–0.822) | (0.230–0.878) | (0.296–0.935) | |
Monocytes | 0.8 | 0.62 | |
p = 0.000004 | p = 0.0017 | ||
(0.270–0.912) | (0.160–0.822) | ||
T cells | 0.67 | ||
p = 0.00047 | |||
(0.193–0.848) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peklo, M.M.; Smolyakova, E.V.; Lipatova, L.N.; Kashirina, N.M.; Skoblov, Y.S.; Skoblova, N.A.; Slinkin, M.A.; Rybalkin, I.N.; Rutkevich, P.N.; Chusovitina, O.K.; et al. A Novel Study of β1- and β2-Adrenergic Receptors Present on PBMCs, T Cells, Monocytes, and NK Cells by Radioligand Method: Quantitation and Correlations. Int. J. Mol. Sci. 2025, 26, 7894. https://doi.org/10.3390/ijms26167894
Peklo MM, Smolyakova EV, Lipatova LN, Kashirina NM, Skoblov YS, Skoblova NA, Slinkin MA, Rybalkin IN, Rutkevich PN, Chusovitina OK, et al. A Novel Study of β1- and β2-Adrenergic Receptors Present on PBMCs, T Cells, Monocytes, and NK Cells by Radioligand Method: Quantitation and Correlations. International Journal of Molecular Sciences. 2025; 26(16):7894. https://doi.org/10.3390/ijms26167894
Chicago/Turabian StylePeklo, Mihail. M., Ekaterina V. Smolyakova, Lyudmila N. Lipatova, Natal’ya M. Kashirina, Yurij S. Skoblov, Natal’ya A. Skoblova, Mihail A. Slinkin, Igor’ N. Rybalkin, Pavel N. Rutkevich, Olga K. Chusovitina, and et al. 2025. "A Novel Study of β1- and β2-Adrenergic Receptors Present on PBMCs, T Cells, Monocytes, and NK Cells by Radioligand Method: Quantitation and Correlations" International Journal of Molecular Sciences 26, no. 16: 7894. https://doi.org/10.3390/ijms26167894
APA StylePeklo, M. M., Smolyakova, E. V., Lipatova, L. N., Kashirina, N. M., Skoblov, Y. S., Skoblova, N. A., Slinkin, M. A., Rybalkin, I. N., Rutkevich, P. N., Chusovitina, O. K., Yanushevskaya, E. V., Zykov, K. A., & Vlasik, T. N. (2025). A Novel Study of β1- and β2-Adrenergic Receptors Present on PBMCs, T Cells, Monocytes, and NK Cells by Radioligand Method: Quantitation and Correlations. International Journal of Molecular Sciences, 26(16), 7894. https://doi.org/10.3390/ijms26167894